1
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
2
|
Prosdocimi F, de Farias ST. Major evolutionary transitions before cells: A journey from molecules to organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:11-24. [PMID: 38971326 DOI: 10.1016/j.pbiomolbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Basing on logical assumptions and necessary steps of complexification along biological evolution, we propose here an evolutionary path from molecules to cells presenting four ages and three major transitions. At the first age, the basic biomolecules were formed and become abundant. The first transition happened with the event of a chemical symbiosis between nucleic acids and peptides worlds, which marked the emergence of both life and the process of organic encoding. FUCA, the first living process, was composed of self-replicating RNAs linked to amino acids and capable to catalyze their binding. The second transition, from the age of FUCA to the age of progenotes, involved the duplication and recombination of proto-genomes, leading to specialization in protein production and the exploration of protein to metabolite interactions in the prebiotic soup. Enzymes and metabolic pathways were incorporated into biology from protobiotic reactions that occurred without chemical catalysts, step by step. Then, the fourth age brought origin of organisms and lineages, occurring when specific proteins capable to stackle together facilitated the formation of peptidic capsids. LUCA was constituted as a progenote capable to operate the basic metabolic functions of a cell, but still unable to interact with lipid molecules. We present evidence that the evolution of lipid interaction pathways occurred at least twice, with the development of bacterial-like and archaeal-like membranes. Also, data in literature suggest at least two paths for the emergence of DNA biosynthesis, allowing the stabilization of early life strategies in viruses, archaeas and bacterias. Two billion years later, the eukaryotes arouse, and after 1,5 billion years of evolution, they finally learn how to evolve multicellularity via tissue specialization.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
3
|
Skene KR. Systems theory, thermodynamics and life: Integrated thinking across ecology, organization and biological evolution. Biosystems 2024; 236:105123. [PMID: 38244715 DOI: 10.1016/j.biosystems.2024.105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
In this paper we explore the relevance and integration of system theory and thermodynamics in terms of the Earth system. It is proposed that together, these fields explain the evolution, organization, functionality and directionality of life on Earth. We begin by summarizing historical and current thinking on the definition of life itself. We then investigate the evidence for a single unit of life. Given that any definition of life and its levels of organization are intertwined, we explore how the Earth system is structured and functions from an energetic perspective, by outlining relevant thermodynamic theory relating to molecular, metabolic, cellular, individual, population, species, ecosystem and biome organization. We next investigate the fundamental relationships between systems theory and thermodynamics in terms of the Earth system, examining the key characteristics of self-assembly, self-organization (including autonomy), emergence, non-linearity, feedback and sub-optimality. Finally, we examine the relevance of systems theory and thermodynamics with reference to two specific aspects: the tempo and directionality of evolution and the directional and predictable process of ecological succession. We discuss the importance of the entropic drive in understanding altruism, multicellularity, mutualistic and antagonistic relationships and how maximum entropy production theory may explain patterns thought to evidence the intermediate disturbance hypothesis.
Collapse
Affiliation(s)
- Keith R Skene
- Biosphere Research Institute, Angus, United Kingdom.
