1
|
Rodriguez Navas M, Darling EM. Selection of Force Sensors for In Situ Measurement of Neotissue Microenvironments. Tissue Eng Part A 2024. [PMID: 39453885 DOI: 10.1089/ten.tea.2024.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Mechanical forces are a critical stimulus in both native and engineered tissues. Direct measurement of these microenvironmental forces has been challenging, particularly for cell-dense models. To address this, we previously developed hydrogel-based force sensors that are approximately the size of a cell and can be imaged over time to computationally assess the forces exerted by surrounding cells and matrix. The goal of this project was to identify how the physical characteristics of force sensors impact measurements. Sensors were varied in size, elastic modulus, and surface coating before being included in stem cell suspensions that then spontaneously self-assembled into spheroidal neotissues. Using this model of early mesenchymal condensation, we hypothesized that larger, softer sensors would provide greater sensitivity and precision, whereas protein coatings would influence the directionality of applied forces (tensile vs. compressive). These experiments were conducted using a high-content imaging system that allowed analysis of over a thousand sensors to evaluate the various conditions. Results indicated that measurement fidelity was highest for force sensors that had a diameter >20 µm and modulus ∼0.2 kPa. Extremely soft sensors deformed too much, whereas stiffer sensors deformed too little. Collagen and N-cadherin coatings, which replicated cell-matrix or cell-cell binding, respectively, allowed for tensile forces to be exerted on the sensors, with greater forces being observed for N-cadherin sensors in these highly cellular neotissue constructs. Uncoated sensors were universally compressed due to the lack of cell-sensor adhesion. Disruption of the actin cytoskeleton lessened microenvironmental forces, whereas disruption of microtubules had no measurable effect. Potential future applications of the technology include studies of in situ forces in developing tissues as well as a real-time sensor for monitoring the growth of engineered constructs.
Collapse
Affiliation(s)
- Marta Rodriguez Navas
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island, USA
| | - Eric M Darling
- Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- School of Engineering, Brown University, Providence, Rhode Island, USA
- Department of Orthopaedics, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Dempsey ME, Chickering GR, González-Cruz RD, Fonseca VC, Darling EM. Discovery of surface biomarkers for cell mechanophenotype via an intracellular protein-based enrichment strategy. Cell Mol Life Sci 2022; 79:320. [PMID: 35622146 PMCID: PMC9239330 DOI: 10.1007/s00018-022-04351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Cellular mechanophenotype is often a defining characteristic of conditions like cancer malignancy/metastasis, cardiovascular disease, lung and liver fibrosis, and stem cell differentiation. However, acquiring living cells based on mechanophenotype is challenging for conventional cell sorters due to a lack of biomarkers. In this study, we demonstrate a workflow for surface protein discovery associated with cellular mechanophenotype. We sorted heterogeneous adipose-derived stem/stromal cells (ASCs) into groups with low vs. high lamin A/C, an intracellular protein linked to whole-cell mechanophenotype. Proteomic data of enriched groups identified surface protein candidates as potential biochemical proxies for ASC mechanophenotype. Select surface biomarkers were used for live-cell enrichment, with subsequent single-cell mechanical testing and lineage-specific differentiation. Ultimately, we identified CD44 to have a strong inverse correlation with whole-cell elastic modulus, with CD44lo cells exhibiting moduli three times greater than that of CD44hi cells. Functionally, these stiff and soft ASCs showed enhanced osteogenic and adipogenic differentiation potential, respectively. The described workflow can be replicated for any phenotype with a known correlated intracellular protein, allowing for the acquisition of live cells for further characterization, diagnostics, or therapeutics.
Collapse
Affiliation(s)
- Megan E Dempsey
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | | | | | - Vera C Fonseca
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Orthopaedics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Gutierrez RA, Fang W, Kesari H, Darling EM. Force sensors for measuring microenvironmental forces during mesenchymal condensation. Biomaterials 2021; 270:120684. [PMID: 33535143 DOI: 10.1016/j.biomaterials.2021.120684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
Mechanical forces are an essential element to early tissue formation. However, few techniques exist that can quantify the mechanical microenvironment present within cell-dense neotissues and organoid structures. Here is a versatile approach to measure microscale, cellular forces during mesenchymal condensation using specially tailored, hyper-compliant microparticles (HCMPs). Through monitoring of HCMP deformation over both space and time, measurements of the mechanical forces that cells exert, and have exerted on them, during tissue formation are acquired. The current study uses this technology to track changes in the mechanical microenvironment as mesenchymal stem cells self-assemble into spheroids and condense into cohesive units. An array analysis approach, using a high-content imaging system, shows that cells exert a wide range of tensile and compressive forces during the first few hours of self-assembly, followed by a period of relative equilibrium. Cellular interactions with HCMPs are further examined by applying collagen coating, which allows for increased tensile forces to be exerted compared to non-coated HCMPs. Importantly, the hyper-compliant nature of our force sensors allows for increased precision over less compliant versions of the same particle. This sensitivity resolves small changes in the microenvironment even at the earliest stages of development and morphogenesis. The overall experimental platform provides a versatile means for measuring direct and indirect spatiotemporal forces in cell-dense biological systems.
