1
|
Li Z, Xing X, Gomez-Salazar MA, Xu M, Negri S, Xu J, James AW. Pharmacological inhibition of DKK1 promotes spine fusion in an ovariectomized rat model. Bone 2022; 162:116456. [PMID: 35688363 DOI: 10.1016/j.bone.2022.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteoporosis is common in patients undergoing spine surgery, and carries a considerable risk of adverse outcomes. New methods to positively influence bone regeneration and spine fusion under osteoporotic conditions would be impactful. Neutralizing anti-Dickkopf-1 (DKK1) antibodies has been used as a bone anabolic agent, and recently reported by our group to aid in stem cell-mediated appendicular bone regeneration. Here, a small molecule designed as a DKK1 inhibitor, WAY-262611, was used to induce posterolateral spine fusion in an ovariectomized rat model. In vitro, pharmacological inhibition of DKK1 enhanced osteogenesis and Wnt signaling activity among rat bone marrow-derived stem/stromal cells (BMSCs). In vivo, systemic treatment with WAY-262611 promoted both chondrogenesis and osteogenesis within the spinal fusion site, and ultimately led to significant improvements in lumbar fusion as assessed by XR, μCT, histology and manual palpation assessments. No significant effect on osteoclast numbers or fusion site angiogenesis was detected, suggesting a primary direct effect on mesenchymal cells of the implantation site. Finally, evidence from human stem/stromal cells further demonstrated that pharmacologic inhibition of DKK1 promoted osteogenic differentiation in vitro. Taken together, our results suggest that targeting DKK1 promotes local bone formation and suggests potential clinical value for osteoporotic bone repair.
Collapse
Affiliation(s)
- Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | | | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA; Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA.
| |
Collapse
|
2
|
Wu Q, Shi X, Pan Y, Liao X, Xu J, Gu X, Yu W, Chen Y, Yu G. The Chemopreventive Role of β-Elemene in Cholangiocarcinoma by Restoring PCDH9 Expression. Front Oncol 2022; 12:874457. [PMID: 35903688 PMCID: PMC9314746 DOI: 10.3389/fonc.2022.874457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background β-Elemene, an effective anticancer component isolated from the Chinese herbal medicine Rhizoma Zedoariae, has been proved to have therapeutic potential against multiple cancers by extensive clinical trials and experimental research. However, its preventive role in cholangiocarcinoma (CCA) and the mechanisms of action of β-elemene on CCA need to be further investigated. Methods A thioacetamide (TAA)-induced pre-CCA animal model was well-established, and a low dosage of β-elemene was intragastrically (i.g.) administered for 6 months. Livers were harvested and examined histologically by a deep-learning convolutional neural network (CNN). cDNA array was used to analyze the genetic changes of CCA cells following β-elemene treatment. Immunohistochemical methods were applied to detect β-elemene-targeted protein PCDH9 in CCA specimens, and its predictive role was analyzed. β-Elemene treatment at the cellular or animal level was performed to test the effect of this traditional Chinese medicine on CCA cells. Results In the rat model of pre-CCA, the ratio of cholangiolar proliferation lesions was 0.98% ± 0.72% in the control group, significantly higher than that of the β-elemene (0. 47% ± 0.30%) groups (p = 0.0471). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the top 10 pathways affected by β-elemene treatment were associated with energy metabolism, and one was associated with the cell cycle. β-Elemene inactivated a number of oncogenes and restored the expression of multiple tumor suppressors. PCDH9 is a target of β-elemene and displays an important role in predicting tumor recurrence in CCA patients. Conclusions These findings proved that long-term use of β-elemene has the potential to interrupt the progression of CCA and improve the life quality of rats. Moreover, β-elemene exerted its anticancer potential partially by restoring the expression of PCDH9.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xintong Shi
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| |
Collapse
|
3
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
4
|
Siddiqui AZ, Almhanna K. Beyond Chemotherapy, PD-1, and HER-2: Novel Targets for Gastric and Esophageal Cancer. Cancers (Basel) 2021; 13:4322. [PMID: 34503132 PMCID: PMC8430615 DOI: 10.3390/cancers13174322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Together, gastric cancer and esophageal cancer (EC) possess two of the highest incidence rates amongst all cancers. They exhibit poor prognoses in which the 5-year survival rate is dismal. In addition to cytotoxic chemotherapy, treatment efforts have been geared toward targeting human epidermal growth factor receptor 2 (HER-2), vascular endothelial growth factor (VEGF), and programmed death ligand-1 (PD-1). Although ample success has been recorded with these agents, gastric and esophageal cancer remain lethal, and further research into potential treatment alternatives is needed. In this article, we will review some of the targets at the forefront of investigation such as claudin, Dickkopf-related protein 1 (DKK-1), fibroblast growth factor receptor (FGFR), and matrix metalloproteinases (MMPs). These innovative target pathways are in the midst of clinical trials to be implemented in the treatment algorithm for this patient population. Ultimately, exploiting the oncogenic tendencies of these potential biomarkers creates an opportunity for precise treatment and improved prognosis for these cancers. Lastly, research aimed toward reversing PD-1 antibodies resistance by combining it with other novel agents or other treatment modalities is underway in order to expand existing treatment options for this patient population.
Collapse
Affiliation(s)
- Ali Zubair Siddiqui
- University of Mississippi Medical Center, University of Mississippi School of Medicine, Jackson, MS 39216, USA
| | - Khaldoun Almhanna
- The Brown University Oncology Research Group, The Rhode Island Hospital/Lifespan Cancer Institute, Providence, RI 02903, USA;
| |
Collapse
|
5
|
Zhou YX, Wang X, Pang DQ, Wang YM, Bai J, Tian F, Han D, Shi S, Hu L. Nomogram Incorporating the WNT/β-Catenin Signaling Pathway for Predicting the Survival of Cutaneous Melanoma. Int J Gen Med 2021; 14:2751-2761. [PMID: 34188529 PMCID: PMC8236283 DOI: 10.2147/ijgm.s309616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background Accurate prediction of the survival of cutaneous melanoma (CM) permits the selection of the optimal treatment. Currently, the TNM stage has limitations in predicting the survival of CM. There is evidence that the WNT/β-catenin signaling pathway has the potential to predict the CM prognosis. However, it still needs further investigation. Objective This study aims to establish a nomogram incorporating the WNT/β-catenin signaling pathway to improve the predicted accuracy of the overall survival (OS) of CM. Methods Two hundred and eighty CM patients were recruited and followed up. The clinicopathological characteristics and the key genes of the WNT/β-catenin signaling pathway (VEGF, β-catenin, and DKK1) were chosen as potential variables associated with the OS. In the training cohort (n = 190), a nomogram was built to estimate the 1-, 3-, and 5-year OS, and its discriminations and calibrations were valid by the verification cohort (n = 90). The predicted accuracies of the nomogram with or without the Wnt/β-catenin pathway and TNM stage were compared. Results A nomogram integrating independent risk factors (ulceration, lymph node metastasis, distant metastasis, Breslow thickness, dermal mitoses, β-catenin, VEGF, and DKK1), which were evaluated by a multivariate analysis, was constructed to predict the 1-, 3-, and 5-year OS of CM patients. Good discrimination and calibration were obtained regardless of the training or validation datasets. The nomogram incorporating the Wnt/β-catenin signaling pathway showed the highest accuracy [area under the curve (AUC)=0.914, 0.852, 0.785] compared with the nomogram without the Wnt/β-catenin signaling pathway (AUC=0.693, 0.640, 0.615) and the TNM stage (AUC=0.726, 0.693, 0.673). Conclusion The prognostic value of the established nomogram incorporating the WNT/β-catenin signaling pathway was better than it without WNT/β-catenin signaling pathway and TNM stage, which might be beneficial in the development of optimal treatment options.
