1
|
Xu S, Lv J, Zhou Y, Wang K. Utilizing a Fully Digital Approach for Oral Squamous Cell Carcinoma Treatment and Zygomatic Implant-Based Rehabilitation for Maxillary Defects. J ORAL IMPLANTOL 2024; 50:595-604. [PMID: 39429112 DOI: 10.1563/aaid-joi-d-24-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This clinical report details the functional and esthetic rehabilitation of a patient with a severe maxillary defect secondary to subtotal maxillectomy for oral squamous cell carcinoma using a maxillary prosthesis anchored by 4 zygomatic implants. The procedure involved meticulous subtotal maxillectomy and defect repair with zygomatic implant support, incorporating advanced digital surgical methods, including 3D reconstruction, computer-guided surgery, and photogrammetry (Icam4D). A 3D finite element analysis was conducted to assess the method's efficacy in analyzing stress distribution around the zygomatic implants. The patient expressed high satisfaction with the prosthesis's functionality, esthetics, speech, and swallowing capabilities, underscoring the value of zygomatic implant-supported maxillofacial prosthetics. This synergy of advanced planning, surgical precision, and biomechanical analysis marks a significant advancement in maxillofacial prosthetics.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Lv
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Zhou
- Department of Prosthodontics and Digital Technology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kun Wang
- Department of Prosthodontics and Digital Technology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Araújo Júnior FAD, Ribas Filho JM, Malafaia O, Arantes AA, Ceccato GHW, Santos Neto PHD. Three-Dimensional Printing in Spinal Surgery. World Neurosurg 2024; 192:130-135. [PMID: 39278538 DOI: 10.1016/j.wneu.2024.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVES Carry out an update and systematic review on the use of three-dimensional printing (3DP) in spinal surgery. METHODS A systematic literature review was performed using the PubMed database in March 2024. "Spine surgery" and "3DP" were the search terms. Only articles published from 2014 to 2024 and clinical trails were selected for inclusion. Non-English or Spanish articles were excluded. This review complied with the Preferred Reported Items for Systematic Reviews and Meta-Analysis guideline. RESULTS Ten articles were included after screening and evaluation. The majority of the studied diseases were deformities (n = 3) and traumas (n = 3), followed by degenerative diseases (n = 2). Two articles dealt with surgical techniques. Six articles studied the creation of personalized guides for inserting screws; 2 were about education, one related to educating patients about their disease and the other to teaching residents surgical techniques; 2 other articles addressed surgical planning, where biomodels were printed to study anatomy and surgical programming. CONCLUSIONS 3DP is one of the most-used tools in spine surgeries, but there are still randomized articles available on the subject. Using this technology seems to have a positive effect on patient education regarding their disease and surgical planning.
Collapse
Affiliation(s)
- Francisco Alves de Araújo Júnior
- Postgraduate Department, Evangelical Mackenzie College of Paraná, Curitiba, Brazil; Neurosurgery Department, Mackenzie Evangelical University Hospital, Curitiba, Brazil.
| | | | - Osvaldo Malafaia
- Postgraduate Department, Evangelical Mackenzie College of Paraná, Curitiba, Brazil
| | - Aluízio Augusto Arantes
- Neurosurgery Department, Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
3
|
Araújo Júnior FA, Ribas Filho JM, Malafaia O, Arantes Júnior AA, Santos Neto PH, Ceccato GHW, Ferreira RR, Bottega R. Personalized Biomodel of the Cervical Spine for Laboratory Laminoplasty Training. World Neurosurg 2024; 190:e1087-e1092. [PMID: 39151701 DOI: 10.1016/j.wneu.2024.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE The use of biomodels in the laboratory for studying and training cervical laminoplasty has not yet been reported. We propose the use of a cervical spine biomodel for surgical laminoplasty training. METHODS This is an experimental study. Ten 3D identical cervical spine biomodels were printed based on computed tomography (CT) and magnetic resonance imaging scans of a patient diagnosed with spondylotic cervical myelopathy. The additive manufacturing method used fused deposition modeling and polylactic acid (PLA) was selected as the raw material. The sample was divided into 2 groups: control (n = 5; the biomodels were submitted to CT scanning) and open-door (n = 5; the biomodels were submitted to open-door laminoplasty and postoperative CT). The area and anteroposterior diameter of the vertebral canal were measured on CT scans. RESULTS Printing each piece took 12 hours. During the surgical procedure, there was sufficient support from the biomodels to keep them immobilized. Using the drill was feasible; however continuous irrigation was mandatory to prevent plastic material overheating. The raw material made the biomodel CT study possible. The vertebral canal dimensions increased 24.80% (0.62 cm2) in area and 24.88% (3.12 mm) in anteroposterior diameter CONCLUSIONS: The cervical spine biomodels can be used for laminoplasty training, even by using thermosensitive material such as PLA. The use of continuous irrigation is essential while drilling.
Collapse
Affiliation(s)
- Francisco A Araújo Júnior
- Postgraduate Department, Evangelical Mackenzie College of Paraná, Curitiba, Brazil; Neurosurgery Department, Mackenzie Evangelical University Hospital, Curitiba, Brazil.
| | | | - Osvaldo Malafaia
- Postgraduate Department, Evangelical Mackenzie College of Paraná, Curitiba, Brazil
| | | | - Pedro H Santos Neto
- Neurosurgery Department, Mackenzie Evangelical University Hospital, Curitiba, Brazil
| | - Guilherme H W Ceccato
- Neurosurgery Department, Mackenzie Evangelical University Hospital, Curitiba, Brazil
| | - Ricardo Rabello Ferreira
- Postgraduate Department, Evangelical Mackenzie College of Paraná, Curitiba, Brazil; Radiology Department, Agua Verde Diagnostic Clinic, Curitiba, Brazil
| | - Ramon Bottega
- Radiology Department, Agua Verde Diagnostic Clinic, Curitiba, Brazil
| |
Collapse
|
4
|
Belsheva M, Safonova L, Shkarubo A. Sensitivity of Frequency Domain Near Infrared Spectroscopy for Neurovascular Structure Detection in Biotissue Volume: Numerical Modeling Results. JOURNAL OF BIOPHOTONICS 2024:e202400291. [PMID: 39257224 DOI: 10.1002/jbio.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Through numerical modeling, it has been determined that near infrared spectroscopy with a frequency domain approach can detect neurovascular structures with diameters from 0.5 mm at source-detector distances of 5-8 mm, depending on optical parameters and technical implementation of the method. Among the five classical machine learning methods considered, quadratic discriminant analysis is the most effective for detection. Furthermore, it has been demonstrated that the use of a photomultiplier tube and the registration of both amplitude and phase signal components exhibit the highest sensitivity. Spectroscopy can rival modern ultrasound for detecting arterial vessels. A cross-shaped probe configuration improves sensitivity, and the ratio of reduced scattering coefficient values at different wavelengths is informative for blood-filled vessel detection. These findings are consistent with and significantly extend previous experimental in vivo and in situ studies and could be valuable for intraoperative diagnostic tasks, particularly in neurosurgery.
Collapse
Affiliation(s)
- Mariia Belsheva
- Department of Biomedical Engineering, Bauman Moscow State Technical University, Moscow, Russia
| | - Larisa Safonova
- Department of Biomedical Engineering, Bauman Moscow State Technical University, Moscow, Russia
| | - Alexey Shkarubo
- Federal State Autonomous Institution "N. N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Stroop R, Carballar F, Zawy Alsofy S, Sarkis H, Nakamura M, Greiner C, Dorweiler B, Wegner M. Assessment of Obesity as Risk Factor of Lumbar Disc Surgery: Retrospective Analysis of 598 Cases and Simulated Surgery on 3D-Printed Models. J Clin Med 2024; 13:4193. [PMID: 39064233 PMCID: PMC11278390 DOI: 10.3390/jcm13144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Obesity poses known risks in surgery, including a prolonged operation time and postoperative complications. Given the rising obesity rates and frequent lumbar disc surgeries, understanding these risks is crucial. This study aims to assess the impact of obesity on operation duration and postoperative complications in lumbar disc prolapse surgery. (2) Methods: We retrospectively analyzed 598 patients with monosegmental disc herniation, correlating their body mass index (BMI) as a surrogate parameter for obesity with operation time. Excluding complex cases (multi-segmental herniations or recurrent herniations), complication rates and hospital stays were recorded. Simulated surgeries on 3D-printed models of varying obesity levels examined operation times and instrument suitability. (3) Results: Of these patients, 438 patients had a BMI of <30, and 160 patients had a BMI of ≥30. Complication rates showed no significant differences between groups. Linear regression analysis failed to establish a sole dependency of operation time on BMI, with R2 = 0.039 for the normal-weight group (BMI < 30) and R2 = 0.059 for the obese group (BMI ≥ 30). The simulation operations on the 3D-printed models of varying degrees of obesity showed a significant increase in the simulated operation time with higher levels of obesity. A geometrically inadequate set of surgical instruments was assumed to be a significant factor in the simulated increase in operating time. (4) Conclusions: While various factors influence operation time, obesity alone does not significantly increase it. However, simulated surgeries highlighted the impact of obesity, particularly on instrument limitations. Understanding these complexities is vital for optimizing surgical outcomes in obese patients.
