1
|
Pirozzi I, Kight A, Han AK, Cutkosky MR, Dual SA. Circulatory Support: Artificial Muscles for the Future of Cardiovascular Assist Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210713. [PMID: 36827651 DOI: 10.1002/adma.202210713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Artificial muscles enable the design of soft implantable devices which are poised to transform the way we mechanically support the heart today. Heart failure is a prevalent and deadly disease, which is treated with the implantation of rotary blood pumps as the only alternative to heart transplantation. The clinically used mechanical devices are associated with severe adverse events, which are reflected here in a comprehensive list of critical requirements for soft active devices of the future: low power, no blood contact, pulsatile support, physiological responsiveness, high cycle life, and less-invasive implantation. In this review, prior art in artificial muscles for their applicability in the short and long term is investigated and critically evaluated. The main challenges regarding the effectiveness, controllability, and implantability of recently proposed actuators are highlighted and the future perspectives for attachment, physiological responsiveness, durability, and biodegradability as well as equitable design considerations are explored.
Collapse
Affiliation(s)
- Ileana Pirozzi
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Ali Kight
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Amy Kyungwon Han
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mark R Cutkosky
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94301, USA
| | - Seraina A Dual
- Department of Biomedical Engineering, KTH Royal Institute of Technology, Huddinge, 14157, Sweden
| |
Collapse
|
2
|
Lakhani HA, Lizarzaburo Penafiel LS, Fakhoury M, Seide M, Duran S PX, See JW, Dhillon DK, Shah S, Khan AM, Nimmagadda M, Susmitha T, Rai M. Heart Transplantation and Left Ventricular Assist Devices: Long-Term Prognosis and Effects on Mental Health. Cureus 2024; 16:e68691. [PMID: 39371854 PMCID: PMC11452842 DOI: 10.7759/cureus.68691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Heart transplantation and left ventricular assist devices (LVADs) have emerged as crucial interventions for end-stage heart failure, dramatically improving patient outcomes. This narrative review examines their historical context, indications, procedures, and outcomes, as well as their impact on long-term survival, quality of life, functional status, and mental health. While heart transplantation remains the optimal treatment, donor scarcity limits its application. LVADs have become a viable alternative, either as a bridge to transplantation or as destination therapy. Both interventions demonstrate similar long-term survival rates and significant improvements in health-related quality of life and functional status. However, they present distinct long-term management challenges, including immunosuppression needs for transplant recipients and device-related issues for LVAD patients. Mental health effects are considerable, necessitating psychological support and adaptive coping strategies. Complications such as infection, bleeding, and thrombosis remain concerns for both interventions. Patient selection criteria, technological advancements, and long-term management strategies are critical factors in optimizing outcomes. Future research should focus on device miniaturization, enhanced biocompatibility, and less invasive insertion techniques to further advance these therapies and improve patient care in end-stage heart failure.
Collapse
Affiliation(s)
| | | | - Marc Fakhoury
- Cardiology, Saint Joseph University of Beirut, Beirut, LBN
| | - Melinda Seide
- Internal Medicine, St. George's University School of Medicine, St. George's, GRD
| | | | - Jia Whei See
- Internal Medicine, Universitas Sriwijaya, Kota Palembang, IDN
| | | | - Shivendra Shah
- Internal Medicine, Nepalgunj Medical College, Nepalgunj, NPL
| | | | | | | | - Manju Rai
- Biotechnology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
3
|
Tedford RJ, Leacche M, Lorts A, Drakos SG, Pagani FD, Cowger J. Durable Mechanical Circulatory Support: JACC Scientific Statement. J Am Coll Cardiol 2023; 82:1464-1481. [PMID: 37758441 DOI: 10.1016/j.jacc.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 10/03/2023]
Abstract
Despite advances in medical therapy for patients with stage C heart failure (HF), survival for patients with advanced HF is <20% at 5 years. Durable left ventricular assist device (dLVAD) support is an important treatment option for patients with advanced HF. Innovations in dLVAD technology have reduced the risk of several adverse events, including pump thrombosis, stroke, and bleeding. Average patient survival is now similar to that of heart transplantation at 2 years, with 5-year dLVAD survival now approaching 60%. Unfortunately, greater adoption of dLVAD therapy has not been realized due to delayed referral of patients to advanced HF centers, insufficient clinician knowledge of contemporary dLVAD outcomes (including gains in quality of life), and deprioritization of patients with dLVAD support waiting for heart transplantation. Despite these challenges, novel devices are on the horizon of clinical investigation, offering smaller size, permitting less invasive surgical implantation, and eliminating the percutaneous lead for power supply.
