• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4618911)   Today's Articles (2438)   Subscriber (49402)
For: Lerner ZF, Harvey TA, Lawson JL. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy. Ann Biomed Eng 2019;47:1345-1356. [DOI: 10.1007/s10439-019-02237-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/23/2019] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Devine TM, Alter KE, Damiano DL, Bulea TC. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders. PLoS One 2024;19:e0304087. [PMID: 38976710 PMCID: PMC11230531 DOI: 10.1371/journal.pone.0304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/02/2024] [Indexed: 07/10/2024]  Open
2
Hui Z, Qi W, Zhang Y, Wang M, Zhang J, Li D, Zhu D. Efficacy of a Soft Robotic Exoskeleton to Improve Lower Limb Motor Function in Children with Spastic Cerebral Palsy: A Single-Blinded Randomized Controlled Trial. Brain Sci 2024;14:425. [PMID: 38790405 PMCID: PMC11118818 DOI: 10.3390/brainsci14050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024]  Open
3
Dierwechter B, Kolakowsky-Hayner SA. Journey to 1 Million Steps: A Retrospective Case Series Analyzing the Implementation of Robotic-Assisted Gait Training Into an Outpatient Pediatric Clinic. Pediatr Phys Ther 2024;36:285-293. [PMID: 38349640 DOI: 10.1097/pep.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
4
Foley SA, Washabaugh EP. Applying elastic resistance bands for gait training: A simulation-based study to determine how band configuration affects gait biomechanics and muscle activation. Gait Posture 2024;108:320-328. [PMID: 38199091 DOI: 10.1016/j.gaitpost.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
5
Rosenberg MC, Proctor JL, Steele KM. Quantifying changes in individual-specific template-based representations of center-of-mass dynamics during walking with ankle exoskeletons using Hybrid-SINDy. Sci Rep 2024;14:1031. [PMID: 38200078 PMCID: PMC10781730 DOI: 10.1038/s41598-023-50999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]  Open
6
Fang Y, Lerner ZF. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy. J Biomech 2024;163:111944. [PMID: 38219555 PMCID: PMC10922449 DOI: 10.1016/j.jbiomech.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
7
Bayon C, Van Crey N, Rocon E, Rouse E, van Asseldonk E. Comparison of Two Design Principles of Unpowered Ankle-Foot Orthoses for Supporting Push-Off: A Case Study. IEEE Int Conf Rehabil Robot 2023;2023:1-6. [PMID: 37941264 DOI: 10.1109/icorr58425.2023.10304603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
8
Ebers MR, Rosenberg MC, Kutz JN, Steele KM. A machine learning approach to quantify individual gait responses to ankle exoskeletons. J Biomech 2023;157:111695. [PMID: 37406604 DOI: 10.1016/j.jbiomech.2023.111695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
9
Lora-Millan JS, Nabipour M, van Asseldonk E, Bayón C. Advances on mechanical designs for assistive ankle-foot orthoses. Front Bioeng Biotechnol 2023;11:1188685. [PMID: 37485319 PMCID: PMC10361304 DOI: 10.3389/fbioe.2023.1188685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]  Open
10
Zhou Y. Recent advances in wearable actuated ankle-foot orthoses: Medical effects, design, and control. Proc Inst Mech Eng H 2023;237:163-178. [PMID: 36515408 DOI: 10.1177/09544119221142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
11
Ebers MR, Rosenberg MC, Kutz JN, Steele KM. A machine learning approach to quantify individual gait responses to ankle exoskeletons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524757. [PMID: 36711530 PMCID: PMC9882260 DOI: 10.1101/2023.01.20.524757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
12
Castelli E, Beretta E, De Tanti A, Arduini F, Biffi E, Colazza A, Di Pede C, Guzzetta A, Lucarini L, Maghini I, Mandalà M, Nespoli M, Pavarelli C, Policastro F, Polverelli M, Rossi A, Sgandurra G, Boldrini P, Bonaiuti D, Mazzoleni S, Posteraro F, Benanti P, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Saviola D, Turchetti G. Robot-assisted rehabilitation for children with neurological disabilities: Results of the Italian consensus conference CICERONE. NeuroRehabilitation 2022;51:665-679. [PMID: 36530098 DOI: 10.3233/nre-220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
13
Hunt M, Everaert L, Brown M, Muraru L, Hatzidimitriadou E, Desloovere K. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Gait Posture 2022;98:343-354. [PMID: 36306544 DOI: 10.1016/j.gaitpost.2022.09.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
14
Bulea TC, Molazadeh V, Thurston M, Damiano DL. Interleaved Assistance and Resistance for Exoskeleton Mediated Gait Training: Validation, Feasibility and Effects. PROCEEDINGS OF THE ... IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS. IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS 2022;2022:10.1109/biorob52689.2022.9925419. [PMID: 37650006 PMCID: PMC10466479 DOI: 10.1109/biorob52689.2022.9925419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
15
Conner BC, Lerner ZF. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy. IEEE Int Conf Rehabil Robot 2022;2022:1-6. [PMID: 36176108 DOI: 10.1109/icorr55369.2022.9896581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
16
Fang Y, Lerner ZF. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy. IEEE Int Conf Rehabil Robot 2022;2022:1-6. [PMID: 36176104 DOI: 10.1109/icorr55369.2022.9896476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
17
Jategaonkar C, Singh Y, Vashista V. Effect of External Damping on Ankle Motion During the Swing Phase of Walking. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3184781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