Collapse
Affiliation(s)
- Yu-Xin Zhou
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Xin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - De-Quan Pang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Ying-Man Wang
- Department of Radiation and Chemotherapy Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Jing Bai
- Department of Pharmacology, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Fei Tian
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Duo Han
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Shuwei Shi
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| | - Lei Hu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China
| |
Collapse
|
6
|
Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis. Int J Mol Sci 2021; 22:ijms22083896. [PMID: 33918807 PMCID: PMC8069486 DOI: 10.3390/ijms22083896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy.
Collapse
|
7
|
Milutinovic S, Abe J, Godkin A, Stein JV, Gallimore A. The Dual Role of High Endothelial Venules in Cancer Progression versus Immunity. Trends Cancer 2021; 7:214-225. [PMID: 33132107 PMCID: PMC9213382 DOI: 10.1016/j.trecan.2020.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Secondary lymphoid organs (SLOs) are important initiators and regulators of immunity. To carry out this function, the blood vasculature must deliver oxygen and nutrients and recruit circulating lymphocytes into the SLO parenchyma, where they encounter cognate antigen. High endothelial venules (HEVs) are specialised postcapillary venules that specifically serve this function and are found in all SLOs except spleen. It is becoming clear that alterations to HEV network density and/or morphology can result in immune activation or, as recently implicated, in providing an exit route for tumour cell dissemination and metastases. In this review, the structural plasticity of HEVs, the regulatory pathways underpinning this plasticity, and the relevance of these pathways to cancer progression will be discussed.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Andrew Godkin
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Fraungruber P, Kaltofen T, Heublein S, Kuhn C, Mayr D, Burges A, Mahner S, Rathert P, Jeschke U, Trillsch F. G Protein-Coupled Estrogen Receptor Correlates With Dkk2 Expression and Has Prognostic Impact in Ovarian Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:564002. [PMID: 33679613 PMCID: PMC7933595 DOI: 10.3389/fendo.2021.564002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Wnt pathway modulator Dickkopf 2 (Dkk2) and signaling of the G protein-coupled estrogen receptor (GPER) seem to have essential functions in numerous cancer types. For epithelial ovarian cancer (EOC), it has not been proven if either Dkk2 or the GPER on its own have an independent impact on overall survival (OS). So far, the correlation of both factors and their clinical significance has not systematically been investigated before. Methods Expression levels of Dkk2 were immunohistochemically analyzed in 156 patient samples from different histologic subtypes of EOC applying the immune-reactivity score (IRS). Expression analyses were correlated with clinical and pathological parameters to assess for prognostic relevance. Data analysis was performed using Spearman's correlations, Kruskal-Wallis-test and Kaplan-Meier estimates. Results Highest Dkk2 expression of all subtypes was observed in clear cell carcinoma. In addition, Dkk2 expression differed significantly (p<0.001) between low and high grade serous ovarian cancer. A significant correlation of Dkk2 with the cytoplasmic GPER expression was noted (p=0.001) but not for the nuclear estrogen receptor alpha (ERα) or beta (ERβ). Patients exhibiting both, high expression Dkk2 (IRS>4) and GPER (IRS>8), had a significantly better overall survival compared to patients with low expression (61 months vs. 33 months; p=0.024). Conclusion Dkk2 and GPER expression correlates in EOC and combined expression of both is associated with improved OS. These findings underline the clinical significance of both pathways and indicate a possible prognostic impact as well as a potential for treatment strategies addressing interactions between estrogen and Wnt signaling in ovarian cancer.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/mortality
- Cohort Studies
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/mortality
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Middle Aged
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Prognosis
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Patricia Fraungruber
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sabine Heublein
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, University Stuttgart, Stuttgart, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
9
|
Liu X, Shi D, Guo L, Zhou X, Shang M, Sun X, Meng D, Zhao Y, Li J. Echogenic, Ultrasound-Sensitive Chitosan Nanodroplets for Spatiotemporally Controlled DKK-2 Gene Delivery to Prostate Cancer Cells. Int J Nanomedicine 2021; 16:421-432. [PMID: 33488078 PMCID: PMC7815087 DOI: 10.2147/ijn.s286474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose To synthesize echogenic chitosan/perfluorohexane nanodroplets (CNDs) for DKK-2 gene delivering in a spatiotemporally controlled manner in vitro. Methods The characteristics, contrast-enhanced ultrasound imaging, DNA binding and DNase protection capacity, DKK-2 gene transfection and effects on LNCaP cells of these CNDs were investigated. Results The obtained CNDs showed positive surface charges and could attract the genetic cargo with negative surface charges to form nanocomplexes. Agarose gel electrophoresis confirmed binding of the CNDs and pDNA. DKK-2 pDNA-loaded CNDs, in combination with ultrasound, ruptured and released DKK-2 pDNA, entering LNCaP cells through nano-scale pores in the cell membrane, which further reduced the proliferation of LNCaP cells. Conclusion These stable and safe CNDs may be a promising choice to achieve efficient ultrasound-mediated gene delivery to specific tissues in a spatiotemporally controlled manner.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
10
|
Summers ME, Richmond BW, Kropski JA, Majka SA, Bastarache JA, Hatzopoulos AK, Bylund J, Ghosh M, Petrache I, Foronjy RF, Geraghty P, Majka SM. Balanced Wnt/Dickkopf-1 signaling by mesenchymal vascular progenitor cells in the microvascular niche maintains distal lung structure and function. Am J Physiol Cell Physiol 2021; 320:C119-C131. [PMID: 33085496 PMCID: PMC7846975 DOI: 10.1152/ajpcell.00277.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
The well-described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as in regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases (CLDs) including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor cells (MVPCs), microvascular endothelial cells (MVECs), and smooth muscle cells (SMCs) within the microvascular niche have not been elucidated. In this study, we show that knockdown of DKK1 in Abcg2pos lung mouse adult tissue resident MVPCs alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure. To complement the in vivo mouse modeling, we also identified cell- or disease-specific responses to DKK1, in primary lung chronic obstructive pulmonary disease (COPD) MVPCs, COPD MVECs, and SMCs, supporting a paradoxical disease-specific response of cells to well-characterized factors. Cell responses to DKK1 were dose dependent and correlated with varying expressions of the DKK1 receptor, CKAP4. These data demonstrate that DKK1 expression is necessary to maintain the microvascular niche whereas its effects are context specific. They also highlight DKK1 as a regulatory candidate to understand the role of Wnt and DKK1 signaling between cells of the microvascular niche during tissue homeostasis and during the development of chronic lung diseases.