Collapse
Affiliation(s)
- Ralf Stroop
- Faculty of Health, Department of Medicine, Witten-Herdecke University, 58455 Witten, Germany; (R.S.); (F.C.); (S.Z.A.); (H.S.)
- Medical School Hamburg, 20457 Hamburg, Germany
| | - Fernando Carballar
- Faculty of Health, Department of Medicine, Witten-Herdecke University, 58455 Witten, Germany; (R.S.); (F.C.); (S.Z.A.); (H.S.)
- Niels Stensen Neuro Center, Department of Neuro- and Spine Surgery, 49076 Osnabrück, Germany;
| | - Samer Zawy Alsofy
- Faculty of Health, Department of Medicine, Witten-Herdecke University, 58455 Witten, Germany; (R.S.); (F.C.); (S.Z.A.); (H.S.)
| | - Hraq Sarkis
- Faculty of Health, Department of Medicine, Witten-Herdecke University, 58455 Witten, Germany; (R.S.); (F.C.); (S.Z.A.); (H.S.)
- St. Marien Hospital Lünen, Academic Teaching Hospital of University of Münster, 44534 Lünen, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Academic Hospital Cologne-Merheim, Witten-Herdecke University, 51109 Cologne, Germany;
| | - Christoph Greiner
- Niels Stensen Neuro Center, Department of Neuro- and Spine Surgery, 49076 Osnabrück, Germany;
| | - Bernhard Dorweiler
- Department of Vascular and Endovascular Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Moritz Wegner
- Department of Vascular and Endovascular Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|
6
|
Kozłowska K, Cieślik M, Koterwa A, Formela K, Ryl J, Niedziałkowski P. Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2833. [PMID: 38930201 PMCID: PMC11204644 DOI: 10.3390/ma17122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation. A microwave synthesizer used in chemical laboratories (CEM, Matthews, NC, USA) was used for this purpose, establishing that the appropriate activation time for CB-PLA electrodes is 15 min at 70 °C with a microwave power of 100 W. However, the usefulness of an 80 W kitchen microwave oven is also presented for the first time and discussed as a more sustainable approach to CB-PLA electrode activation. It has been established that 10 min in a kitchen microwave oven is adequate to activate the electrode. The electrochemical properties of the microwave-activated electrodes were determined by electrochemical techniques, and their topography was characterized using scanning electron microscopy (SEM), Raman spectroscopy, and contact-angle measurements. This study confirms that during microwave activation, PLAs decompose to uncover the conductive carbon-black filler. We deliver a proof-of-concept of the utility of kitchen microwave-oven activation of a 3D-printed, free-standing electrochemical cell (FSEC) in paracetamol electroanalysis in aqueous electrolyte solution. We established satisfactory limits of linearity for paracetamol detection using voltammetry, ranging from 1.9 μM to 1 mM, with a detection limit (LOD) of 1.31 μM.
Collapse
Affiliation(s)
- Kornelia Kozłowska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| | - Mateusz Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Adrian Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland;
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
- Advanced Materials Center, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.K.); (M.C.); (A.K.)
| |
Collapse
|
7
|
Zhou Z, Feng W, Moghadas BK, Baneshi N, Noshadi B, Baghaei S, Dehkordi DA. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell 2024; 88:102390. [PMID: 38663113 DOI: 10.1016/j.tice.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 06/17/2024]
Abstract
Despite advancements in medical care, the management of bone injuries remains one of the most significant challenges in the fields of medicine and sports medicine globally. Bone tissue damage is often associated with aging, reduced quality of life, and various conditions such as trauma, cancer, and infection. While bone tissue possesses the natural capacity for self-repair and regeneration, severe damage may render conventional treatments ineffective, and bone grafting may be limited due to secondary surgical procedures and potential disease transmission. In such cases, bone tissue engineering has emerged as a viable approach, utilizing cells, scaffolds, and growth factors to repair damaged bone tissue. This research shows a comprehensive review of the current literature on the most important and effective methods and materials for improving the treatment of these injuries. Commonly employed cell types include osteogenic cells, embryonic stem cells, and mesenchymal cells, while scaffolds play a crucial role in bone tissue regeneration. To create an effective bone scaffold, a thorough understanding of bone structure, material selection, and examination of scaffold fabrication techniques from inception to the present day is necessary. By gaining insights into these three key components, the ability to design and construct appropriate bone scaffolds can be achieved. Bone tissue engineering scaffolds are evaluated based on factors such as strength, porosity, cell adhesion, biocompatibility, and biodegradability. This article examines the diverse categories of bone scaffolds, the materials and techniques used in their fabrication, as well as the associated merits and drawbacks of these approaches. Furthermore, the review explores the utilization of various scaffold types in bone tissue engineering applications.
Collapse
Affiliation(s)
- Zeng Zhou
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China
| | - Wei Feng
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China.
| | - B Kamyab Moghadas
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - N Baneshi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - B Noshadi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eastern Mediterranean University, via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkey
| | - Sh Baghaei
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| | - D Abasi Dehkordi
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
8
|
Zhang C, Hua W, Mitchell K, Raymond L, Delzendehrooy F, Wen L, Do C, Chen J, Yang Y, Linke G, Zhang Z, Krishnan MA, Kuss M, Coulter R, Bandala E, Liao Y, Duan B, Zhao D, Chai G, Jin Y. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc Natl Acad Sci U S A 2024; 121:e2313464121. [PMID: 38346211 PMCID: PMC10907305 DOI: 10.1073/pnas.2313464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Fatemeh Delzendehrooy
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, NV89557
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6475
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN37830
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, NV89557
| | - Gabe Linke
- Three-Dimensional Advanced Visualization Laboratory, Department of Pediatric Radiology, Children’s Hospital & Medical Center, Omaha, NE68114
| | - Zhengyi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Ryan Coulter
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Erick Bandala
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Yiliang Liao
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guangrui Chai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| |
Collapse
|
9
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Valls-Esteve A, Tejo-Otero A, Adell-Gómez N, Lustig-Gainza P, Fenollosa-Artés F, Buj-Corral I, Rubio-Palau J, Munuera J, Krauel L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering (Basel) 2023; 11:31. [PMID: 38247908 PMCID: PMC10813349 DOI: 10.3390/bioengineering11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Núria Adell-Gómez
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Pamela Lustig-Gainza
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Pediatric Surgical Oncology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, 08027 Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau—Centre CERCA, 08041 Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
11
|
Zeller AN, Goetze E, Thiem DGE, Bartella AK, Seifert L, Beiglboeck FM, Kröplin J, Hoffmann J, Pabst A. A survey regarding the organizational aspects and quality systems of in-house 3D printing in oral and maxillofacial surgery in Germany. Oral Maxillofac Surg 2023; 27:661-673. [PMID: 35989406 DOI: 10.1007/s10006-022-01109-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE The aim of the study was to get a cross-sectional overview of the current status of specific organizational procedures, quality control systems, and standard operating procedures for the use of three-dimensional (3D) printing to assist in-house workflow using additive manufacturing in oral and maxillofacial surgery (OMFS) in Germany. METHODS An online questionnaire including dynamic components containing 16-29 questions regarding specific organizational aspects, process workflows, quality controls, documentation, and the respective backgrounds in 3D printing was sent to OMF surgeons in university and non-university hospitals as well as private practices with and without inpatient treatment facilities. Participants were recruited from a former study population regarding 3D printing; all participants owned a 3D printer and were registered with the German Association of Oral and Maxillofacial Surgery. RESULTS Sixty-seven participants answered the questionnaires. Of those, 20 participants ran a 3D printer in-unit. Quality assurance measures were performed by 13 participants and underlying processes by 8 participants, respectively. Standard operating procedures regarding computer-aided design and manufacturing, post-processing, use, or storage of printed goods were non-existent in most printing units. Data segmentation as well as computer-aided design and manufacturing were conducted by a medical doctor in most cases (n = 19, n = 18, n = 8, respectively). Most participants (n = 8) stated that "medical device regulations did not have any influence yet, but an adaptation of the processes is planned for the future." CONCLUSION The findings demonstrated significant differences in 3D printing management in OMFS, especially concerning process workflows, quality control, and documentation. Considering the ever-increasing regulations for medical devices, there might be a necessity for standardized 3D printing recommendations and regulations in OMFS.
