1
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
2
|
Zhou L, Liu L, Chang MA, Ma C, Chen W, Chen P. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip. Biosens Bioelectron 2023; 225:115064. [PMID: 36680970 PMCID: PMC9918721 DOI: 10.1016/j.bios.2023.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Real-time monitoring in the tumor microenvironment provides critical insights of cancer progression and mechanistic understanding of responses to cancer treatments. However, clinical challenges and significant questions remain regarding assessment of limited clinical tissue samples, establishment of validated, controllable pre-clinical cancer models, monitoring of static versus dynamic markers, and the translation of insights gained from in vitro tumor microenvironments to systematic investigation and understanding in clinical practice. State-of-art tumor-on-a-chip strategies will be reviewed herein, and emerging real-time sensing and monitoring platforms for on-chip analysis of tumor microenvironment will also be examined. The integration of the sensors with tumor-on-a-chip platforms to provide spatiotemporal information of the tumor microenvironment and the associated challenges will be further evaluated. Though optimal integrated systems for in situ monitoring are still in evolution, great promises lie ahead that will open new paradigm for rapid, comprehensive analysis of cancer development and assist clinicians with powerful tools to guide the diagnosis, prognosis and treatment course in cancer.
Collapse
Affiliation(s)
- Lang Zhou
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Muammar Ali Chang
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Pengyu Chen
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Giacometti M, Pravettoni T, Barsotti J, Milesi F, Figares CDO, Maspero F, Coppadoro LP, Benevento G, Ciardo M, Alano P, Fiore GB, Bertacco R, Ferrari G. Impedance-Based Rapid Diagnostic Tool for Single Malaria Parasite Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1325-1336. [PMID: 36260568 DOI: 10.1109/tbcas.2022.3215586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie.
Collapse
|
4
|
Panklang N, Techaumnat B, Wisitsoraat A, Putaporntip C, Chotivanich K, Suzuki Y. A discrete dielectrophoresis device for the separation of malaria‐infected cells. Electrophoresis 2022; 43:1347-1356. [DOI: 10.1002/elps.202100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Nitipong Panklang
- Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Bangkok Thailand
| | - Boonchai Techaumnat
- Department of Electrical Engineering Faculty of Engineering Chulalongkorn University Bangkok Thailand
- Biomedical Engineering Research Center Faculty of Engineering Chulalongkorn University Bangkok Thailand
| | - Anurat Wisitsoraat
- Nanoelectronics and MEMS Laboratory National Electronics and Computer Technology Center Pathumthani Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit Department of Parasitology Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine Mahidol Oxford Tropical Medicine Research Unit Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Yuji Suzuki
- Department of Mechanical Engineering The University of Tokyo Tokyo Japan
| |
Collapse
|
5
|
Zeng L, Chen X, Zhang R, Hu S, Zhang H, Zhang Y, Yang H. High-Resolution Separation of Nanoparticles Using a Negative Magnetophoretic Microfluidic System. MICROMACHINES 2022; 13:mi13030377. [PMID: 35334669 PMCID: PMC8951349 DOI: 10.3390/mi13030377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The separation and purification of a sample of interest is essential for subsequent detection and analysis procedures, but there is a lack of effective separation methods with which to purify nano-sized particles from the sample media. In this paper, a microfluidic system based on negative magnetophoresis is presented for the high-resolution separation of nanoparticles. The system includes on-chip magnetic pole arrays and permalloys that symmetrically distribute on both sides of the separation channel and four permanent magnets that provide strong magnetic fields. The microfluidic system can separate 200 nm particles with a high purity from the mixture (1000 nm and 200 nm particles) due to a magnetic field gradient as high as 10,000 T/m being generated inside the separation channel, which can provide a negative magnetophoretic force of up to 10 pN to the 1000 nm particle. The overall recovery rate of the particles reaches 99%, the recovery rate of 200 nm particles is 84.2%, and the purity reaches 98.2%. Compared with the existing negative magnetophoretic separation methods, our system not only exhibits high resolution on particle sizes (800 nm), but also improves the sample processing throughput, which reaches 2.5 μL/min. The microfluidic system is expected to provide a new solution for the high-purity separation of nanoparticles, as well as nanobiological samples.