Collapse
Affiliation(s)
- Ryan J Tedford
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
4
|
Magkoutas K, Nunes Rossato L, Heim M, Schmid Daners M. Genetic algorithm-based optimization framework for control parameters of ventricular assist devices. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Casós K, Llatjós R, Blasco-Lucas A, Kuguel SG, Sbraga F, Galli C, Padler-Karavani V, Le Tourneau T, Vadori M, Perota A, Roussel JC, Bottio T, Cozzi E, Soulillou JP, Galiñanes M, Máñez R, Costa C. Differential Immune Response to Bioprosthetic Heart Valve Tissues in the α1,3Galactosyltransferase-Knockout Mouse Model. Bioengineering (Basel) 2023; 10:833. [PMID: 37508860 PMCID: PMC10376745 DOI: 10.3390/bioengineering10070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Structural valve deterioration (SVD) of bioprosthetic heart valves (BHVs) has great clinical and economic consequences. Notably, immunity against BHVs plays a major role in SVD, especially when implanted in young and middle-aged patients. However, the complex pathogenesis of SVD remains to be fully characterized, and analyses of commercial BHVs in standardized-preclinical settings are needed for further advancement. Here, we studied the immune response to commercial BHV tissue of bovine, porcine, and equine origin after subcutaneous implantation into adult α1,3-galactosyltransferase-knockout (Gal KO) mice. The levels of serum anti-galactose α1,3-galactose (Gal) and -non-Gal IgM and IgG antibodies were determined up to 2 months post-implantation. Based on histological analyses, all BHV tissues studied triggered distinct infiltrating cellular immune responses that related to tissue degeneration. Increased anti-Gal antibody levels were found in serum after ATS 3f and Freedom/Solo implantation but not for Crown or Hancock II grafts. Overall, there were no correlations between cellular-immunity scores and post-implantation antibodies, suggesting these are independent factors differentially affecting the outcome of distinct commercial BHVs. These findings provide further insights into the understanding of SVD immunopathogenesis and highlight the need to evaluate immune responses as a confounding factor.
Collapse
Affiliation(s)
- Kelly Casós
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Roger Llatjós
- Pathology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arnau Blasco-Lucas
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Fabrizio Sbraga
- Cardiac Surgery Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thierry Le Tourneau
- Institut du Thorax, INSERM UMR1087, Nantes University Hospital, 44093 Nantes, France
| | - Marta Vadori
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | | | | | - Tomaso Bottio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, 35121 Padova, Italy
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, 35128 Padova, Italy
| | - Jean-Paul Soulillou
- Institut de Transplantation-Urologie-Néphrologie, INSERM Unité Mixte de Recherche 1064, Nantes University Hospital, 44093 Nantes, France
| | - Manuel Galiñanes
- Department of Cardiac Surgery and Reparative Therapy of the Heart, Vall d'Hebron Research Institute [VHIR], University Hospital Vall Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Intensive Care Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge [IDIBELL], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
6
|
Magkoutas K, Arm P, Meboldt M, Schmid Daners M. Physiologic Data-Driven Iterative Learning Control for Left Ventricular Assist Devices. Front Cardiovasc Med 2022; 9:922387. [PMID: 35911509 PMCID: PMC9326058 DOI: 10.3389/fcvm.2022.922387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Continuous flow ventricular assist devices (cfVADs) constitute a viable and increasingly used therapy for end-stage heart failure patients. However, they are still operating at a fixed-speed mode that precludes physiological cfVAD response and it is often related to adverse events of cfVAD therapy. To ameliorate this, various physiological controllers have been proposed, however, the majority of these controllers do not account for the lack of pulsatility in the cfVAD operation, which is supposed to be beneficial for the physiological function of the cardiovascular system. In this study, we present a physiological data-driven iterative learning controller (PDD-ILC) that accurately tracks predefined pump flow trajectories, aiming to achieve physiological, pulsatile, and treatment-driven response of cfVADs. The controller has been extensively tested in an in-silico environment under various physiological conditions, and compared with a physiologic pump flow proportional-integral-derivative controller (PF-PIDC) developed in this study as well as the constant speed (CS) control that is the current state of the art in clinical practice. Additionally, two treatment objectives were investigated to achieve pulsatility maximization and left ventricular stroke work (LVSW) minimization by implementing copulsation and counterpulsation pump modes, respectively. Under all experimental conditions, the PDD-ILC as well as the PF-PIDC demonstrated highly accurate tracking of the reference pump flow trajectories, outperforming existing model-based iterative learning control approaches. Additionally, the developed controllers achieved the predefined treatment objectives and resulted in improved hemodynamics and preload sensitivities compared to the CS support.
Collapse
Affiliation(s)
| | | | | | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Kyriakopoulos CP, Kapelios CJ, Stauder EL, Taleb I, Hamouche R, Sideris K, Koliopoulou AG, Bonios MJ, Drakos SG. LVAD as a Bridge to Remission from Advanced Heart Failure: Current Data and Opportunities for Improvement. J Clin Med 2022; 11:3542. [PMID: 35743611 PMCID: PMC9225013 DOI: 10.3390/jcm11123542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Left ventricular assist devices (LVADs) are an established treatment modality for advanced heart failure (HF). It has been shown that through volume and pressure unloading they can lead to significant functional and structural cardiac improvement, allowing LVAD support withdrawal in a subset of patients. In the first part of this review, we discuss the historical background, current evidence on the incidence and assessment of LVAD-mediated cardiac recovery, and out-comes including quality of life after LVAD support withdrawal. In the second part, we discuss current and future opportunities to promote LVAD-mediated reverse remodeling and improve our pathophysiological understanding of HF and recovery for the benefit of the greater HF population.
Collapse
Affiliation(s)
- Christos P. Kyriakopoulos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Chris J. Kapelios
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
| | - Elizabeth L. Stauder
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Iosif Taleb
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Konstantinos Sideris
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
| | - Antigone G. Koliopoulou
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Divisions of Cardiology & Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Michael J. Bonios
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Divisions of Cardiology & Cardiothoracic Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Stavros G. Drakos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA; (C.P.K.); (C.J.K.); (E.L.S.); (I.T.); (K.S.); (A.G.K.); (M.J.B.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
8
|
Petersdorff-Campen KV, Dupuch MA, Magkoutas K, Meboldt M, Hierold C, Schmid Daners M. Pressure and Bernoulli-based Flow Measurement via a Tapered Inflow VAD Cannula. IEEE Trans Biomed Eng 2021; 69:1620-1629. [PMID: 34727020 DOI: 10.1109/tbme.2021.3123983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Currently available ventricular assist devices provide continuous flow and do not adapt to the changing needs of patients. Physiological control algorithms have been proposed that adapt the pump speed based on the left ventricular pressure. However, so far, no clinically used pump can acquire this pressure. Therefore, for the validation of physiological control concepts in vivo, a system that can continuously and accurately provide the left ventricular pressure signal is needed. METHODS We demonstrate the integration of two pressure sensors into a tapered inflow cannula compatible with the HeartMate 3 (HM3) ventricular assist device. Selective laser melting was used to incorporate functional elements with a small footprint and therefore retain the geometry, function and implantability of the original cannula. The system was tested on a hybrid mock circulation system. Static and simulated physiological flow and pressure profiles were used to evaluate the combined pressure and flow sensing capabilities of the modified cannula. CONCLUSION The cannula prototypes enabled continuous pressure measurements at two points of their inner wall in the range of 100 and 200 mmHg. The developed, Bernoulli-based, two sensor model improved the accuracy of the measured simulated left ventricular pressure by eliminating the influence of flow inside the cannula. This method reduced the flow induced pressure uncertainty from up to 7.6 mmHg in single sensor measurements to 0.3 mmHg. Additionally, the two-sensor system and model enable the measurement of the blood flow through the pump with an accuracy of 0.140.04 L/min, without dedicated flow sensors.
Collapse
|
9
|
Systems of conductive skin for power transfer in clinical applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:171-184. [PMID: 34477935 PMCID: PMC8964546 DOI: 10.1007/s00249-021-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.