18
Fang Y, Orekhov G, Lerner ZF. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Gait Posture 2022;95:256-263. [PMID: 33248858 PMCID: PMC8110598 DOI: 10.1016/j.gaitpost.2020.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
19
Cho S, Lee KD, Park HS. A Mobile Cable-Tensioning Platform to Improve Crouch Gait in Children with Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng 2022;30:1092-1102. [PMID: 35442888 DOI: 10.1109/tnsre.2022.3167472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
20
Fang Y, Lerner ZF. Bilateral vs. Paretic-Limb-Only Ankle Exoskeleton Assistance for Improving Hemiparetic Gait: A Case Series. IEEE Robot Autom Lett 2022;7:1246-1253. [PMID: 35873136 PMCID: PMC9307082 DOI: 10.1109/lra.2021.3139540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review. SENSORS 2022;22:s22062244. [PMID: 35336413 PMCID: PMC8954890 DOI: 10.3390/s22062244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
22
Bayón C, Keemink AQL, van Mierlo M, Rampeltshammer W, van der Kooij H, van Asseldonk EHF. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. J Neuroeng Rehabil 2022;19:21. [PMID: 35172846 PMCID: PMC8851842 DOI: 10.1186/s12984-022-01000-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022]  Open
23
Manikowska F, Brazevic S, Krzyżańska A, Jóźwiak M. Effects of Robot-Assisted Therapy on Gait Parameters in Pediatric Patients With Spastic Cerebral Palsy. Front Neurol 2022;12:724009. [PMID: 35002911 PMCID: PMC8732368 DOI: 10.3389/fneur.2021.724009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]  Open
24
Fang Y, Orekhov G, Lerner ZF. Improving the Energy Cost of Incline Walking and Stair Ascent with Ankle Exoskeleton Assistance in Cerebral Palsy. IEEE Trans Biomed Eng 2021;69:2143-2152. [PMID: 34941495 DOI: 10.1109/tbme.2021.3137447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
25
Electromechanical and Robotic Devices for Gait and Balance Rehabilitation of Children with Neurological Disability: A Systematic Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
26
Sarajchi M, Al-Hares MK, Sirlantzis K. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation. IEEE Trans Neural Syst Rehabil Eng 2021;29:2695-2720. [PMID: 34910636 DOI: 10.1109/tnsre.2021.3136088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
27
Sanjeevi N, Singh Y, Vashista V. Recent advances in lower-extremity exoskeletons in promoting performance restoration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
28
Orekhov G, Fang Y, Cuddeback CF, Lerner ZF. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. J Neuroeng Rehabil 2021;18:163. [PMID: 34758857 PMCID: PMC8579560 DOI: 10.1186/s12984-021-00954-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]  Open
29
Gonzalez A, Garcia L, Kilby J, McNair P. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online 2021;20:89. [PMID: 34488777 PMCID: PMC8420060 DOI: 10.1186/s12938-021-00920-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023]  Open
30
Does Ankle Exoskeleton Assistance Impair Stability During Walking in Individuals with Cerebral Palsy? Ann Biomed Eng 2021;49:2522-2532. [PMID: 34189633 DOI: 10.1007/s10439-021-02822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
31
Orekhov G, Luque J, Lerner ZF. Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control. IEEE Robot Autom Lett 2021;5:6025-6032. [PMID: 33748415 DOI: 10.1109/lra.2020.3011370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Fang Y, Lerner ZF. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng 2021;29:442-449. [PMID: 33523814 PMCID: PMC7968126 DOI: 10.1109/tnsre.2021.3055796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
33
Design of a 2DoF Ankle Exoskeleton with a Polycentric Structure and a Bi-Directional Tendon-Driven Actuator Controlled Using a PID Neural Network. ACTUATORS 2021. [DOI: 10.3390/act10010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
34
Hussain S, Jamwal PK, Vliet PV, Brown NAT. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges. Expert Rev Neurother 2020;21:111-121. [PMID: 33198522 DOI: 10.1080/14737175.2021.1847646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
35
Rosenberg MC, Banjanin BS, Burden SA, Steele KM. Predicting walking response to ankle exoskeletons using data-driven models. J R Soc Interface 2020;17:20200487. [PMID: 33050782 DOI: 10.1098/rsif.2020.0487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
36
Shideler BL, Bulea TC, Chen J, Stanley CJ, Gravunder AJ, Damiano DL. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. J Neuroeng Rehabil 2020;17:121. [PMID: 32883297 PMCID: PMC7469320 DOI: 10.1186/s12984-020-00738-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022]  Open
37
Schmitthenner D, Sweeny C, Du J, Martin AE. The Effect of Stiff Foot Plate Length on Walking Gait Mechanics. J Biomech Eng 2020;142:091012. [PMID: 32280960 DOI: 10.1115/1.4046882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/08/2022]
38
Conner BC, Luque J, Lerner ZF. Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy. Ann Biomed Eng 2020;48:1309-1321. [PMID: 31950309 PMCID: PMC7096247 DOI: 10.1007/s10439-020-02454-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
39
Orekhov G, Fang Y, Luque J, Lerner ZF. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng 2020;28:461-467. [PMID: 31940542 DOI: 10.1109/tnsre.2020.2965029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
40
Technological Advancements in Cerebral Palsy Rehabilitation. Phys Med Rehabil Clin N Am 2019;31:117-129. [PMID: 31760985 DOI: 10.1016/j.pmr.2019.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA