1
|
Stark NEP, Begonia MT, Jung C, Rowson S. How Shell Add-On Products Influence Varsity Football Helmet Performance? Ann Biomed Eng 2024; 52:2923-2931. [PMID: 39356379 PMCID: PMC11511751 DOI: 10.1007/s10439-024-03627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE The study purpose was to investigate the laboratory-based performance of three commercially available shell add-on products under varsity-level impact conditions. METHODS Pendulum impact tests were conducted at multiple locations (front, front boss, rear, side) and speeds (3.1, 4.9, 6.4 m/s) using two helmet models. Tests were performed with a single add-on configuration for baseline comparisons and a double add-on configuration to simulate collisions with both players wearing shell add-ons. A linear mixed-effect model was used to evaluate peak linear acceleration (PLA), peak rotational acceleration (PRA), and concussion risk, which was calculated from a bivariate injury risk function, based on shell add-on and test configuration. RESULTS All shell add-ons decreased peak head kinematics and injury risk compared to controls, with the Guardian NXT producing the largest reductions (PLA: 7.9%, PRA: 14.1%, Risk: 34.1%) compared to the SAFR Helmet Cover (PLA: 4.5%, PRA: 9.3%, Risk: 24.7%) and Guardian XT (PLA: 3.2%, PRA: 5.0%, Risk: 15.5%). The same trend was observed in the double add-on test configuration. However, the Guardian NXT (PLA: 17.1%; PRA: 11.5%; Risk: 62.8%) and SAFR Helmet Cover (PLA: 12.2%; PRA: 9.1%; Risk: 52.2%) produced larger reductions in peak head kinematics and injury risk than the Guardian XT (PLA: 5.7%, PRA: 2.2%, Risk: 21.8%). CONCLUSION In laboratory-based assessments that simulated varsity-level impact conditions, the Guardian NXT was associated with larger reductions in PLA, PRA, and injury risk compared to the SAFR Helmet Cover and Guardian XT. Although shell add-ons can enhance head protection, helmet model selection should be prioritized.
Collapse
Affiliation(s)
- Nicole E-P Stark
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, USA
| | - Mark T Begonia
- Institute for Critical Technology and Applied Science, Virginia Tech, 325 Stanger St., Kelly Hall 120, Blacksburg, VA, 24061, USA.
| | - Caitlyn Jung
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, USA
| |
Collapse
|
2
|
Sinnott AM, Collins CL, Boltz AJ, Robison HJ, Pinapaka H, Mihalik JP. Comparison of Kinematics for Head Impacts Initiated by Helmets and Shoulder Pads Among High School American Football Athletes. Ann Biomed Eng 2024; 52:2678-2686. [PMID: 38507140 DOI: 10.1007/s10439-024-03485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Helmets and shoulder pads are required equipment intended to protect American football athletes by attenuating collision forces during participation. Surprisingly, research differentiating kinematics from head impacts initiated by helmets from those initiated by shoulder pads among adolescent athletes has not been completed. The current study's purpose was to determine the effects of equipment on head impact kinematics. Sixty-nine male American football athletes from three high schools wore helmets equipped with Head Impact Telemetry (HIT) System instrumentation to quantify peak linear (g) and rotational (rad/s2) accelerations. Data were extracted for video-confirmed impacts during two competitions. Separate multivariable linear regressions using ordinary least squares were conducted to determine if equipment type (helmet vs. shoulder pad) was associated with log-transformed linear and rotational accelerations. In total, 1150 video-confirmed impacts involved helmet (N = 960) or shoulder pad (N = 190) initiated contact. Linear (p = 0.809) and rotational (p = 0.351) acceleration were not associated with equipment type. Head impact kinematics were similar between impacts initiated by either helmets or shoulder pads and suggests an opponent's shoulder pads and helmet can deliver comparable forces to the struck player. Equipment manufacturers may need to consider the unintended role shoulder pads may contribute to head injury risk.