Collapse
|
10
|
Torres DS, Mazzetto M, Cestari IA. A novel automated simulator of pediatric systemic circulation: Design and applications. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Left Ventricular Assist Devices at the Crossroad of Innovation in Advanced Heart Failure. J Card Fail 2021; 27:1291-1294. [PMID: 34139365 DOI: 10.1016/j.cardfail.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023]
|
12
|
A free-form patterning method enabling endothelialization under dynamic flow. Biomaterials 2021; 273:120816. [PMID: 33895492 DOI: 10.1016/j.biomaterials.2021.120816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Endothelialization strategies aim at protecting the surface of cardiovascular devices upon their interaction with blood by the generation and maintenance of a mature monolayer of endothelial cells. Rational engineering of the surface micro-topography at the luminal interface provides a powerful access point to support the survival of a living endothelium under the challenging hemodynamic conditions created by the implant deployment and function. Surface structuring protocols must however be adapted to the complex, non-planar architecture of the target device precluding the use of standard lithographic approaches. Here, a novel patterning method, harnessing the condensation and evaporation of water droplets on a curing liquid elastomer, is developed to introduce arrays of microscale wells on the surface of a biocompatible silicon layer. The resulting topographies support the in vitro generation of mature human endothelia and their maintenance under dynamic changes of flow direction or magnitude, greatly outperforming identical, but flat substrates. The structuring approach is additionally demonstrated on non-planar interfaces yielding comparable topographies. The intrinsically free-form patterning is therefore compatible with a complete and stable endothelialization of complex luminal interfaces in cardiovascular implants.
Collapse
|
13
|
Eye Tracking Supported Human Factors Testing Improving Patient Training. J Med Syst 2021; 45:55. [PMID: 33768346 PMCID: PMC7994237 DOI: 10.1007/s10916-021-01729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 10/25/2022]
Abstract
The handling of left ventricular assist devices (LVADs) can be challenging for patients and requires appropriate training. The devices' usability impacts patients' safety and quality of life. In this study, an eye tracking supported human factors testing was performed to reveal problems during use and test the trainings' effectiveness. In total 32 HeartWare HVAD patients (including 6 pre-VAD patients) and 3 technical experts as control group performed a battery change (BC) and a controller change (CC) as an everyday and emergency scenario on a training device. By tracking the patients' gaze point, task duration and pump-off time were evaluated. Patients with LVAD support ≥1 year showed significantly shorter BC task duration than patients with LVAD support <1 year (p = 0.008). In contrast their CC task duration (p = 0.002) and pump-off times (median = 12.35 s) were higher than for LVAD support patients <1 year (median = 5.3 s) with p = 0.001. The shorter BC task duration for patients with LVAD support ≥1 year indicate that with time patients establish routines and gain confidence using their device. The opposite effect was found for CC task duration and pump-off times. This implies the need for intermittent re-training of less frequent tasks to increase patients' safety.
Collapse
|
14
|
Dual SA, Llerena Zambrano B, Sündermann S, Cesarovic N, Kron M, Magkoutas K, Hengsteler J, Falk V, Starck C, Meboldt M, Vörös J, Schmid Daners M. Continuous Heart Volume Monitoring by Fully Implantable Soft Strain Sensor. Adv Healthc Mater 2020; 9:e2000855. [PMID: 32893478 DOI: 10.1002/adhm.202000855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Indexed: 12/11/2022]
Abstract
Cardiothoracic open-heart surgery has revolutionized the treatment of cardiovascular disease, the leading cause of death worldwide. After the surgery, hemodynamic and volume management can be complicated, for example in case of vasoplegia after endocarditis. Timely treatment is crucial for outcomes. Currently, treatment decisions are made based on heart volume, which needs to be measured manually by the clinician each time using ultrasound. Alternatively, implantable sensors offer a real-time window into the dynamic function of our body. Here it is shown that a soft flexible sensor, made with biocompatible materials, implanted on the surface of the heart, can provide continuous information of the heart volume after surgery. The sensor works robustly for a period of two days on a tensile machine. The accuracy of measuring heart volume is improved compared to the clinical gold standard in vivo, with an error of 7.1 mL for the strain sensor versus impedance and 14.0 mL versus ultrasound. Implanting such a sensor would provide essential, continuous information on heart volume in the critical time following the surgery, allowing early identification of complications, facilitating treatment, and hence potentially improving patient outcome.