Collapse
Affiliation(s)
- Alexander-N Zeller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Elisabeth Goetze
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Glückstr. 11, 91054, Erlangen, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Alexander K Bartella
- Department of Oral and Maxillofacial Surgery, University Hospital Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Lukas Seifert
- Department of Oral, Cranio Maxillofacial and Facial Plastic Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60528, Frankfurt am Main, Germany
| | - Fabian M Beiglboeck
- Department of Oral and Maxillofacial Surgery, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Munster, Germany
- MAM Research Group, Department of Biomedical Engineering, University of Basel, Gewerbestr. 16, 4123, Allschwil, Switzerland
| | - Juliane Kröplin
- Department of Oral and Maxillofacial Surgery, Helios Hospital Schwerin, Wismarsche Str. 393-397, 19049, Schwerin, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany.
| |
Collapse
|
12
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
13
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
14
|
Agarwal P, Arora G, Panwar A, Mathur V, Srinivasan V, Pandita D, Vasanthan KS. Diverse Applications of Three-Dimensional Printing in Biomedical Engineering: A Review. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1140-1163. [PMID: 37886418 PMCID: PMC10599440 DOI: 10.1089/3dp.2022.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A three-dimensional (3D) printing is a robotically controlled state-of-the-art technology that is promising for all branches of engineering with a meritorious emphasis to biomedical engineering. The purpose of 3D printing (3DP) is to create exact superstructures without any framework in a brief period with high reproducibility to create intricate and complex patient-tailored structures for organ regeneration, drug delivery, imaging processes, designing personalized dose-specific tablets, developing 3D models of organs to plan surgery and to understand the pathology of disease, manufacturing cost-effective surgical tools, and fabricating implants and organ substitute devices for prolonging the lives of patients, etc. The formulation of bioinks and programmed G codes help to obtain precise 3D structures, which determines the stability and functioning of the 3D-printed structures. Three-dimensional printing for medical applications is ambitious and challenging but made possible with the culmination of research expertise from various fields. Exploring and expanding 3DP for biomedical and clinical applications can be life-saving solutions. The 3D printers are cost-effective and eco-friendly, as they do not release any toxic pollutants or waste materials that pollute the environment. The sampling requirements and processing parameters are amenable, which further eases the production. This review highlights the role of 3D printers in the health care sector, focusing on their roles in tablet development, imaging techniques, disease model development, and tissue regeneration.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gargi Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
| | - Amit Panwar
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, Hong Kong
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Science and Research University, Government of NCT of Delhi, New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Government of NCT of Delhi, New Delhi, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
15
|
Hu M, Sun M, Bao C, Luo J, Zhuo L, Guo M. 3D-printed external fixation guide combined with video-assisted thoracoscopic surgery for the treatment of flail chest: a technical report and case series. Front Surg 2023; 10:1272628. [PMID: 37829598 PMCID: PMC10564999 DOI: 10.3389/fsurg.2023.1272628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Background Flail chest is a common and serious traumatic condition in thoracic surgery. The treatment of flail chest often includes open reduction and internal fixation, which is relatively traumatic, complicated, and expensive. As three-dimensional (3D) printing technology is widely used in the clinical field, the application of 3D-printed products to chest trauma will become a new treatment option. To date, the use of 3D-printed external fixation guides for flail chests has not been reported. Thus, we aimed to assess the short-term efficacy of a new technology that treated flail chests with an individualized 3D-printed external fixation guide combined with video-assisted thoracoscopic surgery (VATS). Patients and methods A retrospective analysis was performed on patients with flail chest treated with this new technique at our center from January 2020 to December 2022. The following parameters were included: operative time, thoracic tube extraction time, intensive care unit time, thoracic volume recovery rate, visual analog scale score 1 month postoperatively, and postoperative complication rate. All patients were followed up for at least 3 months. Results Five patients (mean age: 45.7 years) were enrolled; they successfully underwent surgery without chest wall deformity and quickly returned to daily life. The average number of rib fractures was 8.4; all patients had lung contusion, hemopneumothorax, and anomalous respiration. The abnormal breathing of all patients was completely corrected on postoperative day 1, and the chest wall was stable. One case experienced mild loosening of the 3D-printed guide postoperatively; however, the overall stability was not affected. The other four cases did not experience such loosening because we replaced the ordinary silk wire with a steel wire. All cases were discharged from the hospital 2 weeks postoperatively and returned to normal life 1 month after the removal of the 3D-printed guide on average. Only one case developed a superficial wound infection postoperatively, and no perioperative death occurred. Conclusions The 3D-printed external fixation guide combined with video-assisted thoracoscopic surgery is a novel technique in the treatment of flail chest and is safe, effective, feasible, and minimally invasive, with satisfactory clinical efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Guo
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Chenggong Hospital (Army 73rd Group Military Hospital), Xiamen, China
| |
Collapse
|
16
|
Cieślik M, Susik A, Banasiak M, Bogdanowicz R, Formela K, Ryl J. Tailoring diamondised nanocarbon-loaded poly(lactic acid) composites for highly electroactive surfaces: extrusion and characterisation of filaments for improved 3D-printed surfaces. Mikrochim Acta 2023; 190:370. [PMID: 37639048 PMCID: PMC10462739 DOI: 10.1007/s00604-023-05940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023]
Abstract
A new 3D-printable composite has been developed dedicated to electroanalytical applications. Two types of diamondised nanocarbons - detonation nanodiamonds (DNDs) and boron-doped carbon nanowalls (BCNWs) - were added as fillers in poly(lactic acid) (PLA)-based composites to extrude 3D filaments. Carbon black served as a primary filler to reach high composite conductivity at low diamondised nanocarbon concentrations (0.01 to 0.2 S/cm, depending on the type and amount of filler). The aim was to thoroughly describe and understand the interactions between the composite components and how they affect the rheological, mechanical and thermal properties, and electrochemical characteristics of filaments and material extrusion printouts. The electrocatalytic properties of composite-based electrodes, fabricated with a simple 3D pen, were evaluated using multiple electrochemical techniques (cyclic and differential pulse voltammetry and electrochemical impedance spectroscopy). The results showed that the addition of 5 wt% of any of the diamond-rich nanocarbons fillers significantly enhanced the redox process kinetics, leading to lower redox activation overpotentials compared with carbon black-loaded PLA. The detection of dopamine was successfully achieved through fabricated composite electrodes, exhibiting lower limits of detection (0.12 μM for DND and 0.18 μM for BCNW) compared with the reference CB-PLA electrodes (0.48 μM). The thermogravimetric results demonstrated that both DND and BCNW powders can accelerate thermal degradation. The presence of diamondised nanocarbons, regardless of their type, resulted in a decrease in the decomposition temperature of the composite. The study provides insight into the interactions between composite components and their impact on the electrochemical properties of 3D-printed surfaces, suggesting electroanalytic potential.
Collapse
Affiliation(s)
- Mateusz Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Agnieszka Susik
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mariusz Banasiak
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
17
|
Kirloskar KM, Haffner ZK, Abadeer A, Yosaitis J, Baker SB. The Innovation Press: A Primer on the Anatomy of Digital Design in Plastic Surgery. Ann Plast Surg 2023; 91:307-312. [PMID: 37489974 DOI: 10.1097/sap.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
ABSTRACT Three-dimensional (3D) printing continues to revolutionize the field of plastic surgery, allowing surgeons to adapt to the needs of individual patients and innovate, plan, or refine operative techniques. The utility of this manufacturing modality spans from surgical planning, medical education, and effective patient communication to tissue engineering and device prototyping and has valuable implications in every facet of plastic surgery. Three-dimensional printing is more accessible than ever to the surgical community, regardless of previous background in engineering or biotechnology. As such, the onus falls on the surgeon-innovator to have a functional understanding of the fundamental pipeline and processes in actualizing such innovation. We review the broad range of reported uses for 3D printing in plastic surgery, the process from conceptualization to production, and the considerations a physician must make when using 3D printing for clinical applications. We additionally discuss the role of computer-assisted design and manufacturing and virtual and augmented reality, as well as the ability to digitally modify devices using this software. Finally, a discussion of 3D printing logistics, printer types, and materials is included. With innovation and problem solving comprising key tenets of plastic surgery, 3D printing can be a vital tool in the surgeon's intellectual and digital arsenal to span the gap between concept and reality.
Collapse
Affiliation(s)
| | | | - Andrew Abadeer
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital
| | | | - Stephen B Baker
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital
| |
Collapse
|
18
|
Caracciolo PC, Abraham GA, Battaglia ES, Bongiovanni Abel S. Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR). Pharmaceutics 2023; 15:1964. [PMID: 37514150 PMCID: PMC10385409 DOI: 10.3390/pharmaceutics15071964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.