Collapse
Affiliation(s)
- Aaron M Sinnott
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, 2207 Stallings-Evans Sports Medicine Center, Campus Box 8700, Chapel Hill, NC, 27599-8700, USA
| | - Christy L Collins
- Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN, USA
| | - Adrian J Boltz
- Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN, USA
| | - Hannah J Robison
- Datalys Center for Sports Injury Research and Prevention, Indianapolis, IN, USA
| | - Hari Pinapaka
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, 2207 Stallings-Evans Sports Medicine Center, Campus Box 8700, Chapel Hill, NC, 27599-8700, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, 2207 Stallings-Evans Sports Medicine Center, Campus Box 8700, Chapel Hill, NC, 27599-8700, USA.
| |
Collapse
|
3
|
Frazer L, Kote V, Hostetler Z, Davis M, Nicolella DP. A comparative analysis of dimensionality reduction surrogate modeling techniques for full human body finite element impact simulations. Comput Methods Biomech Biomed Engin 2024; 27:1250-1263. [PMID: 37458327 DOI: 10.1080/10255842.2023.2236747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2024]
Abstract
Fast-running surrogate computational models (simpler computational models) have been successfully used to replace time-intensive finite element models. However, it is unclear how well they perform in accurately and efficiently replicating complex, full human body finite element models. Here we survey several surrogate modeling techniques and assess their accuracy in predicting full strain fields of tissues of interest during a highly dynamic behind armor blunt trauma impact to the liver. We found that coupling dimensionality reduction on the high-dimensional output space (principal component analysis or autoencoders) with machine learning techniques (Gaussian Process Regression or multi-output neural networks) provides a framework capable of accurately and efficiently replacing complex full human body models. It was found that these surrogate models can successfully predict the strain fields (<10% average strain error) of select tissues during a nonlinear impact event but careful consideration should be given to element parsing and modeling technique.
Collapse
Affiliation(s)
- Lance Frazer
- Musculoskeletal Biomechanics Section, Materials Engineering Department, Southwest Research Institute, San Antonio, TX, USA
| | - Vivek Kote
- Musculoskeletal Biomechanics Section, Materials Engineering Department, Southwest Research Institute, San Antonio, TX, USA
| | | | | | - Daniel P Nicolella
- Musculoskeletal Biomechanics Section, Materials Engineering Department, Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
4
|
Sinnott AM, Chandler MC, Van Dyke C, Mincberg DL, Pinapaka H, Lauck BJ, Mihalik JP. Efficacy of Guardian Cap Soft-Shell Padding on Head Impact Kinematics in American Football: Pilot Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6991. [PMID: 37947549 PMCID: PMC10650906 DOI: 10.3390/ijerph20216991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Sport-related concussion prevention strategies in collision sports are a primary interest for sporting organizations and policy makers. After-market soft-shell padding purports to augment the protective capabilities of standard football helmets and to reduce head impact severity. We compared head impact kinematics [peak linear acceleration (PLA) and peak rotational acceleration (PRA)] in athletes wearing Guardian Cap soft-shell padding to teammates without soft-shell padding. Ten Division I college football players were enrolled [soft-shell padding (SHELL) included four defensive linemen and one tight end; non-soft-shell (CONTROL) included two offensive linemen, two defensive linemen, and one tight end]. Participants wore helmets equipped with the Head Impact Telemetry System to quantify PLA (g) and PRA (rad/s2) during 14 practices. Two-way ANOVAs were conducted to compare log-transformed PLA and PRA between groups across helmet location and gameplay characteristics. In total, 968 video-confirmed head impacts between SHELL (n = 421) and CONTROL (n = 547) were analyzed. We observed a Group x Stance interaction for PRA (F1,963 = 7.21; p = 0.007) indicating greater PRA by SHELL during 2-point stance and lower PRA during 3- or 4-point stances compared to CONTROL. There were no between-group main effects. Protective soft-shell padding did not reduce head impact kinematic outcomes among college football athletes.