Collapse
Affiliation(s)
- Seraina A. Dual
- Product Development Group Zurich ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
- Cardiothoracic Surgery Stanford University Stanford CA 94305‐5101 USA
| | - Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Simon Sündermann
- DZHK (German Center for Cardiovascular Research) Partner Site Berlin 10785 Berlin Germany
- Department of Cardiovascular Surgery Charité—Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
- Department of Cardiothoracic and Vascular Surgery German Heart Center Berlin Augustenburger Pl. 1 13353 Berlin Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery German Heart Center Berlin Augustenburger Pl. 1 13353 Berlin Germany
- Department of Health Sciences and Technology Tannenstrasse 3 Zürich 8092 Switzerland
- Division for Surgical Research University Hospital Zurich and University of Zurich Rämistrasse 100 Zürich 8091 Switzerland
| | - Mareike Kron
- Division for Surgical Research University Hospital Zurich and University of Zurich Rämistrasse 100 Zürich 8091 Switzerland
| | | | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Volkmar Falk
- DZHK (German Center for Cardiovascular Research) Partner Site Berlin 10785 Berlin Germany
- Department of Cardiovascular Surgery Charité—Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
- Department of Cardiothoracic and Vascular Surgery German Heart Center Berlin Augustenburger Pl. 1 13353 Berlin Germany
- Department of Health Sciences and Technology Tannenstrasse 3 Zürich 8092 Switzerland
| | - Christoph Starck
- DZHK (German Center for Cardiovascular Research) Partner Site Berlin 10785 Berlin Germany
| | - Mirko Meboldt
- Product Development Group Zurich ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | | |
Collapse
|
15
|
Telyshev DV. A Mathematical Model for Estimating Physiological Parameters of Blood Flow through Rotary Blood Pumps. BIOMEDICAL ENGINEERING 2020. [DOI: 10.1007/s10527-020-09996-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Magkoutas K, Rebholz M, Sündermann S, Alogna A, Faragli A, Falk V, Meboldt M, Schmid Daners M. Control of ventricular unloading using an electrocardiogram-synchronized pulsatile ventricular assist device under high stroke ratios. Artif Organs 2020; 44:E394-E405. [PMID: 32321193 DOI: 10.1111/aor.13711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
Abstract
Pulsatile ventricular assist devices (pVADs) yield a blood flow that imitates the pulsatile flow of the heart and, therefore, could diminish the adverse events related to the continuous flow provided by the ventricular assist devices that are commonly used. However, their intrinsic characteristics of larger size and higher weight set a burden to their implantation, that along with the frequent mechanical failures and thrombosis events, reduce the usage of pVADs in the clinical environment. In this study, we investigated the possibility to reduce the pump size by using high pump stroke ratios while maintaining the ability to control the hemodynamics of the cardiovascular system (CVS). In vitro and in vivo experiments were conducted with a custom pVAD implemented on a hybrid mock circulation system and in five sheep, respectively. The actuation of the pVAD was synchronized with the heartbeat. Variations of the pump stroke ratio, time delay between the pump stroke and the heart stroke, as well as duration of the pump systole in respect to the total cardiac cycle duration were used to evaluate the effects of various pump settings on the hemodynamics of the CVS. The results suggest that by varying the operating settings of the pVAD, a pulsatile flow that provides physiological hemodynamic parameters, as well as a control over the hemodynamic parameters, can be achieved. Additionally, by employing high pump stroke ratios, the size of the pVAD can be significantly reduced; however, at those high pump stroke ratios, the effect of the other pump parameters diminishes.
Collapse
Affiliation(s)
- Konstantinos Magkoutas
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mathias Rebholz
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Simon Sündermann
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Alessio Alogna
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
| | - Alessandro Faragli
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
| | - Volkmar Falk
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Cysyk J, Newswanger R, Popjes E, Pae W, Jhun CS, Izer J, Weiss W, Rosenberg G. Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development. ASAIO J 2020; 65:318-323. [PMID: 29757760 PMCID: PMC6230319 DOI: 10.1097/mat.0000000000000818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.