Collapse
Affiliation(s)
- Pablo C Caracciolo
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Gustavo A Abraham
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Ernesto S Battaglia
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Silvestre Bongiovanni Abel
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| |
Collapse
|
19
|
Romero Lara DP, Latorre-Rojas CJ, Latorre Quintana M, Velasco Morales ML, Pardo Nino LS, Arango ML. Use of Virtual Reality and Three-Dimensional Printing in the Surgical Planning of Slide Tracheoplasty. World J Pediatr Congenit Heart Surg 2023; 14:503-508. [PMID: 37011916 DOI: 10.1177/21501351231163532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Purpose: To describe our experience using virtual reality (VR) and three-dimensional (3D) printing as complements for the surgical planning process of slide tracheoplasty (ST) in patients with congenital tracheal stenosis (CTS). Description: VR and 3D printing are used for the surgical planning of ST as a therapeutic option in three female patients under five years of age with CTS. Evaluation: We assessed the planned surgical procedure, procedural time, postoperative complications, and outcomes, as well as the main surgeon's experience with the use of the applied technologies. Conclusions: The interaction within the VR environment allowed for collaboration of the surgical plan between surgical staff and enhancement of the radiologist-surgeon communication, while procedural simulation with 3D printing prototypes allowed for refining technical abilities for the surgical interventions. Based on our experience, the application of these technologies have added value to the surgical planning of ST and its outcomes in the treatment of CTS.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria L Arango
- Research Direction, Shaio Clinic Foundation, Bogotá, Colombia
| |
Collapse
|
20
|
Mamo HB, Adamiak M, Kunwar A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J Mech Behav Biomed Mater 2023; 143:105930. [PMID: 37267735 DOI: 10.1016/j.jmbbm.2023.105930] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
3D printing, also known as Additive manufacturing (AM), has emerged as a transformative technology with applications across various industries, including the medical sector. This review paper provides an overview of the current status of AM technology, its challenges, and its application in the medical industry. The paper covers the different types of AM technologies, such as fused deposition modeling, stereolithography, selective laser sintering, digital light processing, binder jetting, and electron beam melting, and their suitability for medical applications. The most commonly used biomedical materials in AM, such as plastic, metal, ceramic, composite, and bio-inks, are also viewed. The challenges of AM technology, such as material selection, accuracy, precision, regulatory compliance, cost and quality control, and standardization, are also discussed. The review also highlights the various applications of AM in the medical sector, including the production of patient-specific surgical guides, prosthetics, orthotics, and implants. Finally, the review highlights the Internet of Medical Things (IoMT) and artificial intelligence (AI) for regulatory frameworks and safety standards for 3D-printed biomedical devices. The review concludes that AM technology can transform the healthcare industry by enabling patients to access more personalized and reasonably priced treatment alternatives. Despite the challenges, integrating AI and IoMT with 3D printing technology is expected to play a vital role in the future of biomedical device applications, leading to further advancements and improvements in patient care. More research is needed to address the challenges and optimize its use for medical applications to utilize AM's potential in the medical industry fully.
Collapse
Affiliation(s)
- Hana Beyene Mamo
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland.
| | - Marcin Adamiak
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
| | - Anil Kunwar
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
| |
Collapse
|
21
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
22
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
23
|
Wang T, Kaur L, Beniwal AS, Furuhata Y, Aoyama H, Singh J. Physico-chemical and Textural Properties of 3D Printed Plant-based and Hybrid Soft Meat Analogs. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01068-4. [PMID: 37199825 PMCID: PMC10363036 DOI: 10.1007/s11130-023-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.
Collapse
Affiliation(s)
- Tianxiao Wang
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Akashdeep Singh Beniwal
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Yasufumi Furuhata
- Ajinomoto Co., Inc, Suzuki-cho 3-1, Kawasaki-ku, Kawasaki-shi, Japan
| | - Hiroaki Aoyama
- Ajinomoto Co., Inc, Suzuki-cho 3-1, Kawasaki-ku, Kawasaki-shi, Japan
| | - Jaspreet Singh
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
24
|
Lamarca RS, Silva JP, Varoni Dos Santos JP, Ayala-Durán SC, de Lima Gomes PCF. Modular 3D-printed fluorometer/photometer for determination of iron(ii), caffeine, and ciprofloxacin in pharmaceutical samples. RSC Adv 2023; 13:12050-12058. [PMID: 37077256 PMCID: PMC10108832 DOI: 10.1039/d3ra01281f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023] Open
Abstract
The demand for the development of portable and low-cost analytical devices has encouraged studies employing additive manufacturing techniques, such as 3D-printing. This method can be used to produce components such as printed electrodes, photometers, and fluorometers for low-cost systems that provide advantages including low sample volume, reduced chemical waste, and easy coupling with LED-based optics and other instrumental devices. In the present work, a modular 3D-printed fluorometer/photometer was designed and applied for the determination of caffeine (CAF), ciprofloxacin (CIP), and Fe(ii) in pharmaceutical samples. All the plastic parts were printed separately by a 3D printer, using Tritan as the plastic material (black color). The final size of the modular 3D-printed device was 12 × 8 cm. The radiation sources were light-emitting diodes (LEDs), while a light dependent resistor (LDR) was used as a photodetector. The analytical curves obtained for the device were: y = 3.00 × 10-4 [CAF] + 1.00 and R 2 = 0.987 for caffeine; y = 6.90 × 10-3 [CIP] - 3.39 × 10-2 and R 2 = 0.991 for ciprofloxacin; and y = 1.12 × 10-1 [Fe(ii)] + 1.26 × 10-2 and R 2 = 0.998 for iron(ii). The results obtained using the developed device were compared with reference methods, with no statistically significant differences observed. The 3D-printed device was composed of moveable parts, providing flexibility for adaptation and application as a photometer or fluorometer, by only switching the photodetector position. The LED could also be easily switched, permitting application of the device for different purposes. The cost of the device, including the printing and electronic components, was lower than US$10. The use of 3D-printing enables the development of portable instruments for use in remote locations with a lack of research resources.
Collapse
Affiliation(s)
- Rafaela Silva Lamarca
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - João Pedro Silva
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - João Paulo Varoni Dos Santos
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - Saidy Cristina Ayala-Durán
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP) Araraquara São Paulo 14800-060 Brazil
| |
Collapse
|
25
|
Valls-Esteve A, Tejo-Otero A, Lustig-Gainza P, Buj-Corral I, Fenollosa-Artés F, Rubio-Palau J, Barber-Martinez de la Torre I, Munuera J, Fondevila C, Krauel L. Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training. Gels 2023; 9:gels9040339. [PMID: 37102951 PMCID: PMC10138006 DOI: 10.3390/gels9040339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Pamela Lustig-Gainza
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | | | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery and Transplantation, General and Digestive Surgery, Metabolic and Digestive Diseases Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
26
|
Paxton NC. Navigating the intersection of 3D printing, software regulation and quality control for point-of-care manufacturing of personalized anatomical models. 3D Print Med 2023; 9:9. [PMID: 37024730 PMCID: PMC10080800 DOI: 10.1186/s41205-023-00175-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
3D printing technology has become increasingly popular in healthcare settings, with applications of 3D printed anatomical models ranging from diagnostics and surgical planning to patient education. However, as the use of 3D printed anatomical models becomes more widespread, there is a growing need for regulation and quality control to ensure their accuracy and safety. This literature review examines the current state of 3D printing in hospitals and FDA regulation process for software intended for use in producing 3D printed models and provides for the first time a comprehensive list of approved software platforms alongside the 3D printers that have been validated with each for producing 3D printed anatomical models. The process for verification and validation of these 3D printed products, as well as the potential for inaccuracy in these models, is discussed, including methods for testing accuracy, limits, and standards for accuracy testing. This article emphasizes the importance of regulation and quality control in the use of 3D printing technology in healthcare, the need for clear guidelines and standards for both the software and the printed products to ensure the safety and accuracy of 3D printed anatomical models, and the opportunity to expand the library of regulated 3D printers.
Collapse
Affiliation(s)
- Naomi C Paxton
- Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
27
|
To G, Hawke JA, Larkins K, Burke G, Costello DM, Warrier S, Mohan H, Heriot A. A systematic review of the application of 3D-printed models to colorectal surgical training. Tech Coloproctol 2023; 27:257-270. [PMID: 36738361 DOI: 10.1007/s10151-023-02757-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this review was to explore the role of three-dimensional (3D) printing in colorectal surgical education and procedural simulation, and to assess the effectiveness of 3D-printed models in anatomic and operative education in colorectal surgery. METHODS A systematic review of the literature was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify relevant publications relating to the use of 3D-printed models in colorectal surgery in an educational context. The search encompassed OVID Medline, Web of Science and EMBASE including papers in English published from 1 January 1995 to 1 January 2023. A total of 1018 publications were screened, and 5 met the criteria for inclusion in this review. RESULTS Four distinct 3D models were described across five studies. Two models demonstrated objective benefits in the use of 3D-printed models in anatomical education in academic outcomes at all levels of learner medical experience and were well accepted by learners. One model utilised for preoperative visualisation demonstrated improved operative outcomes in complete mesocolic excision compared with preoperative imaging review, with a 22.1% reduction in operative time (p < 0.001), 9.2% reduction in surgical duration (p = 0.035) and 37.3% reduction in intraoperative bleeding volume amongst novice surgeons (p < 0.01). Technical simulation has been demonstrated in a feasibility context in one model but remains limited in scope and application on account of the characteristics of available printing materials. CONCLUSIONS 3D printing is well accepted and effective for anatomic education and preoperative procedural planning amongst colorectal surgeons, trainees and medical students but remains a technology in the early stages of its possible application. Technological advancements are required to improve the tissue realism of 3D-printed organ models to achieve greater fidelity and provide realistic colorectal surgical simulations.