Collapse
Affiliation(s)
- Aaron M. Sinnott
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| | - Madison C. Chandler
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| | - Charles Van Dyke
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| | - David L. Mincberg
- Campus Health Services, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hari Pinapaka
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| | - Bradley J. Lauck
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.M.S.); (H.P.)
| |
Collapse
|
5
|
Strong RW, Grashow R, Roberts AL, Passell E, Scheuer L, Terry DP, Cohan S, Pascual-Leone A, Weisskopf MG, Zafonte RD, Germine LT. Association of Retrospectively Reported Concussion Symptoms with Objective Cognitive Performance in Former American-Style Football Players. Arch Clin Neuropsychol 2023; 38:875-890. [PMID: 36861317 DOI: 10.1093/arclin/acad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Sustaining concussions has been linked to health issues later in life, yet evidence for associations between contact sports exposure and long-term cognitive performance is mixed. This cross-sectional study of former professional American-style football players tested the association of several measures of football exposure with later life cognitive performance, while also comparing the cognitive performance of former players to nonplayers. METHODS In total, 353 former professional football players (Mage = 54.3) completed both (1) an online cognitive test battery measuring objective cognitive performance and (2) a survey querying demographic information, current health conditions, and measures of past football exposure, including recollected concussion symptoms playing professional football, diagnosed concussions, years of professional play, and age of first football exposure. Testing occurred an average of 29 years after former players' final season of professional play. In addition, a comparison sample of 5,086 male participants (nonplayers) completed one or more cognitive tests. RESULTS Former players' cognitive performance was associated with retrospectively reported football concussion symptoms (rp = -0.19, 95% CI -0.09 to -0.29; p < 0.001), but not with diagnosed concussions, years of professional play, or age of first football exposure. This association could be due to differences in pre-concussion cognitive functioning, however, which could not be estimated based on available data. CONCLUSIONS Future investigations of the long-term outcomes of contact sports exposure should include measures of sports-related concussion symptoms, which were more sensitive to objective cognitive performance than other football exposure measures, including self-reported diagnosed concussions.
Collapse
Affiliation(s)
- Roger W Strong
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel Grashow
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eliza Passell
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Luke Scheuer
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Douglas P Terry
- Department of Neurologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Cohan
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
| | - Ross D Zafonte
- Football Players Health Study, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital and Spaulding Research Institute, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Sundaram V, Sundar V, Pearce AJ. Biomechanical characteristics of concussive and sub-concussive impacts in youth sports athletes: A systematic review and meta-analysis. J Sports Sci 2023:1-15. [PMID: 37393593 DOI: 10.1080/02640414.2023.2231317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to quantitatively investigate and report the biomechanical characteristics of concussive and sub-concussive impacts in youth sports. A systematic search was conducted in September 2022 to identify biomechanical impact studies in athletes ≤18 years of age. Twenty-six studies met the inclusion criteria for quantitative synthesis and analysis. DerSimonian Laird random effects model was used to pool data across the included studies. The pooled estimate of mean peak linear and rotational acceleration of concussive impacts in male youth athletes was 85.56 g (95% CI 69.34-101.79) and 4505.58 rad/s2 (95% CI 2870.28-6140.98), respectively. The pooled estimate of mean peak linear and rotational acceleration of sub-concussive impacts in youth athletes was 22.89 g (95% CI 20.69-25.08) and 1290.13 rad/s2 (95% CI 1050.71-1529.55), respectively. A male vs female analysis in sub-concussive impacts revealed higher linear and rotational acceleration in males and females, respectively. This is the first study to report on impact data in both sexes of youth athletes. Disparity in kinematic impact values suggests future research should aim for standardised measures to reduce heterogeneity in data. Despite this, the data reveals notable impact data that youth athletes are exposed to, suggesting modifications may be required to reduce long-term neurological risks.
