1
|
Win SY, Chavalitsarot M, Eawsakul K, Ongtanasup T, Nasongkla N. Encapsulation of Cyclosporine A-Loaded PLGA Nanospheres in Alginate Microbeads for Anti-Inflammatory Application. ACS OMEGA 2024; 9:6901-6911. [PMID: 38371838 PMCID: PMC10870416 DOI: 10.1021/acsomega.3c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
The controlled release of cyclosporine A (CsA) microencapsulated in alginate microbeads is a novel drug delivery system for the treatment of inflammatory diseases. In this study, CsA-loaded nanospheres encapsulated in alginate microbeads were applied to evaluate their controlled release profile and anti-inflammatory activity. Initially, a controlled-release drug delivery system was created by encapsulating CsA-loaded PLGA nanospheres within alginate microbeads. CsA-loaded PLGA nanospheres had a diameter of 418.70 ± 59.08 nm, a zeta potential of -22 ± 0.57 mV, and a polydispersity index of 0.517 ± 0.010. CsA-loaded nanosphere-encapsulated alginate microbeads were stable for 37 days. After encapsulating CsA-loaded PLGA nanospheres in the alginate microbeads, 5.60% of CsA was released after 24 h, and approximately 85.90% of the drugs were diffused until day 64. The cytotoxic and anti-inflammatory properties of the CsA released from the microbeads were evaluated in vitro using a murine macrophage cell line (RAW 264.7 cells). CsA-loaded nanosphere-encapsulated alginate microbeads inhibited 39.47 ± 1.71% of nitric oxide production from the RAW 264.7 cells on day 3, whereas nanosphere-encapsulated alginate microbeads inhibited 18.45 ± 1.56% only. CsA released from CsA-loaded nanosphere-encapsulated alginate microbeads had a RAW cell viability of 82.73 ± 5.58% on day 3 compared to 87.59 ± 0.69% of nanosphere-encapsulated alginate microbeads. The efficacy of the CsA-loaded nanosphere-encapsulated alginate microbeads in protecting the immune system via a controlled drug delivery system was established through anti-inflammatory and cell viability evaluation. Based on this research, the controlled release of CsA-loaded nanosphere-encapsulated alginate microbeads provides an innovative treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Su Yee Win
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
- Thailand
Research Fund through the Royal Golden Jubilee Ph.D. Program, Phayathai, Bangkok 10400, Thailand
- Thailand
International Cooperation Agency (TICA), Thungsonghong Laksi District, Bangkok 10210, Thailand
| | - Mongkol Chavalitsarot
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Komgrit Eawsakul
- Department
of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tassanee Ongtanasup
- Department
of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Norased Nasongkla
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Yasamineh S, Kalajahi HG, Yasamineh P, Gholizadeh O, Youshanlouei HR, Matloub SK, Mozafari M, Jokar E, Yazdani Y, Dadashpour M. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther 2022; 13:257. [PMID: 35715852 PMCID: PMC9204679 DOI: 10.1186/s13287-022-02944-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
The SARS-COV-2 virus has infected the world at a very high rate by causing COVID-19 disease. Nearly 507 million individuals have been infected with this virus, with approximately 1.2% of these patients being dead, indicating that this virus has been out of control in many countries. While researchers are investigating how to develop efficient drugs and vaccines versus the COVID-19 pandemic, new superseded treatments have the potential to reduce mortality. The recent application of mesenchymal stem cells (MSCs) in a subgroup of COVID-19 patients with acute respiratory distress has created potential benefits as supportive therapy for this viral contagion in patients with acute conditions and aged patients with severe pneumonia. Consequently, within this overview, we discuss the role and therapeutic potential of MSCs and the challenges ahead in using them to treat viral infections, with highlighting on COVID-19 infection.
Collapse
Affiliation(s)
- Saman Yasamineh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Rahmani Youshanlouei
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Mozafari
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Jokar
- Department of Medical Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|