Collapse
Affiliation(s)
- Lin Zeng
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Rongrong Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
| | - Hongpeng Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China;
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (L.Z.); (X.C.); (R.Z.); (S.H.)
- Correspondence: ; Tel.: +86-0755-86392675
| |
Collapse
|
6
|
The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The magnetic separation of cells based on certain traits has a wide range of applications in microbiology, immunology, oncology, and hematology. Compared to bulk separation, performing magnetophoresis at micro scale presents advantages such as precise control of the environment, larger magnetic gradients in miniaturized dimensions, operational simplicity, system portability, high-throughput analysis, and lower costs. Since the first integration of magnetophoresis and microfluidics, many different approaches have been proposed to magnetically separate cells from suspensions at the micro scale. This review paper aims to provide an overview of the origins of microfluidic devices for magnetic cell separation and the recent technologies and applications grouped by the targeted cell types. For each application, exemplary experimental methods and results are discussed.
Collapse
|
7
|
Giacometti M, Monticelli M, Piola M, Milesi F, Coppadoro L, Giuliani E, Jacchetti E, Raimondi MT, Ferrari G, Antinori S, Fiore GB, Bertacco R. On-chip magnetophoretic capture in a model of malaria-infected red blood cells. Biotechnol Bioeng 2022; 119:1129-1141. [PMID: 34984673 PMCID: PMC9306751 DOI: 10.1002/bit.28030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
The search for new rapid diagnostic tests for malaria is a priority for developing an efficient strategy to fight this endemic disease, which affects more than 3 billion people worldwide. In this paper, we characterize systematically an easy-to-operate lab-on-chip, designed for the magnetophoretic capture of malaria-infected red blood cells. The method relies on the positive magnetic susceptibility of infected red blood cells with respect to blood plasma. A matrix of nickel posts fabricated in a silicon chip placed face down is aimed at attracting infected cells, while healthy cells sediment on a glass slide under the action of gravity. Using a model of infected red blood cells, i.e. erythrocytes with methaemoglobin, we obtained a capture efficiency of about 70% after 10 minutes in static conditions. By proper agitation, the capture efficiency reached 85% after just 5 minutes. Sample preparation requires only a 1:10 volume dilution of whole blood, previously treated with heparin, in a phosphate buffered solution. Nonspecific attraction of untreated red blood cells was not observed in the same time interval. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- M Giacometti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - M Monticelli
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy
| | - M Piola
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - F Milesi
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy
| | - L Coppadoro
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - E Giuliani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - G Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - S Antinori
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, 20157, Milano, Italy
| | - G B Fiore
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milano, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research, 56122, Pisa, Italy
| | - R Bertacco
- Department of Physics, Politecnico di Milano, 20133, Milano, Italy.,IFN-CNR, c/o Politecnico di Milano, 20133, Milano, Italy
| |
Collapse
|
8
|
Giacometti M, Milesi F, Coppadoro PL, Rizzo A, Fagiani F, Rinaldi C, Cantoni M, Petti D, Albisetti E, Sampietro M, Ciardo M, Siciliano G, Alano P, Lemen B, Bombe J, Nwaha Toukam MT, Tina PF, Gismondo MR, Corbellino M, Grande R, Fiore GB, Ferrari G, Antinori S, Bertacco R. A Lab-On-chip Tool for Rapid, Quantitative, and Stage-selective Diagnosis of Malaria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004101. [PMID: 34306971 PMCID: PMC8292881 DOI: 10.1002/advs.202004101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Indexed: 05/21/2023]
Abstract
Malaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin. Despite the WHO recommendation of prompt malaria diagnosis, the quality of microscopy-based diagnosis is frequently inadequate while rapid diagnostic tests based on antigens are not quantitative and still affected by non-negligible false negative/positive results. PCR-based methods are highly performant but still not widely used in endemic areas. Here, a diagnostic tool (TMek), based on the paramagnetic properties of hemozoin nanocrystals in infected red blood cells (i-RBCs), is reported on. Exploiting the competition between gravity and magnetic forces, i-RBCs in a whole blood specimen are sorted and electrically detected in a microchip. The amplitude and time evolution of the electrical signal allow for the quantification of i-RBCs (in the range 10-105 i-RBC µL-1) and the distinction of the infection stage. A preliminary validation study on 75 patients with clinical suspect of malaria shows on-field operability, without false negative and a few false positive results. These findings indicate the potential of TMek as a quantitative, stage-selective, rapid test for malaria.