Collapse
Affiliation(s)
- Vasanth Sundaram
- Department of Sports Biomechanics and Kinesiology, Tamil Nadu Physical Education and Sports University, Chennai, India
| | - Viswanath Sundar
- Physical Education and Sports Science, Visva-Bharati University, West Bengal, India
| | - Alan J Pearce
- College of Science, Health, and Engineering, La Trobe University, Bundoora, Melbourne, Australia
| |
Collapse
|
7
|
Nocera A, Sbrollini A, Romagnoli S, Morettini M, Gambi E, Burattini L. Physiological and Biomechanical Monitoring in American Football Players: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3538. [PMID: 37050597 PMCID: PMC10098592 DOI: 10.3390/s23073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
American football is the sport with the highest rates of concussion injuries. Biomedical engineering applications may support athletes in monitoring their injuries, evaluating the effectiveness of their equipment, and leading industrial research in this sport. This literature review aims to report on the applications of biomedical engineering research in American football, highlighting the main trends and gaps. The review followed the PRISMA guidelines and gathered a total of 1629 records from PubMed (n = 368), Web of Science (n = 665), and Scopus (n = 596). The records were analyzed, tabulated, and clustered in topics. In total, 112 studies were selected and divided by topic in the biomechanics of concussion (n = 55), biomechanics of footwear (n = 6), biomechanics of sport-related movements (n = 6), the aerodynamics of football and catch (n = 3), injury prediction (n = 8), heat monitoring of physiological parameters (n = 8), and monitoring of the training load (n = 25). The safety of players has fueled most of the research that has led to innovations in helmet and footwear design, as well as improvements in the understanding and prevention of injuries and heat monitoring. The other important motivator for research is the improvement of performance, which has led to the monitoring of training loads and catches, and studies on the aerodynamics of football. The main gaps found in the literature were regarding the monitoring of internal loads and the innovation of shoulder pads.
Collapse
|
8
|
Approximating subject-specific brain injury models via scaling based on head-brain morphological relationships. Biomech Model Mechanobiol 2023; 22:159-175. [PMID: 36201071 DOI: 10.1007/s10237-022-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations.
Collapse
|
9
|
Consensus Head Acceleration Measurement Practices (CHAMP): Study Design and Statistical Analysis. Ann Biomed Eng 2022; 50:1346-1355. [PMID: 36253602 PMCID: PMC9652215 DOI: 10.1007/s10439-022-03101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Head impact measurement devices enable opportunities to collect impact data directly from humans to study topics like concussion biomechanics, head impact exposure and its effects, and concussion risk reduction techniques in sports when paired with other relevant data. With recent advances in head impact measurement devices and cost-effective price points, more and more investigators are using them to study brain health questions. However, as the field's literature grows, the variance in study quality is apparent. This brief paper aims to provide a high-level set of key considerations for the design and analysis of head impact measurement studies that can help avoid flaws introduced by sampling biases, false data, missing data, and confounding factors. We discuss key points through four overarching themes: study design, operational management, data quality, and data analysis.
Collapse
|
10
|
Beppi C, Penner M, Straumann D, Bögli SY. A non-invasive biomechanical model of mild TBI in larval zebrafish. PLoS One 2022; 17:e0268901. [PMID: 35622781 PMCID: PMC9140253 DOI: 10.1371/journal.pone.0268901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
A mild traumatic brain injury is a neurological dysfunction caused by biomechanical forces transmitted to the brain in physical impacts. The current understanding of the neuropathological cascade resulting in the manifested clinical signs and symptoms is limited due to the absence of sensitive brain imaging methods. Zebrafish are established models for the reproduction and study of neurobiological pathologies. However, all available models mostly recreate moderate-to-severe focal injuries in adult zebrafish. The present work has induced a mild brain trauma in larval zebrafish through a non-invasive biomechanical approach. A custom-made apparatus with a commercially available motor was employed to expose larvae to rapidly decelerating linear movements. The neurophysiological changes following concussion were assessed through behavioural quantifications of startle reflex locomotor distance and habituation metrics. Here we show that the injury was followed, within five minutes, by a transient anxiety state and CNS dysfunction manifested by increased startle responsivity with impaired startle habituation, putatively mirroring the human clinical sign of hypersensitivity to noise. Within a day after the injury, chronic effects arose, as evidenced by an overall reduced responsivity to sensory stimulation (lower amplitude and distance travelled along successive stimuli), reflecting the human post-concussive symptomatology. This study represents a step forward towards the establishment of a parsimonious (simple, less ethically concerning, yet sensitive) animal model of mild TBI. Our behavioural findings mimic aspects of acute and chronic effects of human concussion, which warrant further study at molecular, cellular and circuit levels. While our model opens wide avenues for studying the underlying cellular and molecular pathomechanisms, it also enables high-throughput testing of therapeutic interventions to accelerate post-concussive recovery.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Swiss Concussion Center, Schulthess Clinic, Zurich, Switzerland