Collapse
Affiliation(s)
- Megan E Summers
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Bradley W Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine or Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine or Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Sarah A Majka
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine or Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Antonis K Hatzopoulos
- Division of Allergy, Pulmonary and Critical Care Medicine or Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jeffery Bylund
- Division of Allergy, Pulmonary and Critical Care Medicine or Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Moumita Ghosh
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Irina Petrache
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Susan M Majka
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, Pulmonary & Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| |
Collapse
|
11
|
Negri S, Wang Y, Sono T, Qin Q, Hsu GCY, Cherief M, Xu J, Lee S, Tower RJ, Yu V, Piplani A, Meyers CA, Broderick K, Lee M, James AW. Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Transl Med 2020; 10:610-622. [PMID: 33377628 PMCID: PMC7980212 DOI: 10.1002/sctm.20-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Progenitor cells from adipose tissue are able to induce bone repair; however, inconsistent or unreliable efficacy has been reported across preclinical and clinical studies. Soluble inhibitory factors, such as the secreted Wnt signaling antagonists Dickkopf-1 (DKK1), are expressed to variable degrees in human adipose-derived stem cells (ASCs), and may represent a targetable "molecular brake" on ASC mediated bone repair. Here, anti-DKK1 neutralizing antibodies were observed to increase the osteogenic differentiation of human ASCs in vitro, accompanied by increased canonical Wnt signaling. Human ASCs were next engrafted into a femoral segmental bone defect in NOD-Scid mice, with animals subsequently treated with systemic anti-DKK1 or isotype control during the repair process. Human ASCs alone induced significant but modest bone repair. However, systemic anti-DKK1 induced an increase in human ASC engraftment and survival, an increase in vascular ingrowth, and ultimately improved bone repair outcomes. In summary, anti-DKK1 can be used as a method to augment cell-mediated bone regeneration, and could be particularly valuable in the contexts of impaired bone healing such as osteoporotic bone repair.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert J Tower
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Yu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abhi Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Lee
- School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Li C, Long Q, Zhang D, Li J, Zhang X. Identification of a four-gene panel predicting overall survival for lung adenocarcinoma. BMC Cancer 2020; 20:1198. [PMID: 33287749 PMCID: PMC7720456 DOI: 10.1186/s12885-020-07657-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the most frequently diagnosed carcinoma and the leading cause of cancer-related mortality. Although molecular targeted therapy and immunotherapy have made great progress, the overall survival (OS) is still poor due to a lack of accurate and available prognostic biomarkers. Therefore, in this study we aimed to establish a multiple-gene panel predicting OS for lung adenocarcinoma. Methods We obtained the mRNA expression and clinical data of lung adenocarcinoma (LUAD) from TCGA database for further integrated bioinformatic analysis. Lasso regression and Cox regression were performed to establish a prognosis model based on a multi-gene panel. A nomogram based on this model was constructed. The receiver operating characteristic (ROC) curve and the Kaplan–Meier curve were used to assess the predicted capacity of the model. The prognosis value of the multi-gene panel was further validated in TCGA-LUAD patients with EGFR, KRAS and TP53 mutation and a dataset from GEO. Gene set enrichment analysis (GSEA) was performed to explore potential biological mechanisms of a novel prognostic gene signature. Results A four-gene panel (including DKK1, GNG7, LDHA, MELTF) was established for LUAD prognostic indicator. The ROC curve revealed good predicted performance in both test cohort (AUC = 0.740) and validation cohort (AUC = 0.752). Each patient was calculated a risk score according to the model based on the four-gene panel. The results showed that the risk score was an independent prognostic factor, and the high-risk group had a worse OS compared with the low-risk group. The nomogram based on this model showed good prediction performance. The four-gene panel was still good predictors for OS in LUAD patients with TP53 and KRAS mutations. GSEA revealed that the four genes may be significantly related to the metabolism of genetic material, especially the regulation of cell cycle pathway. Conclusion Our study proposed a novel four-gene panel to predict the OS of LUAD, which may contribute to predicting prognosis accurately and making the clinical decisions of individual therapy for LUAD patients.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qizhong Long
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Danni Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xianming Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
13
|
Liu Y, Li Q, Tang D, Li M, Zhao P, Yang W, Shu L, Wang J, He Z, Li Y, Wang F. SNHG17 promotes the proliferation and migration of colorectal adenocarcinoma cells by modulating CXCL12-mediated angiogenesis. Cancer Cell Int 2020; 20:566. [PMID: 33292246 PMCID: PMC7690009 DOI: 10.1186/s12935-020-01621-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal adenocarcinoma (CRA) is one of the leading causes of cancer-related deaths in the world. Long non-coding RNAs (lncRNAs) have been implicated to be effective regulators in the disease course of human cancers, including CRA. Small nucleolar RNA host gene 17 (SNHG17) belongs to lncRNAs, and it has been reported in breast cancer and gastric cancer. However, the function of SNHG17 and its mechanism in CRA progression remain largely unknown. In this study, we attended to shedding some light on the role of SNHG17 in CRA. Methods RT-qPCR was used to assess SNHG17 expression in CRA cells. CCK-8 assay, colony formation and transwell assay were carried out to detect the regulatory effect of SNHG17 silencing on CRA cell proliferation and migration. The angiogenesis of SNHG7-downregulated CRA cells was analyzed by tube formation assay. Mechanism experiments were conducted to identify the interaction between miR-23a-3p and SNHG17 or C-X-C motif chemokine ligand 12 (CXCL12). Results SNHG17 possessed with high expression in CRA cells. Knockdown of SNHG17 caused the inhibition on CRA cell proliferation and migration. SNHG17 promoted CRA cell proliferation and migration by sponging miR-23a-3p to upregulate CXCL12. Conclusion SNHG17 promotes the proliferation and migration of CRA cells by inhibiting miR-23a-3p to modulate CXCL12-mediated angiogenesis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China. .,National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Qinshan Li
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Dongxin Tang
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China
| | - Mengxing Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Wenxiu Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Liping Shu
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Zhixu He
- National & Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, Guizhou, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563006, Guizhou, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| | - Feiqing Wang
- Department of Science and Education, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
14
|
Ge C, Zhu X, Niu X, Zhang B, Chen L. A transcriptome profile in gallbladder cancer based on annotation analysis of microarray studies. Mol Med Rep 2020; 23:25. [PMID: 33179115 PMCID: PMC7673323 DOI: 10.3892/mmr.2020.11663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 06/25/2020] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present study was to identify aberrantly expressed genes for gallbladder cancer based on the annotation analysis of microarray studies and to explore their potential functions. Differential gene expression was investigated in cholesterol polyps, gallbladder adenoma and gallbladder cancer using microarrays. Subsequently, microarray results were comprehensively analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the affected biological processes or pathways. Differentially expressed genes (DEGs) of cholesterol polyps, gallbladder adenoma and gallbladder cancer were identified. Following comprehensive analysis, 14 genes were found to be differentially expressed in the gallbladder wall of both gallbladder cancer and gallbladder adenoma. The 20 most significantly upregulated genes were only upregulated in the gallbladder wall of gallbladder cancer, but not in the gallbladder wall of cholesterol polyps and gallbladder adenoma. In addition, 182 DEGs were upregulated in the gallbladder wall of gallbladder adenoma compared with the gallbladder wall of cholesterol polyps. A total of 20 most significant DEGs were found in both the tumor and gallbladder wall of gallbladder cancer. In addition, the most significant DEGs that were identified were only upregulated in the tumor of gallbladder cancer. GO and KEGG analysis indicated that the aforementioned DEGs could participate in numerous biological processes or pathways associated with the development of gallbladder cancer. The present findings will help improve the current understanding of tumorigenesis and the development of gallbladder cancer.