Collapse
Affiliation(s)
- Marco Giacometti
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Francesca Milesi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Pietro Lorenzo Coppadoro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Alberto Rizzo
- Specialità di Microbiologia e Virologia Università degli Studi di MilanoMilanoItaly
| | - Federico Fagiani
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Christian Rinaldi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Matteo Cantoni
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Daniela Petti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Edoardo Albisetti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Marco Sampietro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Mariagrazia Ciardo
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Giulia Siciliano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Pietro Alano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | | | | | | | | | - Maria Rita Gismondo
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Mario Corbellino
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Romualdo Grande
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Gianfranco Beniamino Fiore
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Giorgio Ferrari
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Riccardo Bertacco
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- CNR‐IFNInstitute for Photonics and NanotechnologiesPiazza Leonardo da Vinci 32Milano20133Italy
| |
Collapse
|
9
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
10
|
Franzreb M. New classes of selective separations exploiting magnetic adsorbents. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
12
|
Sivaramakrishnan M, Kothandan R, Govindarajan DK, Meganathan Y, Kandaswamy K. Active microfluidic systems for cell sorting and separation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Magnetite nanoparticles modified β-cyclodextrin PolymerCoupled with KMnO4 oxidation for adsorption and degradation of acetaminophen. Carbohydr Polym 2019; 222:114972. [DOI: 10.1016/j.carbpol.2019.114972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023]
|
14
|
Amar LI, Guisado D, Faria M, Jones JP, van Rijn CJM, Hill MI, Leonard EF. Erythrocyte fouling on micro-engineered membranes. Biomed Microdevices 2018; 20:55. [PMID: 29971550 DOI: 10.1007/s10544-018-0297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Crossflow microfiltration of plasma from blood through microsieves in a microchannel is potentially useful in many biomedical applications, including clinically as a wearable water removal device under development by the authors. We report experiments that correlate filtration rates, transmembrane pressures (TMP) and shear rates during filtration through a microscopically high channel bounded by a low intrinsic resistance photolithographically-produced porous semiconductor membrane. These experiments allowed observation of erythrocyte behavior at the filtering surface and showed how their unique deformability properties dominated filtration resistance. At low filtration rates (corresponding to low TMP), they rolled along the filter surface, but at higher filtration rates (corresponding to higher TMP), they anchored themselves to the filter membrane, forming a self-assembled, incomplete monolayer. The incompleteness of the layer was an essential feature of the monolayer's ability to support sustainable filtration. Maximum steady-state filtration flux was a function of wall shear rate, as predicted by conventional crossflow filtration theory, but, contrary to theories based on convective diffusion, showed weak dependence of filtration on erythrocyte concentration. Post-filtration scanning electron micrographs revealed significant capture and deformation of erythrocytes in all filter pores in the range 0.25 to 2 μm diameter. We report filtration rates through these filters and describe a largely unrecognized mechanism that allows stable filtration in the presence of substantial cell layers.
Collapse
Affiliation(s)
- Levy I Amar
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Daniela Guisado
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Monica Faria
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - James P Jones
- Department of Nephrology, Mount Sinai St. Luke's Roosevelt Hospital, New York, NY, 10025, USA
| | - Cees J M van Rijn
- MicroFluidics and NanoTechnology/ORC, Wageningen University Stippeneng, Wageningen, 6708, WE, The Netherlands
| | - Michael I Hill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Edward F Leonard
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|