Collapse
Affiliation(s)
- Gloria To
- The University of Melbourne, Parkville, VIC, Australia
| | - Justin A Hawke
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia.
| | - Kirsten Larkins
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Grace Burke
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| | | | - Satish Warrier
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| | - Helen Mohan
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Alexander Heriot
- The University of Melbourne, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- International Medical Robotics Academy, North Melbourne, VIC, Australia
| |
Collapse
|
28
|
Application of 3D Printing in Bone Grafts. Cells 2023; 12:cells12060859. [PMID: 36980200 PMCID: PMC10047278 DOI: 10.3390/cells12060859] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The application of 3D printing in bone grafts is gaining in importance and is becoming more and more popular. The choice of the method has a direct impact on the preparation of the patient for surgery, the probability of rejection of the transplant, and many other complications. The aim of the article is to discuss methods of bone grafting and to compare these methods. This review of literature is based on a selective literature search of the PubMed and Web of Science databases from 2001 to 2022 using the search terms “bone graft”, “bone transplant”, and “3D printing”. In addition, we also reviewed non-medical literature related to materials used for 3D printing. There are several methods of bone grafting, such as a demineralized bone matrix, cancellous allograft, nonvascular cortical allograft, osteoarticular allograft, osteochondral allograft, vascularized allograft, and an autogenic transplant using a bone substitute. Currently, autogenous grafting, which involves removing the patient’s bone from an area of low aesthetic importance, is referred to as the gold standard. 3D printing enables using a variety of materials. 3D technology is being applied to bone tissue engineering much more often. It allows for the treatment of bone defects thanks to the creation of a porous scaffold with adequate mechanical strength and favorable macro- and microstructures. Bone tissue engineering is an innovative approach that can be used to repair multiple bone defects in the process of transplantation. In this process, biomaterials are a very important factor in supporting regenerative cells and the regeneration of tissue. We have years of research ahead of us; however, it is certain that 3D printing is the future of transplant medicine.
Collapse
|
29
|
Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Sbirkov Y, Sarafian V, Semerdzhieva M. (Bio)printing in Personalized Medicine—Opportunities and Potential Benefits. Bioengineering (Basel) 2023; 10:bioengineering10030287. [PMID: 36978678 PMCID: PMC10045778 DOI: 10.3390/bioengineering10030287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The global development of technologies now enters areas related to human health, with a transition from conventional to personalized medicine that is based to a significant extent on (bio)printing. The goal of this article is to review some of the published scientific literature and to highlight the importance and potential benefits of using 3D (bio)printing techniques in contemporary personalized medicine and also to offer future perspectives in this research field. The article is prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Web of Science, PubMed, Scopus, Google Scholar, and ScienceDirect databases were used in the literature search. Six authors independently performed the search, study selection, and data extraction. This review focuses on 3D bio(printing) in personalized medicine and provides a classification of 3D bio(printing) benefits in several categories: overcoming the shortage of organs for transplantation, elimination of problems due to the difference between sexes in organ transplantation, reducing the cases of rejection of transplanted organs, enhancing the survival of patients with transplantation, drug research and development, elimination of genetic/congenital defects in tissues and organs, and surgery planning and medical training for young doctors. In particular, we highlight the benefits of each 3D bio(printing) applications included along with the associated scientific reports from recent literature. In addition, we present an overview of some of the challenges that need to be overcome in the applications of 3D bioprinting in personalized medicine. The reviewed articles lead to the conclusion that bioprinting may be adopted as a revolution in the development of personalized, medicine and it has a huge potential in the near future to become a gold standard in future healthcare in the world.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, 4000 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-887417078
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Petya Kasnakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Maria Hristozova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Mariya Semerdzhieva
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| |
Collapse
|
30
|
Iliff HA, Ahmad I, Evans S, Ingham J, Rees G, Woodford C. Utilising 3D printing in assessment of anticipated difficult airways. Anaesth Rep 2023; 11:e12232. [PMID: 37255967 PMCID: PMC10225466 DOI: 10.1002/anr3.12232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- H. A. Iliff
- Department of AnaesthesiaPrince Charles Hospital, Cwm Taf Morgannwg UHBWalesUK
| | - I. Ahmad
- Department of AnaesthesiaGuy's and St Thomas' NHS Foundation TrustLondonUK
- Kings CollegeLondonUK
| | - S. Evans
- Department of Maxillofacial and Dental SurgeryPrince Charles Hospital, Cwm Taf Morgannwg UHBWalesUK
| | - J. Ingham
- Department of Maxillofacial and Dental SurgeryPrince Charles Hospital, Cwm Taf Morgannwg UHBWalesUK
| | - G. Rees
- Department of AnaesthesiaPrince Charles Hospital, Cwm Taf Morgannwg UHBWalesUK
| | - C. Woodford
- Department of AnaesthesiaPrince Charles Hospital, Cwm Taf Morgannwg UHBWalesUK
| |
Collapse
|
31
|
Effects of 2D filler on rheology of additive manufacturing polymers: Simulation and experiment on polyetherketoneketone -mica composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Yang C, Zhang S, Zhang Y. Three-Dimensional-Printed Splint for Use in Pediatric Mandibular Fracture. J Craniofac Surg 2023; 34:e186-e187. [PMID: 36214672 PMCID: PMC9944757 DOI: 10.1097/scs.0000000000008984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022] Open
Abstract
Mandibular fractures are the most common type, accounting for about 71% of facial fractures in children. The mandible is the only movable bone in the craniomaxillofacial region. The injury of the mandible has a serious impact on the functions of children's mouth opening, chewing, pronunciation, and occlusion. Therefore, the treatment of children's mandibular fractures is particularly important. Because of the characteristics of children with permanent tooth germ blocking and strong skeletal development, the treatment methods of adults cannot simply be used in children with mandibular fractures. Here, we demonstrate the simple, reliable method using 3-dimensional-printing splint for stability of the fracture segments in pediatric patients.
Collapse
Affiliation(s)
- Chengshuai Yang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine,National Clinical Research Center for Oral Diseases,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shilei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine,National Clinical Research Center for Oral Diseases,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine,National Clinical Research Center for Oral Diseases,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
33
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
34
|
Molinari G, Emiliani N, Cercenelli L, Bortolani B, Gironi C, Fernandez IJ, Presutti L, Marcelli E. Assessment of a novel patient-specific 3D printed multi-material simulator for endoscopic sinus surgery. Front Bioeng Biotechnol 2022; 10:974021. [PMID: 36466346 PMCID: PMC9712453 DOI: 10.3389/fbioe.2022.974021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/01/2022] [Indexed: 12/01/2023] Open
Abstract
Background: Three-dimensional (3D) printing is an emerging tool in the creation of anatomical models for surgical training. Its use in endoscopic sinus surgery (ESS) has been limited because of the difficulty in replicating the anatomical details. Aim: To describe the development of a patient-specific 3D printed multi-material simulator for use in ESS, and to validate it as a training tool among a group of residents and experts in ear-nose-throat (ENT) surgery. Methods: Advanced material jetting 3D printing technology was used to produce both soft tissues and bony structures of the simulator to increase anatomical realism and tactile feedback of the model. A total of 3 ENT residents and 9 ENT specialists were recruited to perform both non-destructive tasks and ESS steps on the model. The anatomical fidelity and the usefulness of the simulator in ESS training were evaluated through specific questionnaires. Results: The tasks were accomplished by 100% of participants and the survey showed overall high scores both for anatomy fidelity and usefulness in training. Dacryocystorhinostomy, medial antrostomy, and turbinectomy were rated as accurately replicable on the simulator by 75% of participants. Positive scores were obtained also for ethmoidectomy and DRAF procedures, while the replication of sphenoidotomy received neutral ratings by half of the participants. Conclusion: This study demonstrates that a 3D printed multi-material model of the sino-nasal anatomy can be generated with a high level of anatomical accuracy and haptic response. This technology has the potential to be useful in surgical training as an alternative or complementary tool to cadaveric dissection.
Collapse
Affiliation(s)
- Giulia Molinari
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Nicolas Emiliani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Cercenelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Barbara Bortolani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Camilla Gironi
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Livio Presutti
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Marcelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Klasen JRS, Thatcher GP, Bleedorn JA, Soukup JW. Virtual surgical planning and 3D printing: Methodology and applications in veterinary oromaxillofacial surgery. Front Vet Sci 2022; 9:971318. [PMID: 36337192 PMCID: PMC9635215 DOI: 10.3389/fvets.2022.971318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 12/19/2023] Open
Abstract
Virtual surgical planning is the process of planning and rehearsing a surgical procedure completely within the virtual environment on computer models. Virtual surgical planning and 3D printing is gaining popularity in veterinary oromaxillofacial surgery and are viable tools for the most basic to the most complex cases. These techniques can provide the surgeon with improved visualization and, thus, understanding of the patients' 3D anatomy. Virtual surgical planning is feasible in a clinical setting and may decrease surgical time and increase surgical accuracy. For example, pre-operative implant contouring on a 3D-printed model can save time during surgery; 3D-printed patient-specific implants and surgical guides help maintain normocclusion after mandibular reconstruction; and the presence of a haptic model in the operating room can improve surgical precision and safety. However, significant time and financial resources may need to be allocated for planning and production of surgical guides and implants. The objectives of this manuscript are to provide a description of the methods involved in virtual surgical planning and 3D printing as they apply to veterinary oromaxillofacial surgery and to highlight these concepts with the strategic use of examples. In addition, the advantages and disadvantages of the methods as well as the required software and equipment will be discussed.