Collapse
Affiliation(s)
- Chunlin Ge
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuan Zhu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingye Zhang
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lijie Chen
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
15
|
|
16
|
Hu J, Wang Z, Chen Z, Li A, Sun J, Zheng M, Wu J, Shen T, Qiao J, Li L, Li B, Wu D, Xiao Q. DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer. Biomed Pharmacother 2020; 127:110229. [PMID: 32559853 PMCID: PMC7523634 DOI: 10.1016/j.biopha.2020.110229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
There are limited options for targeted therapies for colorectal cancer (CRC). Anti-EGFR therapy is limited to CRC without KRAS mutations. Even worse, most of CRC are refractory to currently immune checkpoint blockade. DKK2, which is upregulated in CRC, was recently found to suppress host immune responses, and its blockage effectively impeded tumor progression in benign genetic CRC models in our previous study. Here, our recent study demonstrated that in human CRC tumor samples expressing high levels of DKK2, DKK2 blockade caused stronger activation of tumor infiltrating CD8+ T cells in ex vivo culture. Intriguingly, we observed a correlation of high DKK2 expression with increased lymph node metastasis prevalence in these CRC patients as well. Furthermore, in a mouse genetic CRC model with mutations in APC and KRAS, which more closely mimics advanced human CRC, we confirmed the tumor inhibitory effect of DKK2 blockade, which significantly retarded tumor progression and extended survival, with increased immune effector cell activation and reduced angiogenesis. Based on this, we performed a combined administration of DKK2 blockade with sub-optimal anti-VEGFR treatment and observed a synergetic effect on suppressing tumor angiogenesis and progression, as well as extending survival, better than those of every single therapy. Thus, this study provides further evidence for the potential therapeutic application of DKK2 blockade in the clinical treatment of human CRC.
Collapse
Affiliation(s)
- Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengxi Chen
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Li
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jibo Wu
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianli Shen
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States; Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ju Qiao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States
| | - Lin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States.
| | - Qian Xiao
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Jaschke N, Hofbauer LC, Göbel A, Rachner TD. Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett 2020; 482:1-7. [PMID: 32251706 DOI: 10.1016/j.canlet.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (DKK-1) is a well-established inhibitor of canonical Wnt-signaling that critically participates in the regulation of bone formation and has been implicated in the development and progression of bone metastases. While the skeleton was originally considered the sole site of DKK-1 synthesis, it has now become clear that the molecule is also highly expressed in T-cells, platelets and multiple cancer cells. In the past years, several new functions of DKK-1 in angiogenesis, cancer cell biology, immune homeostasis and inflammation have been revealed. These novel insights have paved the way for clinical trials investigating the efficacy of anti-DKK-1 antibodies in a variety of different malignancies, most of which are currently still ongoing. In this review, we discuss the evolution and recent advances in DKK-1 research and highlight clinical implications of the available knowledge on the molecule, especially in cancer. Finally, we emphasize outstanding questions and provide an outlook on potential future studies that will aid in further improving our understanding of the pleiotropic roles of DKK-1 in health and disease.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Papasavvas E, Kossenkov AV, Azzoni L, Zetola NM, Mackiewicz A, Ross BN, Fair M, Vadrevu S, Ramogola-Masire D, Sanne I, Firnhaber C, Montaner LJ. Gene expression profiling informs HPV cervical histopathology but not recurrence/relapse after LEEP in ART-suppressed HIV+HPV+ women. Carcinogenesis 2019; 40:225-233. [PMID: 30364933 DOI: 10.1093/carcin/bgy149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022] Open
Abstract
Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). Three distinct gene expression signatures identified were able to segregate: (i) HR+ HPV and CIN1/2/3, (ii) HR HPV-free and cervical histopathology-free and (iii) HR+ HPV and cervical histopathology-free. Immune activation and neoplasia-associated genes (n = 272 genes; e.g. IL-1A, IL-8, TCAM1, POU4F1, MCM2, SMC1B, CXCL6, MMP12) were a feature of cancer precursor dysplasia within HR HPV infection. No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Livio Azzoni
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Nicola M Zetola
- The Botswana-UPenn Partnership, Department of Radiation Oncology, Gaborone, Botswana.,The University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA, USA
| | - Agnieszka Mackiewicz
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Brian N Ross
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Matthew Fair
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Surya Vadrevu
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Right To Care, Johannesburg, South Africa
| | - Luis J Montaner
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| |
Collapse
|
19
|
Dickkopf 2-Expressing Adenovirus Increases the Survival of Random-Pattern Flaps and Promotes Vasculogenesis in a Rat Model. Ann Plast Surg 2019; 84:588-594. [PMID: 31800554 DOI: 10.1097/sap.0000000000002109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dickkopf 2 (DKK2) has important roles in vertebrate development; it inhibits Wnt signaling-related processes, such as axial patterning, limb development, somitogenesis, and eye formation. However, DKK2 also acts as a Wnt signaling agonist. Dickkopf 2, induced during endothelial cell morphogenesis, promotes angiogenesis in cultured human endothelial cells. In this study, we explored the effect of DKK2-expressing adenovirus on random-pattern flaps using a rodent model. METHODS A DKK2-expressing (dE1-RGD/DKK2) adenovirus was generated and 20 Sprague-Dawley rats were randomly divided into 2 groups: a DKK2 group and a control group. Each group was intradermally injected with 1 × 10 plaque-forming units of DKK2-expressing adenovirus (DKK2 group) or control virus (control group) 48 hours before and immediately before surgery. Then, random-pattern dorsal cutaneous flaps of 3 × 9 cm were elevated. Flap survival rates and cutaneous blood flow were measured over time, and immunohistochemical staining was performed 10 days after surgery to detect CD31 and vascular endothelial growth factor (VEGF). RESULTS Immunofluorescence staining confirmed the expression of DKK2 in the DKK2 group. The flap survival rate was higher in the DKK2 group (80.0 ± 4.49%) than in the control group (57.5 ± 4.21%; P < 0.05). Blood flow to the most distal compartment was higher in the DKK2 group than the control group during the early postoperative period. Although vascular density was greater in the DKK2 group, there was no difference in the VEGF concentration between groups. CONCLUSIONS The findings of the present study suggest that the DKK2-expressing adenovirus increases the survival of the random-pattern cutaneous flap independently of VEGF. The administration of the DKK2-expressing adenovirus into elevated skin flaps increased the number of capillaries and blood flow, thereby improving skin flap survival.
Collapse
|
20
|
Chen S, Lv L, Zhan Z, Wang X, You Z, Luo X, You H. Silencing of long noncoding RNA SRRM2-AS exerts suppressive effects on angiogenesis in nasopharyngeal carcinoma via activating MYLK-mediated cGMP-PKG signaling pathway. J Cell Physiol 2019; 235:7757-7768. [PMID: 31742692 DOI: 10.1002/jcp.29382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) play a crucial role in several malignances, involving nasopharyngeal carcinoma (NPC), a heterogeneous disease. This study investigated mechanism of serine/arginine repetitive matrix protein 2-alternative splicing (SRRM2-AS) in NPC cell proliferation, differentiation, and angiogenesis. Initially, differentially expressed lncRNAs were screened out via microarray analysis. Vascular endothelial growth factor (VEGF) protein positive rate and microvessel density (MVD) were determined in NPC and adjacent tissues. NPC CNE-2 cells were treated with a series of vector and small interfering RNA to explore the effect of SRRM2-AS in NPC. The target relationship between myosin light chain kinase (MYLK) and SRRM2-AS was verified. Levels of SRRM2-AS, MYLK, cGMP, PKG, VEGF, PCNA, Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase 3 were determined after transfection. Finally, the effect of SRRM2-AS on cell proliferation, colony formation, angiogenesis, cell cycle, and apoptosis in NPC was evaluated. SRRM2-AS was highly expressed and MYLK was poorly expressed in NPC tissues. VEGF protein positive rate and MVD were elevated in NPC tissues. MYLK was confirmed to be a target gene of SRRM2-AS. Silencing of SRRM2-AS elevated levels of MYLK, cGMP, PKG, Bax, and Caspase 3, but decreased levels of VEGF, PCNA, Ki-67, and Bcl-2. Especially, silencing of SRRM2-AS suppressed cell proliferation, colony formation and angiogenesis, blocked cell cycle, and enhanced cell apoptosis in NPC. Our results suggested that silencing of SRRM2-AS protected against angiogenesis of NPC cells by upregulating MYLK and activating the cGMP-PKG signaling pathway, which provides a new target for NPC treatment.