Collapse
Affiliation(s)
- Joshua Cysyk
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| | - Ray Newswanger
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| | - Eric Popjes
- Department of Medicine, Penn State College of Medicine, Hershey, PA
| | - Walter Pae
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| | - Choon-Sik Jhun
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| | - Jenelle Izer
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, PA
| | - William Weiss
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| | - Gerson Rosenberg
- Department of Surgery, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
18
|
Tarasev M, Chakraborty S, Light L, Alfano K, Pagani F. Red blood cell mechanical fragility as potential metric for assessing blood damage caused by implantable durable ventricular assist devices: Comparison of two types of centrifugal flow left ventricular assist devices. PROGRESS IN PEDIATRIC CARDIOLOGY 2020. [DOI: 10.1016/j.ppedcard.2020.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Cordeiro TD, Sousa DL, Cestari IA, Lima AM. A physiological control system for ECG-synchronized pulsatile pediatric ventricular assist devices. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
WANG SHUAI, TAN JIANPING, YU ZHEQIN. COMPARISON AND EXPERIMENTAL VALIDATION OF TURBULENCE MODELS FOR AN AXIAL FLOW BLOOD PUMP. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational fluid dynamics (CFD) has become an essential tool for designing and optimizing the structure of blood pumps. However, it is still questionable which turbulence model can better obtain the flow information for axial flow blood pump. In this study, the axial flow blood pump was used as the object, and the influence of the common turbulence models on simulation was compared. Six turbulence models (standard [Formula: see text]–[Formula: see text] model, RNG [Formula: see text]–[Formula: see text] model, standard [Formula: see text]–[Formula: see text] model, SST [Formula: see text]–[Formula: see text] model, Spalart–Allmaras model, SSG Reynolds stress model) were used to simulate the pressure difference and velocity field of the pump. In parallel, we designed a novel drive system of the axial flow blood pump, which allowed the camera to capture the internal flow field. Then we measured the flow field in the impeller region based on particle image velocimetry (PIV). Through the comparison of experiments and simulation results, the average errors of velocity field obtained by the above models are 30.97%, 19.40%, 24.25%, 15.28%, 28.51%, 23.00%, respectively. Since the SST [Formula: see text]–[Formula: see text] model has the smallest error, and the streamline is consistent with the experimental results, it is recommended to use SST [Formula: see text]–[Formula: see text] model for numerical analysis of the axial flow blood pump.
Collapse
Affiliation(s)
- SHUAI WANG
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - JIANPING TAN
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - ZHEQIN YU
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
21
|
A Novel Control Method for Rotary Blood Pumps as Left Ventricular Assist Device Utilizing Aortic Valve State Detection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1732160. [PMID: 31886175 PMCID: PMC6927030 DOI: 10.1155/2019/1732160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/29/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022]
Abstract
A novel control method for rotary blood pumps is proposed relying on two different objectives: regulation of pump flow in accordance with desired value and the maintenance of partial support with an open aortic valve by the variation of pump speed. The estimation of pump flow and detection of aortic valve state was performed with mathematical models describing the first- and second generation of Sputnik rotary blood pumps. The control method was validated using a cardiovascular system model. The state of the aortic valve was detected with a mean accuracy of 91% for Sputnik 1 and 96.2% for Sputnik 2 when contractility, heart rate, and systemic vascular resistance was changed. In silico results for both pumps showed that the proposed control method can achieve the desired pump flow level and maintain the open state of the aortic valve by periodically switching between two objectives under contractility, heart rate, and systemic vascular resistance changes. The proposed method showed its potential for safe operation without adverse events and for the improvement of chances for myocardial recovery.
Collapse
|
22
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Rebholz M, Dual S, Batliner M, Meboldt M, Schmid Daners M. Short-term physiological response to high-frequency-actuated pVAD support. Artif Organs 2019; 43:1170-1181. [PMID: 31211873 DOI: 10.1111/aor.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
Ventricular assist devices (VADs) are an established treatment option for heart failure (HF). However, the devices are often plagued by material-related hemocompatibility issues. In contrast to continuous flow VADs with high shear stresses, pulsatile VADs (pVADs) offer the potential for an endothelial cell coating that promises to prevent many adverse events caused by an insufficient hemocompatibility. However, their size and weight often precludes their intracorporeal implantation. A reduction of the pump body size and weight of the pump could be achieved by an increase in the stroke frequency while maintaining a similar cardiac output. We present a new pVAD system consisting of a pump and an actuator specifically designed for actuation frequencies of up to 240 bpm. In vitro and in vivo results of the short-term reaction of the cardiovascular system show no significant changes in left ventricular and aortic pressure between actuation frequencies from 60 to 240 bpm. The aortic pulsatility increases when the actuation frequency is raised while the heart rate remains unaffected in vivo. These results lead us to the conclusion that the cardiovascular system tolerates short-term increases of the pVAD stroke frequencies.