Collapse
Affiliation(s)
- Robert A Gutierrez
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Wenqiang Fang
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Haneesh Kesari
- School of Engineering, Brown University, Providence, RI, 02912, USA.
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA; School of Engineering, Brown University, Providence, RI, 02912, USA; Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA; Department of Orthopaedics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
4
|
Sengul E, Elitas M. Single-Cell Mechanophenotyping in Microfluidics to Evaluate Behavior of U87 Glioma Cells. MICROMACHINES 2020; 11:mi11090845. [PMID: 32932941 PMCID: PMC7569913 DOI: 10.3390/mi11090845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Integration of microfabricated, single-cell resolution and traditional, population-level biological assays will be the future of modern techniques in biology that will enroll in the evolution of biology into a precision scientific discipline. In this study, we developed a microfabricated cell culture platform to investigate the indirect influence of macrophages on glioma cell behavior. We quantified proliferation, morphology, motility, migration, and deformation properties of glioma cells at single-cell level and compared these results with population-level data. Our results showed that glioma cells obtained slightly slower proliferation, higher motility, and extremely significant deformation capability when cultured with 50% regular growth medium and 50% macrophage-depleted medium. When the expression levels of E-cadherin and Vimentin proteins were measured, it was verified that observed mechanophenotypic alterations in glioma cells were not due to epithelium to mesenchymal transition. Our results were consistent with previously reported enormous heterogeneity of U87 glioma cell line. Herein, for the first time, we quantified the change of deformation indexes of U87 glioma cells using microfluidic devices for single-cells analysis.
Collapse
Affiliation(s)
- Esra Sengul
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
- Nanotechnology Research and Application Center, Sabanci University, 34956 Istanbul, Turkey
- Correspondence: ; Tel.: +90-538-810-2930
| |
Collapse
|
5
|
Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium. Stem Cells Int 2020; 2020:9363809. [PMID: 32724316 PMCID: PMC7381987 DOI: 10.1155/2020/9363809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Cardiac tissue engineering using hiPSC-derived cardiomyocytes is a promising avenue for cardiovascular regeneration, pharmaceutical drug development, cardiotoxicity evaluation, and disease modeling. Limitations to these applications still exist due in part to the need for more robust structural support, organization, and electromechanical function of engineered cardiac tissues. It is well accepted that heterotypic cellular interactions impact the phenotype of cardiomyocytes. The current study evaluates the functional effects of coculturing adult human cardiac fibroblasts (hCFs) in 3D engineered tissues on excitation and contraction with the goal of recapitulating healthy, nonarrhythmogenic myocardium in vitro. A small population (5% of total cell number) of hCFs in tissues improves tissue formation, material properties, and contractile function. However, two perturbations to the hCF population create disease-like phenotypes in engineered cardiac tissues. First, increasing the percentage of hCFs to 15% resulted in tissues with increased ectopic activity and spontaneous excitation rate. Second, hCFs undergo myofibroblast activation in traditional two-dimensional culture, and this altered phenotype ablated the functional benefits of hCFs when incorporated into engineered cardiac tissues. Taken together, the results of this study demonstrate that human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes and that a low percentage of quiescent hCFs are a valuable cell source to advance a healthy electromechanical response of engineered cardiac tissue for regenerative medicine applications.
Collapse
|
6
|
Meyer KC, Labriola NR, Darling EM, Kaehr B. Shape-Preserved Transformation of Biological Cells into Synthetic Hydrogel Microparticles. ADVANCED BIOSYSTEMS 2019; 3:e1800285. [PMID: 32627427 PMCID: PMC7747388 DOI: 10.1002/adbi.201800285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/07/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of materials that can mimic the mechanical, and ultimately functional, properties of biological cells can broadly impact the development of biomimetic materials, as well as engineered tissues and therapeutics. Yet, it is challenging to synthesize, for example, microparticles that share both the anisotropic shapes and the elastic properties of living cells. Here, a cell-directed route to replicate cellular structures into synthetic hydrogels such as polyethylene glycol (PEG) is described. First, the internal and external surfaces of chemically fixed cells are replicated in a conformal layer of silica using a sol-gel process. The template is subsequently removed to render shape-preserved, mesoporous silica replicas. Infiltration and cross-linking of PEG precursors and dissolution of the silica result in a soft hydrogel replica of the cellular template as demonstrated using erythrocytes, HeLa, and neuronal cultured cells. The elastic modulus can be tuned over an order of magnitude (≈10-100 kPa) though with a high degree of variability. Furthermore, synthesis without removing the biotemplate results in stimuli-responsive particles that swell/deswell in response to environmental cues. Overall, this work provides a foundation to develop soft particles with nearly limitless architectural complexity derived from dynamic biological templates.