Collapse
Affiliation(s)
- Shaoqing Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linrong Lv
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengyu Zhan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaolang Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenyu You
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Luo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haoyuan You
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Zhang J, Li WY, Yang Y, Yan LZ, Zhang SY, He J, Wang JX. LncRNA XIST facilitates cell growth, migration and invasion via modulating H3 histone methylation of DKK1 in neuroblastoma. Cell Cycle 2019; 18:1882-1892. [PMID: 31208278 PMCID: PMC6681787 DOI: 10.1080/15384101.2019.1632134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been confirmed to be aberrantly expressed and involved in the progression of neuroblastoma. This study aimed to explore the expression profile of lncRNA X-inactive specific transcript (XIST) and its functional involvement in neuroblastoma. In this study, the relative level of XIST in neuroblastoma tissues and cell lines was detected by qPCR, and DKK1 protein expression was determined using western blot. The effect of XIST on cell growth, invasion and migration in vitro and in tumorigenesis of neuroblastoma was assessed. The level of H3K27me3 in DKK1 promoter was analyzed with ChIP-qPCR. Interaction between XIST and EZH2 was verified by RNA immunoprecipitation (RIP) and RNA pull-down assay. XIST was significantly upregulated in neuroblastoma tissues (n = 30) and cells lines, and it was statistically associated with the age and International Neuroblastoma Staging System (INSS) staging in neuroblastoma patients. Downregulation of XIST suppressed the growth, migration and invasion of neuroblastoma cells. EZH2 inhibited DKK1 expression through inducing H3 histone methylation in its promoter. XIST increased the level of H3K27me3 in DKK1 promoter via interacting with EZH2. Downregulation of XIST increased DKK1 expression to suppress neuroblastoma cell growth, invasion, and migration, which markedly restrained the tumor progression. In conclusion, XIST downregulated DKK1 by inducing H3 histone methylation via EZH2, thereby facilitating the growth, migration and invasion of neuroblastoma cells and retarding tumor progression.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- CONTACT Jiao Zhang
| | - Wen-Ya Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li-Zhao Yan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Song-Yang Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia-Xiang Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Shen T, Chen Z, Qiao J, Sun X, Xiao Q. Neutralizing monoclonal antibody against Dickkopf2 impairs lung cancer progression via activating NK cells. Cell Death Discov 2019; 5:123. [PMID: 31372243 PMCID: PMC6668384 DOI: 10.1038/s41420-019-0204-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Adenomatous polyposis coli (APC) and KRAS proto-oncogene (KRAS) mutations frequently co-occur in non-small cell lung cancer. Inactivating APC mutations in colorectal carcinoma has been well characterized, leading to the approaches targeting on dysregulated APC pathway. However, it remains undetermined whether such approaches are also applicable to non-small cell lung cancer patients harboring similar mutations of APC. Dickkopf-related protein 2 (DKK2) is a Wnt antagonist. Our previous study has proved that anti-DKK2 antibody 5F8 suppressed the growth of colorectal carcinoma with APC mutations, illustrating a new target agent of APC-mutated tumors. This study aimed to investigate the potential of applying anti-DKK2 antibody to non-small cell lung cancer with APC mutations. We found significant upregulation of Dkk2 expression in APC-mutated lung cancers. Administration of DKK2 antibody inhibited cancer growth via modulating tumor immune microenvironment in lung cancer mouse models. Our study provided strong evidence supporting APC mutations-directed applications of anti-DKK2 targeted therapy in a wide range of cancer types, including lung cancer.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
| | - Zhengxi Chen
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ju Qiao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Qian Xiao
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
| |
Collapse
|
23
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
24
|
Fang Y, Sun B, Wang J, Wang Y. miR-622 inhibits angiogenesis by suppressing the CXCR4-VEGFA axis in colorectal cancer. Gene 2019; 699:37-42. [PMID: 30851425 DOI: 10.1016/j.gene.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis is essential for tumor metastasis. Our previous study has revealed that miR-622 inhibits colorectal cancer (CRC) metastasis. Here, we aimed to explore the effects and potential molecular mechanisms of action of miR-622 on angiogenesis. We found that overexpression of miR-622 inhibited CRC angiogenesis in vitro, according to suppression of proliferation, migration, tube formation, and invasiveness of human umbilical vein endothelial cells (HUVECs) treated with a tumor cell-conditioned medium derived from Caco-2 or HT-29 cells. Likewise, enhanced miR-622 expression suppressed CRC angiogenesis in vivo as determined by the measurement of Ki67 and VEGFA levels and microvessel density (by immunostaining). CXCR4, encoding a positive regulator of vascular endothelial growth factor A (VEGFA), was shown to be a direct target of miR-622. Overexpression of CXCR4 attenuated the inhibition of VEGFA expression by miR-622 and reversed the loss of tumor angiogenesis caused by miR-622. Taken together, these data show that miR-622 inhibits CRC angiogenesis by suppressing the CXCR4-VEGFA signaling axis, which represents a promising target for developing a new therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiangli Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, Zheng K, Lin W, Li X, Yao X, Pan M, Zhao L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Am J Cancer Res 2019; 9:1001-1014. [PMID: 30867812 PMCID: PMC6401398 DOI: 10.7150/thno.30056] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is a fundamental process that involves in tumor progression and metastasis. Vascular endothelial growth factor (VEGF) family and their receptors are identified as the most prominent regulators of angiogenesis. However, the clinical efficacy of anti-VEGF/VEGFR therapy is not ideal, prompting the needs to further understand mechanisms behind tumor angiogenesis. Here, we found that Dickkopf associated protein 2 (DKK2), a secretory protein highly expressed in metastatic colorectal cancer tissues, could stimulate angiogenesis via a classic VEGF/VEGFR independent pathway. Methods: DKK2 was screened out from microarray data analyzing gene expression profiles of eight pairs of non-metastatic and metastatic human colorectal cancer (CRC) tissues. Immunofluorescence histochemical staining (IHC) was used to detect the expression of DKK2 and angiogenesis in CRC tissues. Chicken chorioallantoic membrane (CAM) assay and Human umbilical vein endothelial cells (HUVEC) tubule formation assay was used for in vitro and in vivo angiogenesis study, respectively. Lactate and glucose concentration in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter assay was used to verify the interaction between miR-493-5p and the 3'UTR of DKK2. Results: DKK2 could stimulate angiogenesis via accelerating the aerobic glycolysis of CRC cells, through which lactate is produced from glucose and accumulated in tumor microenvironment. Lactate functions as the final executor of DDK2 to stimulate tube formation of endothelial cells, and blockage of lactate secretion by lactate transporter (MCT) inhibitors dramatically neutralize the progression and metastasis of CRC both in vitro and in vivo. DKK2 could cooperate with lipoprotein receptor-related protein 6, which is required for glucose uptake, and activated the downstream mTOR signal pathway to accelerate lactate secretion. In addition, the expression of DKK2 is switched on via the demethylation of miR-493-5p, which allows the dissociated of miR-493-5p from the 3'-UTRs of DKK2 and initiates its stimulatory role on CRC progression in an autocrine or paracrine manner. Conclusion: DKK2 promotes tumor metastasis and angiogenesis through a novel VEGF-independent, but energy metabolism related pathway. DKK2 might be a potential anti-angiogenic target in clinical treatment for the advanced CRC patients.