Collapse
Affiliation(s)
| | - Graham P. Thatcher
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason A. Bleedorn
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason W. Soukup
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
36
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
37
|
Navaneethan B, Chou CF. Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42841-42851. [PMID: 36106830 PMCID: PMC9523717 DOI: 10.1021/acsami.2c07682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Bioengineered scaffolds satisfying both the physiological and anatomical considerations could potentially repair partially damaged tissues to whole organs. Although three-dimensional (3D) printing has become a popular approach in making 3D topographic scaffolds, electrospinning stands out from all other techniques for fabricating extracellular matrix mimicking fibrous scaffolds. However, its complex charge-influenced jet-field interactions and the associated random motion were hardly overcome for almost a century, thus preventing it from being a viable technique for 3D topographic scaffold construction. Herein, we constructed, for the first time, geometrically challenging 3D fibrous scaffolds using biodegradable poly(ε-caprolactone), mimicking human-organ-scale face, female breast, nipple, and vascular graft, with exceptional shape memory and free-standing features by a novel field self-searching process of autopilot polymer jet, essentially resembling the silkworm-like cocoon spinning. With a simple electrospinning setup and innovative writing strategies supported by simulation, we successfully overcame the intricate jet-field interactions while preserving high-fidelity template topographies, via excellent target recognition, with pattern features ranging from 100's μm to 10's cm. A 3D cell culture study ensured the anatomical compatibility of the so-made 3D scaffolds. Our approach brings the century-old electrospinning to the new list of viable 3D scaffold constructing techniques, which goes beyond applications in tissue engineering.
Collapse
Affiliation(s)
- Balchandar Navaneethan
- Institute
of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.
- Nano
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.
| | - Chia-Fu Chou
- Institute
of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C.
| |
Collapse
|
38
|
Wang X, Zhao J, Xiang Z, Wang X, Zeng Y, Luo T, Yan X, Zhang Z, Wang F, Liu L. 3D-printed bolus ensures the precise postmastectomy chest wall radiation therapy for breast cancer. Front Oncol 2022; 12:964455. [PMID: 36119487 PMCID: PMC9478602 DOI: 10.3389/fonc.2022.964455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the values of a 3D-printed bolus ensuring the precise postmastectomy chest wall radiation therapy for breast cancer. Methods and materials In the preclinical study on the anthropomorphic phantom, the 3D-printed bolus was used for dosimetry and fitness evaluation. The dosimetric parameters of planning target volume (PTV) were assessed, including Dmin, Dmax, Dmean, D95%, homogeneity index (HI), conformity index (CI), and organs at risk (OARs). The absolute percentage differences (|%diff|) between the theory and fact skin dose were also estimated, and the follow-up was conducted for potential skin side effects. Results In preclinical studies, a 3D-printed bolus can better ensure the radiation coverage of PTV (HI 0.05, CI 99.91%), the dose accuracy (|%diff| 0.99%), and skin fitness (mean air gap 1.01 mm). Of the 27 eligible patients, we evaluated the radiation dose parameter (median(min–max): Dmin 4967(4789–5099) cGy, Dmax 5447(5369–5589) cGy, Dmean 5236(5171–5323) cGy, D95% 5053(4936–5156) cGy, HI 0.07 (0.06–0.17), and CI 99.94% (97.41%–100%)) and assessed the dose of OARs (ipsilateral lung: Dmean 1341(1208–1385) cGy, V5 48.06%(39.75%–48.97%), V20 24.55%(21.58%–26.93%), V30 18.40%(15.96%–19.16%); heart: Dmean 339(138–640) cGy, V30 1.10%(0%–6.14%), V40 0.38%(0%–4.39%); spinal cord PRV: Dmax 639(389–898) cGy). The skin doses in vivo were Dtheory 208.85(203.16–212.53) cGy, Dfact 209.53(204.14–214.42) cGy, and |%diff| 1.77% (0.89–2.94%). Of the 360 patients enrolled in the skin side effect follow-up study (including the above 27 patients), grade 1 was the most common toxicity (321, 89.2%), some of which progressing to grade 2 or grade 3 (32, 8.9% or 7, 1.9%); the radiotherapy interruption rate was 1.1%. Conclusion A 3D-printed bolus can guarantee the precise radiation dose on skin surface, good fitness to skin, and controllable acute skin toxicity, which possesses a great clinical application value in postmastectomy chest call radiation therapy for breast cancer.
Collapse
Affiliation(s)
- Xiran Wang
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianling Zhao
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuetao Wang
- Department of Radiotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yan
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Wang
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck and Mammary Oncology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
39
|
Byrd CT, Lui NS, Guo HH. Applications of Three-Dimensional Printing in Surgical Oncology. Surg Oncol Clin N Am 2022; 31:673-684. [DOI: 10.1016/j.soc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Fallah A, Altunbek M, Bartolo P, Cooper G, Weightman A, Blunn G, Koc B. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater 2022; 134:105418. [PMID: 36007489 DOI: 10.1016/j.jmbbm.2022.105418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Bone defect treatment is still a challenge in clinics, and synthetic bone scaffolds with adequate mechanical and biological properties are highly needed. Adequate waste and nutrient exchange of the implanted scaffold with the surrounded tissue is a major concern. Moreover, the risk of mechanical instability in the defect area during regular activity increases as the defect size increases. Thus, scaffolds with better mass transportation and mechanical properties are desired. This study introduces 3D printed polymeric scaffolds with a continuous pattern, ZigZag-Spiral pattern, for bone defects treatments. This pattern has a uniform distribution of pore size, which leads to uniform distribution of wall shear stress which is crucial for uniform differentiation of cells attached to the scaffolds. The mechanical, mass transportation, and biological properties of the 3D printed scaffolds are evaluated. The results show that the presented scaffolds have permeability similar to natural bone and, with the same porosity level, have higher mechanical properties than scaffolds with conventional lay-down patterns 0-90° and 0-45°. Finally, human mesenchymal stem cells are seeded on the scaffolds to determine the effects of geometrical microstructure on cell attachment and morphology. The results show that cells in scaffold with ZigZag-Spiral pattern infilled pores gradually, while the other patterns need more time to fill the pores. Considering mechanical, transportation, and biological properties of the considered patterns, scaffolds with ZigZag-Spiral patterns can mimic the properties of cancellous bones and be a better choice for treatments of bone defects.
Collapse
Affiliation(s)
- Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Paulo Bartolo
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University Portsmouth, Portsmouth, PO1 2UP, UK
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| |
Collapse
|
41
|
Etami HV, Rismawanti RI, Hanifah VAN, Herianto H, Yanuar Y, Kuswanto D, Anggrahini DW, Gharini PPR. CT-Derived 3D Printing for Coronary Artery Cannulation Simulator Design Manufacturing. Bioengineering (Basel) 2022; 9:338. [PMID: 35892751 PMCID: PMC9330152 DOI: 10.3390/bioengineering9080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Mastering coronary angiography requires practice. Cadavers and animals do not accurately represent the human anatomical body, and practicing with actual patients has medical safety issues. Simulation offers safe and realistic conditions for cardiology intervention training. In this study, we propose a novel 3D printed simulator that contains physically realistic anatomy and has four access points. It increases safety for patients and students, and production is low-cost. We aimed to make and validate this simulator design as a prototype for coronary cannulation training. It was designed using computed tomography (CT) scan data of aorta, coronary, and heart models, and was printed by 3D printing with resin materials consisting of 75% or 85% clear resin and 25% or 15% flexible resin additive. The simulator was constructed with a camera above the simulator with a degree of LAO of 30°/0°, a display table, and an acrylic box. Twelve validators were interviewed for their expert opinions and analyzed by a qualitative method. They scored the simulator's suitability on a four-point Likert scale questionnaire. They described the simulator as having admirable values for all aspects (85.8%), curriculum suitability (92%), educational importance (94%), accuracy (83%), efficiency (78%), safety (87.5%), endurance (81.2%), aesthetics (80.7%), storage (85.4%), and affordability (85.8%).
Collapse
Affiliation(s)
- Helvina Vika Etami
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (H.V.E.); (D.W.A.)
- Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
| | - Rochmi Isnaini Rismawanti
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (R.I.R.); (V.A.N.H.)
| | - Vita Arfiana Nur Hanifah
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (R.I.R.); (V.A.N.H.)
| | - Herianto Herianto
- Center of Additive Manufacture and System, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (H.H.); (Y.Y.)
| | - Yarabisa Yanuar
- Center of Additive Manufacture and System, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (H.H.); (Y.Y.)
| | - Djoko Kuswanto
- Department of Industrial Design, Faculty of Creative Design and Digital Business, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia;
| | - Dyah Wulan Anggrahini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (H.V.E.); (D.W.A.)
- Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
| | - Putrika Prastuti Ratna Gharini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (H.V.E.); (D.W.A.)
- Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
| |
Collapse
|
42
|
Shine KM, Schlegel L, Ho M, Boyd K, Pugliese R. From the ground up: understanding the developing infrastructure and resources of 3D printing facilities in hospital-based settings. 3D Print Med 2022; 8:21. [PMID: 35821456 PMCID: PMC9275538 DOI: 10.1186/s41205-022-00147-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background 3D printing is a popular technology in many industries secondary to its ability to rapidly produce inexpensive, high fidelity models/products, mainly through layer-by-layer fusion of various substrate materials. In healthcare, 3D printing has garnered interest for its applications in surgery, simulation, education, and medical device development, and 3D printing facilities are now being integrated into hospital-based settings. Yet, little is known regarding the leadership, resources, outputs, and role of these new onsite entities. Methods The purpose of this research was to survey features of North American hospital-based 3D printing facilities to understand their design and utility in anticipation of future expansion. Hospital-based 3D printing labs were recruited through online special interest groups to participate via survey response. Anonymous, voluntary data were collected from 21 facilities over 9 weeks and reported/analyzed in aggregate. Results Of the respondents, > 50% were founded in the past 5 years and 80% in the past decade, indicating recent and rapid growth of such facilities. Labs were most commonly found within large, university-affiliated hospitals/health systems with administration frequently, but not exclusively, through radiology departments, which was shown to enhance collaboration. All groups reported collaborating with other medical specialties/departments and image segmentation as part of the workflow, showing widespread interest in high fidelity, personalized medicine applications. Lab leadership was most often multidisciplinary, with physicians present on nearly all leadership teams. Budgets, personnel, and outputs varied among groups, however, all groups reported engagement in multiple 3D printing applications. Conclusion This preliminary study provides a foundation for understanding the unique nature of hospital-based 3D printing labs. While there is much to learn about such in-house facilities, the data obtained reveal important baseline characteristics. Further research is indicated to validate these early findings and create a detailed picture of the developing infrastructure of 3D printing in healthcare settings. Supplementary Information The online version contains supplementary material available at 10.1186/s41205-022-00147-7.
Collapse
Affiliation(s)
- Kristy M Shine
- Health Design Lab, Thomas Jefferson University, Philadelphia, USA. .,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA. .,Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, USA.
| | - Lauren Schlegel
- Health Design Lab, Thomas Jefferson University, Philadelphia, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Michelle Ho
- Health Design Lab, Thomas Jefferson University, Philadelphia, USA.,Department of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, USA
| | - Kaitlyn Boyd
- Health Design Lab, Thomas Jefferson University, Philadelphia, USA.,College of Engineering, Drexel University, Philadelphia, USA
| | - Robert Pugliese
- Health Design Lab, Thomas Jefferson University, Philadelphia, USA.,Innovation Pillar, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
43
|
Buj-Corral I, Sanz-Fraile H, Ulldemolins A, Tejo-Otero A, Domínguez-Fernández A, Almendros I, Otero J. Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications. Polymers (Basel) 2022; 14:polym14132754. [PMID: 35808799 PMCID: PMC9268876 DOI: 10.3390/polym14132754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/06/2023] Open
Abstract
Three-dimensional printing is revolutionizing the development of scaffolds due to their rapid-prototyping characteristics. One of the most used techniques is fused filament fabrication (FFF), which is fast and compatible with a wide range of polymers, such as PolyLactic Acid (PLA). Mechanical properties of the 3D printed polymeric scaffolds are often weak for certain applications. A potential solution is the development of composite materials. In the present work, metal-PLA composites have been tested as a material for 3D printing scaffolds. Three different materials were tested: copper-filled PLA, bronze-filled PLA, and steel-filled PLA. Disk-shaped samples were printed with linear infill patterns and line spacing of 0.6, 0.7, and 0.8 mm, respectively. The porosity of the samples was measured from cross-sectional images. Biocompatibility was assessed by culturing Human Bone Marrow-Derived Mesenchymal Stromal on the surface of the printed scaffolds. The results showed that, for identical line spacing value, the highest porosity corresponded to bronze-filled material and the lowest one to steel-filled material. Steel-filled PLA polymers showed good cytocompatibility without the need to coat the material with biomolecules. Moreover, human bone marrow-derived mesenchymal stromal cells differentiated towards osteoblasts when cultured on top of the developed scaffolds. Therefore, it can be concluded that steel-filled PLA bioprinted parts are valid scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Irene Buj-Corral
- Department of Mechanical Engineering, School of Engineering of Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (A.T.-O.); (A.D.-F.)
- Correspondence: (I.B.-C.); (J.O.)
| | - Héctor Sanz-Fraile
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (A.U.); (I.A.)
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (A.U.); (I.A.)
| | - Aitor Tejo-Otero
- Department of Mechanical Engineering, School of Engineering of Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (A.T.-O.); (A.D.-F.)
| | - Alejandro Domínguez-Fernández
- Department of Mechanical Engineering, School of Engineering of Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (A.T.-O.); (A.D.-F.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (A.U.); (I.A.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (A.U.); (I.A.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Correspondence: (I.B.-C.); (J.O.)
| |
Collapse
|
44
|
Grimaldo Ruiz O, Rodriguez Reinoso M, Ingrassia E, Vecchio F, Maniero F, Burgio V, Civera M, Bitan I, Lacidogna G, Surace C. Design and Mechanical Characterization Using Digital Image Correlation of Soft Tissue-Mimicking Polymers. Polymers (Basel) 2022; 14:2639. [PMID: 35808685 PMCID: PMC9269014 DOI: 10.3390/polym14132639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Present and future anatomical models for biomedical applications will need bio-mimicking three-dimensional (3D)-printed tissues. These would enable, for example, the evaluation of the quality-performance of novel devices at an intermediate step between ex-vivo and in-vivo trials. Nowadays, PolyJet technology produces anatomical models with varying levels of realism and fidelity to replicate organic tissues. These include anatomical presets set with combinations of multiple materials, transitions, and colors that vary in hardness, flexibility, and density. This study aims to mechanically characterize multi-material specimens designed and fabricated to mimic various bio-inspired hierarchical structures targeted to mimic tendons and ligaments. A Stratasys® J750™ 3D Printer was used, combining the Agilus30™ material at different hardness levels in the bio-mimicking configurations. Then, the mechanical properties of these different options were tested to evaluate their behavior under uni-axial tensile tests. Digital Image Correlation (DIC) was used to accurately quantify the specimens' large strains in a non-contact fashion. A difference in the mechanical properties according to pattern type, proposed hardness combinations, and matrix-to-fiber ratio were evidenced. The specimens V, J1, A1, and C were selected as the best for every type of pattern. Specimens V were chosen as the leading combination since they exhibited the best balance of mechanical properties with the higher values of Modulus of elasticity (2.21 ± 0.17 MPa), maximum strain (1.86 ± 0.05 mm/mm), and tensile strength at break (2.11 ± 0.13 MPa). The approach demonstrates the versatility of PolyJet technology that enables core materials to be tailored based on specific needs. These findings will allow the development of more accurate and realistic computational and 3D printed soft tissue anatomical solutions mimicking something much closer to real tissues.
Collapse
Affiliation(s)
- Oliver Grimaldo Ruiz
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Mariana Rodriguez Reinoso
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Elena Ingrassia
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Federico Vecchio
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
| | - Filippo Maniero
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Vito Burgio
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Marco Civera
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| | - Ido Bitan
- Stratasys Headquarters, 1 Holtzman St. Science Park, Rehovot P.O. Box 2496, Israel;
| | - Giuseppe Lacidogna
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
| | - Cecilia Surace
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy; (O.G.R.); (M.R.R.); (E.I.); (F.V.); (F.M.); (V.B.); (G.L.); (C.S.)