Collapse
Affiliation(s)
- Mathias Rebholz
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Seraina Dual
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Martin Batliner
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
24
|
Boes S, Thamsen B, Haas M, Daners MS, Meboldt M, Granegger M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans Biomed Eng 2019; 66:1618-1627. [DOI: 10.1109/tbme.2018.2876840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Weidenbacher L, Müller E, Guex AG, Zündel M, Schweizer P, Marina V, Adlhart C, Vejsadová L, Pauer R, Spiecker E, Maniura-Weber K, Ferguson SJ, Rossi RM, Rottmar M, Fortunato G. In Vitro Endothelialization of Surface-Integrated Nanofiber Networks for Stretchable Blood Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5740-5751. [PMID: 30668107 DOI: 10.1021/acsami.8b18121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite major technological advances within the field of cardiovascular engineering, the risk of thromboembolic events on artificial surfaces in contact with blood remains a major challenge and limits the functionality of ventricular assist devices (VADs) during mid- or long-term therapy. Here, a biomimetic blood-material interface is created via a nanofiber-based approach that promotes the endothelialization capability of elastic silicone surfaces for next-generation VADs under elevated hemodynamic loads. A blend fiber membrane made of elastic polyurethane and low-thrombogenic poly(vinylidene fluoride- co-hexafluoropropylene) was partially embedded into the surface of silicone films. These blend membranes resist fundamental irreversible deformation of the internal structure and are stably attached to the surface, while also exhibiting enhanced antithrombotic properties when compared to bare silicone. The composite material supports the formation of a stable monolayer of endothelial cells within a pulsatile flow bioreactor, resembling the physiological in vivo situation in a VAD. The nanofiber surface modification concept thus presents a promising approach for the future design of advanced elastic composite materials that are particularly interesting for applications in contact with blood.
Collapse
Affiliation(s)
| | | | | | | | - Peter Schweizer
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy , Friedrich-Alexander-Universität Erlangen-Nürnberg , 91058 Erlangen , Germany
| | | | - Christian Adlhart
- Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , 8820 Wädenswil , Switzerland
| | - Lucie Vejsadová
- Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , 8820 Wädenswil , Switzerland
| | - Robin Pauer
- Electron Microscopy Center , Empa, Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy , Friedrich-Alexander-Universität Erlangen-Nürnberg , 91058 Erlangen , Germany
| | | | | | | | | | | |
Collapse
|
26
|
Viscosity Prediction in a Physiologically Controlled Ventricular Assist Device. IEEE Trans Biomed Eng 2018; 65:2355-2364. [DOI: 10.1109/tbme.2018.2797424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Goubergrits L, Kertzscher U, Lommel M. Past and future of blood damage modelling in a view of translational research. Int J Artif Organs 2018; 42:125-132. [PMID: 30073891 DOI: 10.1177/0391398818790343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anatomic pathologies such as stenosed or regurgitating heart valves and artificial organs such as heart assist devices or heart valve prostheses are associated with non-physiological flow. This regime is associated with regions of spatially high-velocity gradients, high-velocity and/or pressure fluctuations as well as neighbouring regions with stagnant flow associated with high residence time. These hemodynamic conditions cause destruction and/or activation of blood components and their accumulation in regions with high residence time. The development of next-generation artificial organs, which allow long-term patient care by reducing adverse events and improve quality of life, requires the development of blood damage models serving as a cost function for device optimization. We summarized the studies underlining the key findings with subsequent elaboration of the requirements for blood damage models as well as a decision tree based on the classification of existing blood damage models. The four major classes are Lagrangian or Eulerian approaches with stress- or strain-based blood damage. Key challenges were identified and future steps towards the translation of blood damage models into the device development pipeline were formulated. The integration of blood damage caused by turbulence into models as well as in vitro and in vivo validation of models remain the major challenges for future developments. Both require the development of novel experimental setups to provide reliable and well-documented experimental data.
Collapse
Affiliation(s)
- Leonid Goubergrits
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Lommel
- Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
3D Printing of Functional Assemblies with Integrated Polymer-Bonded Magnets Demonstrated with a Prototype of a Rotary Blood Pump. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Conventional magnet manufacturing is a significant bottleneck in the development processes of products that use magnets, because every design adaption requires production steps with long lead times. Additive manufacturing of magnetic components delivers the opportunity to shift to agile and test-driven development in early prototyping stages, as well as new possibilities for complex designs. In an effort to simplify integration of magnetic components, the current work presents a method to directly print polymer-bonded hard magnets of arbitrary shape into thermoplastic parts by fused deposition modeling. This method was applied to an early prototype design of a rotary blood pump with magnetic bearing and magnetic drive coupling. Thermoplastics were compounded with 56 vol.% isotropic NdFeB powder to manufacture printable filament. With a powder loading of 56 vol.%, remanences of 350 mT and adequate mechanical flexibility for robust processability were achieved. This compound allowed us to print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing in one piece on a low-cost, end-user 3D printer. Then, the magnetic components in the printed pump were fully magnetized in a pulsed Bitter coil. The pump impeller is driven by magnetic coupling to non-printed permanent magnets rotated by a brushless DC motor, resulting in a flow rate of 3 L/min at 1000 rpm. For the first time, an application of combined multi-material and magnet printing by fused deposition modeling was shown. The presented process significantly simplifies the prototyping of products that use magnets, such as rotary blood pumps, and opens the door for more complex and innovative designs. It will also help postpone the shift to conventional manufacturing methods to later phases of the development process.