Collapse
|
26
|
Chen Y, Zou D, Wang N, Tan T, Liu Y, Zhao Q, Pu Y, Thapa RJ, Chen J. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther 2018; 11:8761-8772. [PMID: 30584334 PMCID: PMC6287589 DOI: 10.2147/ott.s181146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Secreted frizzled-related protein 5 (SFRP5) plays a key role in the development and progression of multiple tumors. However, the role and underlying mechanisms of SFRP5 in melanoma cells remain unknown. Materials and methods We used immunohistochemistry and Western blot analysis to detect the expression of SFRP5 in melanoma tissues and melanoma cells, respectively. Furthermore, both in vitro and in vivo assays were used to determine the effect of SFRP5 on malignant behavior in melanoma cells. Results We found that SFRP5 was markedly downregulated in melanoma tissues and cell lines. The SFRP5 overexpression exhibited no effect on the proliferation and apoptosis of melanoma cells but markedly suppressed the migration and invasion of melanoma cells in vitro. Regarding mechanisms, the SFRP5 overexpression inhibited the migration and invasion of melanoma cells by suppressing the epithelial–mesenchymal transition process and decreasing the matrix metalloproteinase-2/9 expression through the Wnt signaling pathway. Finally, in a xenograft animal model, we illustrated that the SFRP5 overexpression suppressed the tumor growth by decreasing angiogenesis and declined lung metastasis. Conclusion This study suggests that SFRP5 expression could be potentially useful in the invasion and metastasis of melanoma and serve as a putative promising target for human melanoma therapy.
Collapse
Affiliation(s)
- Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Daopei Zou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Nan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tao Tan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Rabin Jung Thapa
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| |
Collapse
|
27
|
Progesterone treatment enhances the expansion of placental immature myeloid cells in a mouse model of premature labor. J Reprod Immunol 2018; 131:7-12. [PMID: 30391857 DOI: 10.1016/j.jri.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION immature-myeloid cells (IMCs) are proangiogenic bone marrow (BM)-derived cells that normally differentiate into inflammatory cells such as neutrophils, monocytes and dendritic cells (DCs). We characterized placental IMCs comparing their gene expression and subpopulations to tumor IMCs, and tested our hypothesis that progesterone that inhibits preterm labor, may affect their abundance and differentiation. METHODS differences between IMC-subpopulations in subcutaneous tumors versus placentas in C57BL/6 or ICR (CD-1) mice were analyzed by flow cytometry and gene expression was detected by microarrays. BM- and placental cells were incubated with or without progesterone and IMC subpopulations were analyzed. For preterm labor induction pregnant mice pretreated or not with progesterone were or were not treated with Lipopolysaccharide (LPS). RESULTS we detected enrichment of granulocytic-IMCs in placentas compared to tumors, paralleled by a decrease in monocytic-IMCs. mRNA expression of placenta- versus tumor IMCs revealed profound transcriptional alterations. Progesterone treated BM-CD11b+ cells ex-vivo induced enrichment of granulocytic-IMCs and a decrease in monocytic-IMCs and DCs. LPS treatment in-vivo led to an increase in BM-IMCs in both progesterone pretreated or non-pretreated mice. In the placenta LPS decreased the IMC population while progesterone led to complete abrogation of this effect. DISCUSSION placental IMCs differ from tumor-IMCs in both subpopulations and gene expression. Progesterone enhances the proliferation of placenta-specific granulocytic IMCs ex-vivo and LPS induced labor is accompanied by a decrease in placental IMCs only in progesterone non-pretreated mice. We thus speculate that the protective effect of progesterone in preventing preterm labor may be explained at least in part by this specific anti-inflammatory effect.
Collapse
|
28
|
Abstract
Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.
Collapse
Affiliation(s)
- Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University; Initiative for Biological Function & Systems, BK21 PLUS, Yonsei University, Seoul 03722, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University; Initiative for Biological Function & Systems, BK21 PLUS, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
29
|
Muto P, Lo Gullo A, Mandraffino G, Loddo S, Atteritano M. High levels of serum sclerostin and DKK1 in a case of Klippel-Trénaunay syndrome. Osteoporos Int 2018; 29:1679-1681. [PMID: 29774401 DOI: 10.1007/s00198-018-4563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022]
Abstract
Klippel-Trénaunay syndrome (KTS) is described as a complex syndrome characterized by various combinations of capillary, venous, and lymphatic malformations associated with bone and soft tissue hypertrophy. We report a case of a 67-year-old postmenopausal Caucasian women with KTS that shows elevated levels of sclerostin and Dickkopf-related protein 1 (DKK1). Dual-energy X-ray absorptiometry (DXA) BMD T-scores at lumbar spine and femur were normal. Serum calcium and phosphorus levels were consistently normal, 25-hydroxyvitamin D (25OHD) < 30 ng/mL, and normal parathyroid hormone (PTH). Turnover markers (serum osteocalcin [OCN], and carboxy-terminal cross-linking telopeptide of type 1 collagen [CTx]) were in the reference limits. It is interesting to note that the serum levels of sclerostin and DKK-1 were significantly higher in our patient with KTS than in a healthy volunteer (control), without impact on bone mineral density and bone formation markers. In fact, in our patient, the BMD at lumbar spine and femur was normal, and osteocalcin was not suppressed. Based on what is known, we would have expected to find low levels of the inhibitors of the Wnt system, perhaps we can explain the data as a response to the compensation for β-catenin hyper-transformation.
Collapse
Affiliation(s)
- P Muto
- Department of Clinical and Experimental Medicine, University of Messina, Pad. B, 2nd floor, A.O.U. Policlinico "G. Martino" Via C. Valeria, 98125, Messina, Italy
| | - A Lo Gullo
- Department of Clinical and Experimental Medicine, University of Messina, Pad. B, 2nd floor, A.O.U. Policlinico "G. Martino" Via C. Valeria, 98125, Messina, Italy
| | - G Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Pad. B, 2nd floor, A.O.U. Policlinico "G. Martino" Via C. Valeria, 98125, Messina, Italy
| | - S Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Pad. B, 2nd floor, A.O.U. Policlinico "G. Martino" Via C. Valeria, 98125, Messina, Italy
| | - M Atteritano
- Department of Clinical and Experimental Medicine, University of Messina, Pad. B, 2nd floor, A.O.U. Policlinico "G. Martino" Via C. Valeria, 98125, Messina, Italy.
| |
Collapse
|
30
|
Yin GN, Jin HR, Choi MJ, Limanjaya A, Ghatak K, Minh NN, Ock J, Kwon MH, Song KM, Park HJ, Kim HM, Kwon YG, Ryu JK, Suh JK. Pericyte-Derived Dickkopf2 Regenerates Damaged Penile Neurovasculature Through an Angiopoietin-1-Tie2 Pathway. Diabetes 2018; 67:1149-1161. [PMID: 29559443 DOI: 10.2337/db17-0833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022]
Abstract
Penile erection requires well-coordinated interactions between vascular and nervous systems. Penile neurovascular dysfunction is a major cause of erectile dysfunction (ED) in patients with diabetes, which causes poor response to oral phosphodiesterase-5 inhibitors. Dickkopf2 (DKK2), a Wnt antagonist, is known to promote angiogenesis. Here, using DKK2-Tg mice or DKK2 protein administration, we demonstrate that the overexpression of DKK2 in diabetic mice enhances penile angiogenesis and neural regeneration and restores erectile function. Transcriptome analysis revealed that angiopoietin-1 and angiopoietin-2 are target genes for DKK2. Using an endothelial cell-pericyte coculture system and ex vivo neurite sprouting assay, we found that DKK2-mediated juxtacrine signaling in pericyte-endothelial cell interactions promotes angiogenesis and neural regeneration through an angiopoietin-1-Tie2 pathway, rescuing erectile function in diabetic mice. The dual angiogenic and neurotrophic effects of DKK2, especially as a therapeutic protein, will open new avenues to treating diabetic ED.