- Laboratory of Bio-Inspired Nanomechanics “Giuseppe Maria Pugno”, Politecnico di Torino, Corso Duca Degli Abruzzi 24. P. C., 10129 Turin, Italy
| |
Collapse
|
45
|
Weaver E, O'Hagan C, Lamprou DA. The sustainability of emerging technologies for use in pharmaceutical manufacturing. Expert Opin Drug Deliv 2022; 19:861-872. [PMID: 35732275 DOI: 10.1080/17425247.2022.2093857] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Sustainability within the pharmaceutical industry is becoming a focal point for many companies, to improve the longevity and social perception of the industry. Both additive manufacturing (AM) and microfluidics (MFs) are continuously progressing, so are far from their optimization in terms of sustainability; hence, it is the aim of this review to highlight potential gaps alongside their beneficial features. Discussed throughout this review also will be an in-depth discussion on the environmental, legal, economic, and social particulars relating to these emerging technologies. AREAS COVERED Additive manufacturing (AM) and microfluidics (MFs) are discussed in depth within this review, drawing from up-to-date literature relating to sustainability and circular economies. This applies to both technologies being utilized for therapeutic and analytical purposes within the pharmaceutical industry. EXPERT OPINION It is the role of emerging technologies to be at the forefront of promoting a sustainable message by delivering plausible environmental standards whilst maintaining efficacy and economic viability. AM processes are highly customizable, allowing for their optimization in terms of sustainability, from reducing printing time to reducing material usage by removing supports. MFs too are supporting sustainability via reduced material wastage and providing a sustainable means for point of care analysis.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
46
|
Singh SP, Qureshi FM, Baig F. Commentary: Accessing 3D Printed Vascular Phantoms for Procedural Simulation. Front Surg 2022; 9:910447. [PMID: 35784934 PMCID: PMC9247311 DOI: 10.3389/fsurg.2022.910447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
|
47
|
He Y, Liu Y, Yin B, Wang D, Wang H, Yao P, Zhou J. Application of Finite Element Analysis Combined With Virtual Computer in Preoperative Planning of Distal Femoral Fracture. Front Surg 2022; 9:803541. [PMID: 35273994 PMCID: PMC8902074 DOI: 10.3389/fsurg.2022.803541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background Distal femoral fractures are increasing with an aging population. The computer-assisted preoperative planning has great potential, but there are no preoperative plans to determine appropriate fixation methods for distal femoral fractures on an individual basis. The aims of this study are: (1) to describe the technique of finite element analysis combined with computer-assisted preoperative planning to determine a fixation method for distal femoral fractures and (2) to evaluate the intra-operative realization of this technology and the clinical outcomes based on it for distal femoral fractures. Materials and Methods Between January 2017 and January 2020, 31 patients with distal femoral fractures treated by open reduction and internal fixation were included and randomly divided into two groups based on preoperative planning methods: conventional group (n = 15) and computer-assisted group (n = 16). Firstly, how to determine the most appropriate plate and screw length and placement in the preoperative planning of distal femoral fractures was described. The time taken for preoperative planning for different fracture types in the computer-assisted group was then analyzed. Finally, intraoperative and postoperative parameters were compared between the conventional and computer-assisted groups, assessing operative time, intraoperative blood loss, number of intraoperative fluoroscopies, days of hospital stay, Visual Analog Scale for Pain Score (VAS), and Knee Society Score (KSS). Results Mean total planning time for 33-A, 33-B, and 33-C fractures in computer-assisted group were 194.8 ± 6.49, 163.71 ± 9.22, and 237 ± 5.33 min, respectively. Compared with the conventional group, the patients in the computer-assisted group had less blood loss, fewer fluoroscopic images, and shorter operation time (p < 0.05). However, there was no significant difference in the hospitalization days, KSS score and VAS score between the two groups (p > 0.05). Conclusions The results of this study show that finite element combined with computer-assisted preoperative planning can effectively help surgeons to make accurate and clinically relevant preoperative planning for distal femoral fractures, especially in the selection of appropriate plate length and screw positioning.
Collapse
|
48
|
Rowson B. 2021 ABME Paper Awards. Ann Biomed Eng 2022. [DOI: 10.1007/s10439-022-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Pereira HR, Barzegar M, Hamadelseed O, Esteve AV, Munuera J. 3D surgical planning of pediatric tumors: a review. Int J Comput Assist Radiol Surg 2022; 17:805-816. [PMID: 35043366 DOI: 10.1007/s11548-022-02557-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND 3D surgical planning for the treatment of tumors in pediatrics using different neuroimaging methods is witnessing an accelerating and dynamic development. Until now, there have been many reports on the use of 3D printing techniques in different aspects of medical practice. Pediatric tumors mainly in the abdomen are among the most medical specialties that benefit from using this technique. The purpose of the current study is to review published literature regarding 3D surgical planning and its applications in the treatment of pediatric tumors and present challenges facing these techniques. MATERIALS AND METHODS A completed review of the available literature was performed, effect sizes from published studies were investigated, and results are presented concerning the use of 3D surgical planning in the management of pediatric tumors, most of which are abdominal. RESULTS According to the reviewed literature, our study comes to the point that 3D printing is a valuable technique for planning surgery for pediatric tumors in heart, brain, abdomen and bone. MRI and CT are the most common used techniques for preparing 3D printing models, as indicated by the reviewed reports. The reported studies have indicated that 3D printing allows the understanding of the anatomy of complex tumor cases, the simulation using surgical instruments, and medical and family education. The materials, 3D printing techniques and costs to be used depend on the application. CONCLUSION This technology can be applied in clinical practice with a wide spectrum, using various tools and a range of available 3D printing methods. Incorporating 3D printing into an effective application can be a gratifying process with the use of a multidisciplinary team and rapid advances, so more experience would be needed with this technique to show a clinical gain.
Collapse
Affiliation(s)
- Helena Rico Pereira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da, Universidade de Lisboa, Campo Grande, C1 Building, 3rd Floor, 1749-016, Lisboa, Portugal. .,Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-517, Caparica, Portugal.
| | - Mojtaba Barzegar
- Intelligent Quantitative Biomedical Imaging (Iqbmi), 1955748171, Tehran, Iran.,School of Medical Physics and Medical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 71348-14336, Shiraz, Iran.,Society for Brain Mapping and Therapeutics (SBMT), Los Angeles, CA, 90272, USA
| | - Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Arnau Valls Esteve
- 3D4H Unit, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.,Innovation Department, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain
| | - Josep Munuera
- Imatge Diagnòstica i Terapéutica, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.,Servei de Diagnòstic per la Imatge, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Spain.,3D4H unit, Institut de Recerca Sant Joan de Déu, PasseigSant Joan deDéu 2, 08950, Esplugues deLlobregat, Spain
| |
Collapse
|
50
|
Borghese G, Coppola F, Raimondo D, Raffone A, Travaglino A, Bortolani B, Lo Monaco S, Cercenelli L, Maletta M, Cattabriga A, Casadio P, Mollo A, Golfieri R, Paradisi R, Marcelli E, Seracchioli R. 3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:86. [PMID: 35056394 PMCID: PMC8777715 DOI: 10.3390/medicina58010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Background and Objective: In recent years, 3D printing has been used to support surgical planning or to guide intraoperative procedures in various surgical specialties. An improvement in surgical planning for recto-sigmoid endometriosis (RSE) excision might reduce the high complication rate related to this challenging surgery. The aim of this study was to build novel presurgical 3D models of RSE nodules from magnetic resonance imaging (MRI) and compare them with intraoperative findings. Materials and Methods: A single-center, observational, prospective, cohort, pilot study was performed by enrolling consecutive symptomatic women scheduled for minimally invasive surgery for RSE between November 2019 and June 2020 at our institution. Preoperative MRI were used for building 3D models of RSE nodules and surrounding pelvic organs. 3D models were examined during multi-disciplinary preoperative planning, focusing especially on three domains: degree of bowel stenosis, nodule's circumferential extension, and bowel angulation induced by the RSE nodule. After surgery, the surgeon was asked to subjectively evaluate the correlation of the 3D model with the intra-operative findings and to express his evaluation as "no correlation", "low correlation", or "high correlation" referring to the three described domains. Results: seven women were enrolled and 3D anatomical virtual models of RSE nodules and surrounding pelvic organs were generated. In all cases, surgeons reported a subjective "high correlation" with the surgical findings. Conclusion: Presurgical 3D models could be a feasible and useful tool to support surgical planning in women with recto-sigmoidal endometriotic involvement, appearing closely related to intraoperative findings.
Collapse
Affiliation(s)
- Giulia Borghese
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| | - Francesca Coppola
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (S.L.M.); (A.C.); (R.G.)
| | - Diego Raimondo
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| | - Antonio Raffone
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, 80138 Naples, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | - Barbara Bortolani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (B.B.); (L.C.); (E.M.)
| | - Silvia Lo Monaco
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (S.L.M.); (A.C.); (R.G.)
| | - Laura Cercenelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (B.B.); (L.C.); (E.M.)
| | - Manuela Maletta
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| | - Arrigo Cattabriga
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (S.L.M.); (A.C.); (R.G.)
| | - Paolo Casadio
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| | - Antonio Mollo
- Gynecology and Obstetrics Unit, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Rita Golfieri
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (S.L.M.); (A.C.); (R.G.)
| | - Roberto Paradisi
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| | - Emanuela Marcelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (B.B.); (L.C.); (E.M.)
| | - Renato Seracchioli
- Division of Gynecology and Human Reproduction Physiopathology, Department of Medical and Surgical Sciences (DIMEC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Univeristaria di Bologna, S. Orsola Hospital, University of Bologna, 40138 Bologna, Italy; (G.B.); (M.M.); (P.C.); (R.P.); (R.S.)
| |
Collapse
|