- * E-mail:
| | - Marco Penner
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dominik Straumann
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Swiss Concussion Center, Schulthess Clinic, Zurich, Switzerland
| | - Stefan Yu Bögli
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Swiss Concussion Center, Schulthess Clinic, Zurich, Switzerland
| |
Collapse
|
11
|
Survey on Video-Based Biomechanics and Biometry Tools for Fracture and Injury Assessment in Sports. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work presents a survey literature review on biomechanics, specifically aimed at the study of existent biomechanical tools through video analysis, in order to identify opportunities for researchers in the field, and discuss future proposals and perspectives. Scientific literature (journal papers and conference proceedings) in the field of video-based biomechanics published after 2010 were selected and discussed. The most common application of the study of biomechanics using this technique is sports, where the most reported applications are american football, soccer, basketball, baseball, jumping, among others. These techniques have also been studied in a less proportion, in ergonomy, and injury prevention. From the revised literature, it is clear that biomechanics studies mainly focus on the analysis of angles, speed or acceleration, however, not many studies explore the dynamical forces in the joints. The development of video-based biomechanic tools for force analysis could provide methods for assessment and prediction of biomechanical force associated risks such as injuries and fractures. Therefore, it is convenient to start exploring this field. A few case studies are reported, where force estimation is performed via manual tracking in different scenarios. This demonstration is carried out using conventional manual tracking, however, the inclusion of similar methods in an automated manner could help in the development of intelligent healthcare, force prediction tools for athletes and/or elderly population. Future trends and challenges in this field are also discussed, where data availability and artificial intelligence models will be key to proposing new and more reliable methods for biomechanical analysis.
Collapse
|
12
|
McDevitt S, Hernandez H, Hicks J, Lowell R, Bentahaikt H, Burch R, Ball J, Chander H, Freeman C, Taylor C, Anderson B. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering (Basel) 2022; 9:33. [PMID: 35049742 PMCID: PMC8772827 DOI: 10.3390/bioengineering9010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Wearable technologies are emerging as a useful tool with many different applications. While these devices are worn on the human body and can capture numerous data types, this literature review focuses specifically on wearable use for performance enhancement and risk assessment in industrial- and sports-related biomechanical applications. Wearable devices such as exoskeletons, inertial measurement units (IMUs), force sensors, and surface electromyography (EMG) were identified as key technologies that can be used to aid health and safety professionals, ergonomists, and human factors practitioners improve user performance and monitor risk. IMU-based solutions were the most used wearable types in both sectors. Industry largely used biomechanical wearables to assess tasks and risks wholistically, which sports often considered the individual components of movement and performance. Availability, cost, and adoption remain common limitation issues across both sports and industrial applications.
Collapse
Affiliation(s)
- Sam McDevitt
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Haley Hernandez
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Jamison Hicks
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
| | - Russell Lowell
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
| | - Hamza Bentahaikt
- Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39765, USA;
| | - Reuben Burch
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - John Ball
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Charles Freeman
- Department of Human Sciences, Mississippi State University, Starkville, MS 39765, USA
| | | | | |
Collapse
|
13
|
Injury Metrics for Assessing the Risk of Acute Subdural Hematoma in Traumatic Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413296. [PMID: 34948905 PMCID: PMC8702226 DOI: 10.3390/ijerph182413296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes is a major public health problem. ASDHs are usually produced by loss of structural integrity of one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore, to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs are subjected during a potentially traumatic event (such as a traffic accident or a fall from height). Recently, new studies on CBVs have been published allowing much more accurate prediction of the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage metrics, which make more accurate predictions about the probability of occurrence of ASDH in road crashes. This would allow a better assessement of the effects of passive safety countermeasures and, consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics are based on partially obsolete data and measurements of the mechanical behavior of CBVs that have not been confirmed by subsequent studies. This paper proposes a revision of some existing metrics and constructs a new metric based on more accurate recent data on the mechanical failure of human CBVs.