Collapse
MESH Headings
- Adult
- Angiopoietin-1/agonists
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Animals
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Crosses, Genetic
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Angiopathies/drug therapy
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/innervation
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Erectile Dysfunction/complications
- Erectile Dysfunction/drug therapy
- Erectile Dysfunction/metabolism
- Erectile Dysfunction/pathology
- Humans
- Intercellular Signaling Peptides and Proteins/chemistry
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/therapeutic use
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Penis/blood supply
- Penis/innervation
- Penis/metabolism
- Penis/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Receptor, TIE-2/agonists
- Receptor, TIE-2/metabolism
- Wnt Signaling Pathway
- Young Adult
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hai-Rong Jin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
- Department of Urology, Yuhuangding Hospital, Yantai, Shandong Province, People's Republic of China
| | - Min-Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Nguyen Nhat Minh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Heon Joo Park
- Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
31
|
Zhao Y, Wu B, Liu Y, Xu J, Yan Q, Zhang J. Knockdown of dickkopf2 inhibits vascular endothelia growth factor expression through the Wnt/β-catenin signaling pathway in human retinal pigment epithelial cells under hypoxic conditions. Exp Ther Med 2018; 15:4056-4060. [PMID: 29581753 DOI: 10.3892/etm.2018.5915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/01/2017] [Indexed: 12/14/2022] Open
Abstract
Hypoxia has been demonstrated to be a proangiogenic factor that induces vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. Dickkopf2 (DKK2), originally known as Wnt antagonist, has recently been demonstrated to have an important regulatory role in angiogenesis; however, the specific role of DKK2 in RPE cells is not known. In the present study, the effects of DKK2 on VEGF expression under hypoxic conditions were investigated, as well as the molecular mechanisms involved. The results demonstrated that the expression of DKK2 was markedly increased under hypoxic conditions compared with normoxic conditions. Knockdown of DKK2 markedly attenuated the CoCl2-induced expression of hypoxia-inducible factor (HIF)-1α and VEGF in RPE cells. Furthermore, knockdown of DKK2 markedly inhibited the expression of β-catenin induced by hypoxia. In conclusion, the findings of the present study demonstrate that knockdown of DKK2 inhibits the hypoxia-induced production of VEGF by suppressing the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Bin Wu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Ye Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Jun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Qichang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
32
|
Shao YC, Wei Y, Liu JF, Xu XY. The role of Dickkopf family in cancers: from Bench to Bedside. Am J Cancer Res 2017; 7:1754-1768. [PMID: 28979801 PMCID: PMC5622213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023] Open
Abstract
Numerous epidemiological studies indicate that cancer will be responsible for millions of deaths in one year. Although multiple therapeutic strategies exist, and vast research efforts are being focused on developing newer and better regimens, cancer-related morbidity and mortality remain high. Metastasis and recurrence are prominent causes of treatment failure in cancers. Moreover, early diagnosis and treatment initiation are difficult to achieve in clinical practice. Fortunately, targeted therapy, which exerts its function at the molecular level, has proved to be greatly beneficial in several human diseases including cancers. The Wnt signaling pathway is a crucial regulator of embryogenesis and development in humans, and its dysfunction has been implicated in the incidence and development of cancers and other diseases. The Dickkopf family (Dkks) is a widely studied Wnt signaling pathway antagonist and plays multiple roles in human physiological and pathological process through both Wnt pathway-dependent and -independent manners. However, the precise roles of Dkks in tumorigenesis and the causal mechanisms have not been clearly elucidated. We discuss the pleiotropic roles of Dkks, with a specific focus on the underlying mechanisms, in cancer biology. We review recent literature to explore the potential use of Dkks as a tumor diagnosis biomarker and therapeutic target.
Collapse
Affiliation(s)
- You-Cheng Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyang 110122, Liaoning, P. R. China
| | - Yan Wei
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyang 110122, Liaoning, P. R. China
| | - Jin-Fang Liu
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyang 110122, Liaoning, P. R. China
| | - Xiao-Yan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyang 110122, Liaoning, P. R. China
| |
Collapse
|
33
|
Oranger A, Brunetti G, Colaianni G, Tamma R, Carbone C, Lippo L, Mori G, Pignataro P, Cirulli N, Zerlotin R, Moretti B, Notarnicola A, Ribatti D, Grano M, Colucci S. Sclerostin stimulates angiogenesis in human endothelial cells. Bone 2017; 101:26-36. [PMID: 28267633 DOI: 10.1016/j.bone.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Sclerostin, negative regulator of bone formation, has been originally known as an osteocyte product. Recently, it has been also detected in hypertrophic chondrocytes, distinctive cells of avascular cartilage which is invaded by capillaries and then replaced by vascularized bone. Thus, we hypothesized that sclerostin, in addition to its role already known, may exert an angiogenic activity. We first proved that sclerostin increased the proliferation of human umbilical vein endothelial cells (HUVECs), and next, by using the chicken chorioallantoic membrane (CAM) in vivo assay, we demonstrated that it exerts an angiogenic activity similar to that of vascular endothelial growth factor (VEGF). This last finding was reinforced by several in vitro approaches. Indeed, we showed that sclerostin induced the formation of a network of anastomosing tubules, a significant increase in the percentage of tubule number, total tubule length and number of junctions, as well as the ability of sclerostin-stimulated HUVECs to organize capillary-like structures and closed-meshes similar to VEGF. The angiogenic response elicited by the protein may be due to the binding to its receptor, LRP6, which is highly expressed at mRNA and protein levels by sclerostin treated HUVECs and through the production of two well-known pro-angiogenic cytokines, VEGF and placental growth factor (PlGF). Finally, we demonstrated that sclerostin was also responsible for the recruitment of osteoclasts and their circulating monocyte progenitors. Overall, these findings showed for the first time the new angiogenic in vitro role of sclerostin which could be also considered as a novel molecule in angiogenesis-osteogenesis coupling.
Collapse
Affiliation(s)
- Angela Oranger
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Claudia Carbone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Luciana Lippo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Pignataro
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Nunzio Cirulli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Roberta Zerlotin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Angela Notarnicola
- Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, Faculty of Medicine and Surgery, University of Bari, General Hospital, Bari, Italy
| | - Domenico Ribatti
- National Cancer Institute "Giovanni Paolo II", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari Medical School, Bari, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
34
|
Marshall JD, Sauler M, Tonelli A, Rao Y, Bucala R, Lee PJ, Fares WH. Complexity of macrophage migration inhibitory factor (MIF) and other angiogenic biomarkers profiling in pulmonary arterial hypertension. Pulm Circ 2017; 7:730-733. [PMID: 28714356 PMCID: PMC5841895 DOI: 10.1177/2045893217724141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) and 22 a priori selected biomarkers were measured from pulmonary arterial hypertension (PAH) patients. Significant positive correlations were found between MIF and several angiogenic factors suggesting a possible MIF regulation role in PAH angiogenesis and pathobiology, but simultaneously highlighting the biomarkers profiling complexity in PAH.