Collapse
Affiliation(s)
- Kristin C Meyer
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, 87108, USA
| | - Nicholas R Labriola
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Eric M Darling
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Bryan Kaehr
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, 87108, USA
| |
Collapse
|
7
|
Muzzio NE, Pasquale MA, Marmisollé WA, von Bilderling C, Cortez ML, Pietrasanta LI, Azzaroni O. Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomater Sci 2018; 6:2230-2247. [PMID: 29978861 DOI: 10.1039/c8bm00265g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions-a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications.
Collapse
Affiliation(s)
- Nicolás E Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
8
|
Shah MK, Leary EA, Darling EM. Integration of hyper-compliant microparticles into a 3D melanoma tumor model. J Biomech 2018; 82:46-53. [PMID: 30392774 DOI: 10.1016/j.jbiomech.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Multicellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.1 and 9 kPa; diameter: 15-30 µm) into spheroids (diameter ∼100 µm) was tracked for up to 22 h. Results indicated that cells within melanoma spheroids were more influenced by MP mechanical properties than cells within normal cell spheroids. Melanoma spheroids had a greater propensity to incorporate and displace the more compliant MPs over time. Mature spheroids composed of either cell type were able to recognize and integrate MPs. While many tumor models exist to study drug delivery and efficacy, the study of uptake and incorporation of cell-sized MPs into established spheroids/tissues or tumors has been limited. The ability of hyper-compliant MPs to successfully penetrate 3D tumor models with natural extracellular matrix deposition provides a novel platform for potential delivery of drugs and other therapeutics into the core of tumors and micrometastases.
Collapse
Affiliation(s)
- Manisha K Shah
- Center for Biomedical Engineering, Brown University, RI, USA
| | | | - Eric M Darling
- Center for Biomedical Engineering, Brown University, RI, USA; Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, RI, USA; Department of Orthopaedics, Brown University, RI, USA; School of Engineering, Brown University, RI, USA.
| |
Collapse
|
9
|
Labriola NR, Sadick JS, Morgan JR, Mathiowitz E, Darling EM. Cell Mimicking Microparticles Influence the Organization, Growth, and Mechanophenotype of Stem Cell Spheroids. Ann Biomed Eng 2018; 46:1146-1159. [PMID: 29671154 DOI: 10.1007/s10439-018-2028-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Substrate stiffness is known to alter cell behavior and drive stem cell differentiation, though most research in this area has been restricted to traditional, two-dimensional culture systems rather than more physiologically relevant, three-dimensional (3D) platforms. In this study, we utilized polymer-based, cell mimicking microparticles (CMMPs) to deliver distinct, stable mechanical cues to human adipose derived stem cells in 3D spheroid culture to examine changes in adipogenic differentiation response and mechanophenotype. After 21 days of adipogenic induction, spheroids containing CMMPs (composite spheroids) stiffened in accordance with CMMP elasticity such that spheroids containing the stiffest, ~ 10 kPa, CMMPs were over 27% stiffer than those incorporating the most compliant, ~ 0.25 kPa CMMPs. Adipogenically induced, cell-only spheroids were over 180% larger and 50% more compliant than matched controls. Interestingly, composite spheroids cultured without chemical induction factors dissociated when presented with CMMPs stiffer than ~ 1 kPa, while adipogenic induction factors mitigated this behavior. Gene expression for PPARG and FABP4 were upregulated more than 45-fold in adipogenically induced samples compared to controls but were unaffected by CMMP elasticity, attributed to insufficient cell-CMMP contacts throughout the composite spheroid. In summary, mechanically tuned CMMPs influenced whole-spheroid mechanophenotype and stability but minimally affected differentiation response.
Collapse
Affiliation(s)
- Nicholas R Labriola
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA
| | - Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Edith Mathiowitz
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA.,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA. .,Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA. .,School of Engineering, Brown University, Providence, RI, USA. .,Department of Orthopaedics, Brown University, Providence, RI, USA.
| |
Collapse
|