1
|
Parameshwar PK, Vaillancourt C, Moraes C. Engineering placental trophoblast fusion: A potential role for biomechanics in syncytialization. Placenta 2024; 157:50-54. [PMID: 38448351 DOI: 10.1016/j.placenta.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The process by which placental trophoblasts fuse to form the syncytiotrophoblast around the chorionic villi is not fully understood. Mechanical features of the in vivo and in vitro culture environments have recently emerged as having the potential to influence fusion efficiency, and considering these mechanical cues may ultimately allow predictive control of trophoblast syncytialization. Here, we review recent studies that suggest that biomechanical factors such as shear stress, tissue stiffness, and dimensionally-related stresses affect villous trophoblast fusion efficiency. We then discuss how these stimuli might arise in vivo and how they can be incorporated in cultures to study and enhance villous trophoblast fusion. We believe that this mechanical paradigm will provide novel insight into manipulating the syncytialization process to better engineer improved models, understand disease progression, and ultimately develop novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Cathy Vaillancourt
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7B 1B7, Canada; Department of Obstetrics and Gynecology, Université de Montréal, and Research Center Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Nord-de-l'Île-de-Montréal, Montréal, QC, H3L 1K5, Canada
| | - Christopher Moraes
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada; Department of Chemical Engineering, McGill University, Montréal, QC, H3A 0C5, Canada; Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
2
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
3
|
Kim S, Lam PY, Richardson LS, Menon R, Han A. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biomed Microdevices 2024; 26:32. [PMID: 38963644 PMCID: PMC11624963 DOI: 10.1007/s10544-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Kim S, Lam PY, Richardson L, Menon R, Han A. A Dynamic Flow Fetal Membrane Organ-on-a-Chip System for Modeling the Effects of Amniotic Fluid Motion. RESEARCH SQUARE 2024:rs.3.rs-4372328. [PMID: 38798515 PMCID: PMC11118697 DOI: 10.21203/rs.3.rs-4372328/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fetal membrane(amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. An amnion membrane (AM) organ-on-chip (OOC) was utilized to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 hours flow culture to mimic fluid motion. Static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control for pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to CK-18 ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a flow culture environment is not necessary to mimic any in utero physiologic cellular conditions of fetal membrane-derived cells.
Collapse
|
5
|
Inohaya A, Chigusa Y, Takakura M, Io S, Kim MA, Matsuzaka Y, Yasuda E, Ueda Y, Kawamura Y, Takamatsu S, Mogami H, Takashima Y, Mandai M, Kondoh E. Shear stress in the intervillous space promotes syncytial formation of iPS cells-derived trophoblasts†. Biol Reprod 2024; 110:300-309. [PMID: 37930227 DOI: 10.1093/biolre/ioad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
The intervillous space of human placenta is filled with maternal blood, and villous trophoblasts are constantly exposed to the shear stress generated by maternal blood pressure and flow throughout the entire gestation period. However, the effects of shear stress on villous trophoblasts and their biological significance remain unknown. Here, using our recently established naïve human pluripotent stem cells-derived cytotrophoblast stem cells (nCTs) and a device that can apply arbitrary shear stress to cells, we investigated the impact of shear stress on early-stage trophoblasts. After 72 h of exposure to 10 dyn/cm2 shear stress, nCTs became fused and multinuclear, and mRNA expression of the syncytiotrophoblast (ST) markers, such as glial cell missing 1, endogenous retrovirus group W member 1 envelope, chorionic gonadotropin subunit beta 3, syndecan 1, pregnancy specific beta-1-glycoprotein 3, placental growth factor, and solute carrier family 2 member 1 were significantly upregulated compared to static conditions. Immunohistochemistry showed that shear stress increased fusion index, human chorionic gonadotropin secretion, and human placental lactogen secretion. Increased microvilli formation on the surface of nCTs under flow conditions was detected using scanning electron microscopy. Intracellular cyclic adenosine monophosphate significantly increased under flow conditions. Moreover, transcriptome analysis of nCTs subjected to shear stress revealed that shear stress upregulated ST-specific genes and downregulated CT-specific genes. Collectively, these findings indicate that shear stress promotes the differentiation of nCTs into ST.
Collapse
Affiliation(s)
- Asako Inohaya
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Io
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Ueda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|