Collapse
|
14
|
Iverson GL, Büttner F, Caccese JB. Age of First Exposure to Contact and Collision Sports and Later in Life Brain Health: A Narrative Review. Front Neurol 2021; 12:727089. [PMID: 34659092 PMCID: PMC8511696 DOI: 10.3389/fneur.2021.727089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
A controversial theory proposes that playing tackle football before the age of 12 causes later in life brain health problems. This theory arose from a small study of 42 retired National Football League (NFL) players, which reported that those who started playing tackle football at a younger age performed worse on selected neuropsychological tests and a word reading test. The authors concluded that these differences were likely due to greater exposure to repetitive neurotrauma during a developmentally sensitive maturational period in their lives. Several subsequent studies of current high school and collegiate contact/collision sports athletes, and former high school, collegiate, and professional tackle football players have not replicated these findings. This narrative review aims to (i) discuss the fundamental concepts, issues, and controversies surrounding existing research on age of first exposure (AFE) to contact/collision sport, and (ii) provide a balanced interpretation, including risk of bias assessment findings, of this body of evidence. Among 21 studies, 11 studies examined former athletes, 8 studies examined current athletes, and 2 studies examined both former and current athletes. Although the literature on whether younger AFE to tackle football is associated with later in life cognitive, neurobehavioral, or mental health problems in former NFL players is mixed, the largest study of retired NFL players (N = 3,506) suggested there was not a significant association between earlier AFE to organized tackle football and worse subjectively experienced cognitive functioning, depression, or anxiety. Furthermore, no published studies of current athletes show a significant association between playing tackle football (or other contact/collision sports) before the age of 12 and cognitive, neurobehavioral, or mental health problems. It is important to note that all studies were judged to be at high overall risk of bias, indicating that more methodologically rigorous research is needed to understand whether there is an association between AFE to contact/collision sports and later in life brain health. The accumulated research to date suggests that earlier AFE to contact/collision sports is not associated with worse cognitive functioning or mental health in (i) current high school athletes, (ii) current collegiate athletes, or (iii) middle-aged men who played high school football. The literature on former NFL players is mixed and does not, at present, clearly support the theory that exposure to tackle football before age 12 is associated with later in life cognitive impairment or mental health problems.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Fionn Büttner
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Jaclyn B. Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Brooks JS, Redgrift A, Champagne AA, Dickey JP. The Hammer and the Nail: Biomechanics of Striking and Struck Canadian University Football Players. Ann Biomed Eng 2021; 49:2875-2885. [PMID: 33893576 PMCID: PMC8510945 DOI: 10.1007/s10439-021-02773-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023]
Abstract
This study sought to evaluate head accelerations in both players involved in a football collision. Players on two opposing Canadian university teams were equipped with helmet mounted sensors during one game per season, for two consecutive seasons. A total of 276 collisions between 58 instrumented players were identified via video and cross-referenced with sensor timestamps. Player involvement (striking and struck), impact type (block or tackle), head impact location (front, back, left and right), and play type were recorded from video footage. While struck players did not experience significantly different linear or rotational accelerations between any play types, striking players had the highest linear and rotational head accelerations during kickoff plays (p ≤ .03). Striking players also experienced greater linear and rotational head accelerations than struck players during kickoff plays (p = .001). However, struck players experienced greater linear and rotational accelerations than striking players during kick return plays (p ≤ .008). Other studies have established that the more severe the head impact, the greater risk for injury to the brain. This paper's results highlight that kickoff play rule changes, as implemented in American college football, would decrease head impact exposure of Canadian university football athletes and make the game safer.
Collapse
Affiliation(s)
- Jeffrey S. Brooks
- grid.39381.300000 0004 1936 8884School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond St., London, ON Canada
| | - Adam Redgrift
- grid.39381.300000 0004 1936 8884School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond St., London, ON Canada
| | - Allen A. Champagne
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada ,grid.410356.50000 0004 1936 8331School of Medicine, Queen’s University, Kingston, ON Canada
| | - James P. Dickey
- grid.39381.300000 0004 1936 8884School of Kinesiology, Faculty of Health Sciences, Western University, 1151 Richmond St., London, ON Canada
| |
Collapse
|