| |
Collapse
|
4
|
José MV, Morgado ER, Bobadilla JR. Groups of Symmetries of the Two Classes of Synthetases in the Four-Dimensional Hypercubes of the Extended Code Type II. Life (Basel) 2023; 13:2002. [PMID: 37895385 PMCID: PMC10607949 DOI: 10.3390/life13102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) originated from an ancestral bidirectional gene (mirror symmetry), and through the evolution of the genetic code, the twenty aaRSs exhibit a symmetrical distribution in a 6-dimensional hypercube of the Standard Genetic Code. In this work, we assume a primeval RNY code and the Extended Genetic RNA code type II, which includes codons of the types YNY, YNR, and RNR. Each of the four subsets of codons can be represented in a 4-dimensional hypercube. Altogether, these 4 subcodes constitute the 6-dimensional representation of the SGC. We identify the aaRSs symmetry groups in each of these hypercubes. We show that each of the four hypercubes contains the following sets of symmetries for the two known Classes of synthetases: RNY: dihedral group of order 4; YNY: binary group; YNR: amplified octahedral group; and RNR: binary group. We demonstrate that for each hypercube, the group of symmetries in Class 1 is the same as the group of symmetries in Class 2. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Eberto R. Morgado
- Facultad de Matemática, Física y Computación, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 50100, Cuba;
| | - Juan R. Bobadilla
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
5
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
6
|
Prosdocimi F, de Farias ST. Origin of life: Drawing the big picture. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:28-36. [PMID: 37080436 DOI: 10.1016/j.pbiomolbio.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells. Along this path, we aim to provide a brief, though comprehensive theoretical model that will consider the following steps: (i) how nucleotides and other biomolecules could be made prebiotically in specific prebiotic refuges; (ii) how the first molecules of RNAs were formed; (iii) how the proto-peptidyl transferase center was built by the concatenation of proto-tRNAs; (iv) how the ribosome and the genetic code could be structured; (v) how progenotes could live and reproduce as "naked" ribonucleoprotein molecules; (vi) how peptides started to bind molecules in the prebiotic soup allowing biochemical pathways to evolve from those bindings; (vii) how genomes got bigger by the symbiotic relationship of progenotes and lateral transference of genetic material; (viii) how the progenote LUCA has been formed by assembling most biochemical routes; (ix) how the first virion capsids probably emerged and evolved; (x) how phospholipid membranes emerged probably twice by the evolution of lipid-binding proteins; (xi) how DNA synthesis have been formed in parallel in Bacteria and Archaea; and, finally, (xii) how DNA-based cells of Bacteria and Archaeabacteria have been constituted. The picture provided is conjectural and present epistemological gaps. Future research will help to advance into the elucidation of gaps and confirmation/refutation of current statements.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
7
|
Prosdocimi F, de Farias ST. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. Biosystems 2022; 220:104751. [DOI: 10.1016/j.biosystems.2022.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
8
|
Aristov VV, Buchelnikov AS, Nechipurenko YD. The Use of the Statistical Entropy in Some New Approaches for the Description of Biosystems. ENTROPY (BASEL, SWITZERLAND) 2022; 24:172. [PMID: 35205467 PMCID: PMC8871276 DOI: 10.3390/e24020172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/13/2023]
Abstract
Some problems of describing biological systems with the use of entropy as a measure of the complexity of these systems are considered. Entropy is studied both for the organism as a whole and for its parts down to the molecular level. Correlation of actions of various parts of the whole organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a more complex structure and lower statistical entropy. For a multicellular organism, entropy is much lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli test scheme. Particular attention is paid to the qualitative and quantitative relationship between the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic model of metabolism. corresponding to Schrödinger's concept of the maintenance biosystems by "negentropy feeding", is proposed. This model allows calculating the nonequilibrium local entropy and comparing it with the local equilibrium entropy inherent in non-living matter.
Collapse
Affiliation(s)
- Vladimir V. Aristov
- Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, Vavilova Str. 40, 119333 Moscow, Russia
| | - Anatoly S. Buchelnikov
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Universitetskaya Str. 33, 299053 Sevastopol, Russia;
| | - Yury D. Nechipurenko
- Laboratory of DNA–Protein Recognition, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia;
| |
Collapse
|
9
|
Farias STD, Prosdocimi F. RNP-world: The ultimate essence of life is a ribonucleoprotein process. Genet Mol Biol 2022; 45:e20220127. [PMID: 36190700 PMCID: PMC9528728 DOI: 10.1590/1678-4685-gmb-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
The fundamental essence of life is based on process of interaction between nucleic acids and proteins. In a prebiotic world, amino acids, peptides, ions, and other metabolites acted in protobiotic routes at the same time on which RNAs performed catalysis and self-replication. Nevertheless, it was only when nucleic acids and peptides started to interact together in an organized process that life emerged. First, the ignition was sparked with the formation of a Peptidyl Transferase Center (PTC), possibly by concatenation of proto-tRNAs. This molecule that would become the catalytic site of ribosomes started a process of self-organization that gave origin to a protoorganism named FUCA, a ribonucleic ribosomal-like apparatus capable to polymerize amino acids. In that sense, we review hypotheses about the origin and early evolution of the genetic code. Next, populations of open biological systems named progenotes were capable of accumulating and exchanging genetic material, producing the first genomes. Progenotes then evolved in two paths: some presented their own ribosomes and others used available ribosomes in the medium to translate their encoded information. At some point, two different types of organisms emerged from populations of progenotes: the ribosome-encoding organisms (cells) and the capsid-encoding organisms (viruses).
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Universidade Federal da Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life, UK
| | | |
Collapse
|