Collapse
|
29
|
Zhigalov K, Mashhour A, Szczechowicz M, Mkalaluh S, Karagezian S, Gogia I, Isaev M, Kadyraliev BK, Easo J, Ennker J, Eichstaedt HC, Weymann A. Clinical Outcome and Comparison of Three Different Left Ventricular Assist Devices in a High-Risk Cohort. Artif Organs 2018; 42:1035-1042. [DOI: 10.1111/aor.13140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Konstantin Zhigalov
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Ahmed Mashhour
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Marcin Szczechowicz
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Sabreen Mkalaluh
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Sergei Karagezian
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Irakli Gogia
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Maxim Isaev
- Department of Cardiothoracic and Vascular Surgery; German Heart Institute Berlin; Berlin Germany
| | | | - Jerry Easo
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Juergen Ennker
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Harald C. Eichstaedt
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| | - Alexander Weymann
- Department of Cardiac Surgery; European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg; Oldenburg Germany
| |
Collapse
|
30
|
Csepe TA, Kilic A. Advancements in mechanical circulatory support for patients in acute and chronic heart failure. J Thorac Dis 2017; 9:4070-4083. [PMID: 29268418 DOI: 10.21037/jtd.2017.09.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage. Technology has improved patient survival to recovery from CS, but in patients whom cardiac recovery does not occur, acute MCS can be effectively utilized as a bridge to long-term MCS devices and/or heart transplantation. Heart transplantation has been limited by donor heart availability, leading to a greater role of left ventricular assist device (LVAD) support. In patients with biventricular failure that are ineligible for LVAD implantation, further advancements in the total artificial heart (TAH) may allow for improved survival compared to medical therapy alone. In this review, we discuss the current state of acute and durable MCS, ongoing advances in LVADs and TAH devices, improved methods of durable MCS implantation and patient selection, and future MCS developments in this dynamic field that may allow for optimization of HF treatment.
Collapse
Affiliation(s)
- Thomas A Csepe
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmet Kilic
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
31
|
Petrou A, Monn M, Meboldt M, Schmid Daners M. A Novel Multi-objective Physiological Control System for Rotary Left Ventricular Assist Devices. Ann Biomed Eng 2017; 45:2899-2910. [PMID: 28900761 DOI: 10.1007/s10439-017-1919-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Various control and monitoring algorithms have been proposed to improve the left-ventricular assist device (LVAD) therapy by reducing the still-occurring adverse events. We developed a novel multi-objective physiological control system that relies on the pump inlet pressure (PIP). Signal-processing algorithms have been implemented to extract the required features from the PIP. These features then serve for meeting various objectives: pump flow adaptation to the perfusion requirements, aortic valve opening for a predefined time, augmentation of the aortic pulse pressure, and monitoring of the LV pre- and afterload conditions as well as the cardiac rhythm. Controllers were also implemented to ensure a safe operation and prevent LV suction, overload, and pump backflow. The performance of the control system was evaluated in vitro, under preload, afterload and contractility variations. The pump flow adapted in a physiological manner, following the preload changes, while the aortic pulse pressure yielded a threefold increase compared to a constant-speed operation. The status of the aortic valve was detected with an overall accuracy of 86% and was controlled as desired. The proposed system showed its potential for a safe physiological response to varying perfusion requirements that reduces the risk of myocardial atrophy and offers important hemodynamic indices for patient monitoring during LVAD therapy.
Collapse
Affiliation(s)
- Anastasios Petrou
- Department of Mechanical and Process Engineering, Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
| | - Marcial Monn
- Department of Mechanical and Process Engineering, Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
| | - Mirko Meboldt
- Department of Mechanical and Process Engineering, Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
| | - Marianne Schmid Daners
- Department of Mechanical and Process Engineering, Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland.
| |
Collapse
|