Collapse
Affiliation(s)
- Jeffrey D Marshall
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Maor Sauler
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Adriano Tonelli
- 2 Cleveland Clinic, Department of Pulmonary and Critical Care, Cleveland, OH, USA
| | - Youlan Rao
- 3 United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Richard Bucala
- 4 Yale University School of Medicine, Section of Rheumatology, New Haven, CT, USA
| | - Patty J Lee
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Wassim H Fares
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci 2017; 88:159-166. [PMID: 28711237 DOI: 10.1016/j.jdermsci.2017.06.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
Dermal fibroblasts are traditionally recognized as synthesizing, remodeling and depositing collagen and extracellular matrix, the structural framework for tissues, helping to bring thickness and firmness to the skin. However, the role of fibroblasts on skin pigmentation arouses concern recently. More is known about the interactions between epidermal melanocytes and keratinocytes. This review highlights the importance of fibroblast-derived melanogenic paracrine mediators in the regulation of melanocyte activities. Fibroblasts act on melanocytes directly and indirectly through neighboring cells by secreting a large number of cytokines (SCF), proteins (DKK1, sFRP, Sema7a, CCN, FAP-α) and growth factors (KGF, HGF, bFGF, NT-3, NRG-1, TGF-β) which bind to receptors and modulate intracellular signaling cascades (MAPK/ERK, cAMP/PKA, Wnt/β-catenin, PI3K/Akt) related to melanocyte functions. These factors influence the growth, the pigmentation of melanocytes via the expression of melanin-producing enzymes and melanosome transfer, as well as their dendricity, mobility and adhesive properties. Thus, fibroblasts are implicated in both skin physiological and pathological pigmentation. In order to investigate their contribution, various in vitro models have been developed, based on cellular senescence. UV exposure, a major factor implicated in pigmentary disorders, may affect the secretory crosstalk between dermal and epithelial cells. Therefore, identification of the interactions between fibroblasts and melanocytes could provide novel insights not only for the development of melanogenic agents in the clinical and cosmetic fields, but also for a better understanding of the melanocyte biology and melanogenesis regulation.
Collapse
|
36
|
Li Y, Zhang L, Yang C, Li R, Shang L, Zou X. Bioinformatic identification of candidate genes induced by trichostatin A in BGC-823 gastric cancer cells. Oncol Lett 2016; 13:777-783. [PMID: 28356958 PMCID: PMC5351205 DOI: 10.3892/ol.2016.5485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to identify the candidate genes induced by trichostatin A (TSA) in BGC-823 gastric cancer (GC) cells and to explore the possible inhibition mechanism of TSA in GC. Gene expression data were obtained through chip detection, and differentially expressed genes (DEGs) between GC cells treated with TSA and untreated GC cells (control group) were identified. Gene ontology analysis of the DEGs was performed using the database for annotation, visualization and integrated discovery. Then sub-pathway enrichment analysis was performed and a microRNA (miRNA) regulatory network was constructed. We selected 76 DEGs, among which 43 were downregulated genes and 33 were upregulated genes. By sub-pathway enrichment analysis of the DEGs, the propanoate metabolism pathway was selected as the sub-pathway. By constructing a miRNA regulatory network, we identified that DKK1 and KLF13 were the top hub nodes. The propanoate metabolism pathway and the genes DKK1 and KLF13 may play significant roles in the inhibition of GC induced by TSA. These genes may be potential therapeutic targets for GC. However, further experiments are still required to confirm our results.
Collapse
Affiliation(s)
- Yunlong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Lisha Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Chunfa Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Riheng Li
- Department of General Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Longbin Shang
- Department of Surgery, Traditional Chinese Medicine Hospital of Acheng, Harbin, Heilongjiang 150300, P.R. China
| | - Xiaoming Zou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
37
|
Gaskill C, Marriott S, Pratap S, Menon S, Hedges LK, Fessel JP, Kropski JA, Ames D, Wheeler L, Loyd JE, Hemnes AR, Roop DR, Klemm DJ, Austin ED, Majka SM. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hypertension: identifying key pathways in pulmonary vascular disease. Pulm Circ 2016; 6:483-497. [PMID: 28090290 PMCID: PMC5210051 DOI: 10.1086/688314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant-derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH.
Collapse
Affiliation(s)
- Christa Gaskill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Shennea Marriott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Sidd Pratap
- Meharry Medical College, Nashville, Tennessee, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi; and AnalyzeDat Consulting Services, Kerala, India
| | - Lora K. Hedges
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - DeWayne Ames
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa Wheeler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James E. Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Dennis R. Roop
- Department of Dermatology; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Dwight J. Klemm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Majka
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol 2015; 37:8083-95. [PMID: 26715268 DOI: 10.1007/s13277-015-4728-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract with adverse prognosis and poor survival. Wnt signaling plays an important role in embryonic development and regeneration of tissues in all the species. Deregulation of expression and mutations in this pathway may lead to disease state such as cancer. In this study, we assessed the association of common germline variants of Wnt pathway genes (SFRP2, SFRP4, DKK2, DKK3, WISP3, APC, β-catenin, AXIN-2, GLI-1) to evaluate their contribution in predisposition to GBC and treatment outcomes. The study included 564 GBC patients and 250 controls. Out of 564, 200 patients were followed up for treatment response and survival. Tumor response (RECIST 1.1) was recorded in 116 patients undergoing non-adjuvant chemotherapy (NACT). Survival was assessed by Kaplan-Meier curve and Cox-proportional hazard regression. Single locus analysis showed significant association of SFRP4 rs1802073G > T [p value = 0.0001], DKK2 rs17037102C > T [p value = 0.0001], DKK3 rs3206824C > T [p value = 0.012], APC rs4595552 A/T [p value = 0.021], APC rs11954856G > T [p value = 0.047], AXIN-2 rs4791171C > T [p value = 0.001], β-catenin rs4135385A > G [p value = 0.031], and GLI-1 rs222826C > G [p value = 0.001] with increased risk of GBC. Gene-gene interaction using GMDR analysis predicted APC rs11954856 and AXIN2 rs4791171 as significant in conferring GBC susceptibility. Cox-proportional hazard model showed GLI-1 rs2228226 CG/GG and AXIN-2 rs4791171 TT genotype higher hazard ratio. In recursive partitioning, AXIN-2 rs4791171 TT genotype showed higher mortality and hazard. Most of studied genetic variants influence GBC susceptibility. APC rs11954856, GLI-1 rs2228226, and AXIN-2 rs4791171 were found to be associated with poor survival in advanced GBC patients.
Collapse
|
39
|
Jiang SJ, Li W, Li YJ, Fang W, Long X. Dickkopf‑related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders. Mol Med Rep 2015; 12:4959-66. [PMID: 26239269 PMCID: PMC4581813 DOI: 10.3892/mmr.2015.4101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis has an important role in the progression of temporomandibular joint disorders (TMD). The aim of the present study was to explore the association between dickkopf-related protein 1 (DKK-1) and angiogenesis in TMD. The expression levels of DKK-1 and vascular endothelial growth factor (VEGF) were quantified by an ELISA assay of the synovial fluid from patients with TMD. The correlation between DKK-1 and VEGF was analyzed by Pearson correlation test. Synovial fibroblasts were isolated from patients with TMD and were subsequently treated with recombinant human DKK-1, anti-DKK-1 antibody, hypoxia inducible factor-1α (HIF-1α), or small interfering RNA (siRNA). The expression levels of DKK-1, HIF-1α, and VEGF were subsequently quantified. The present study also investigated the effects of DKK-1 on the migration of human umbilical vein endothelial cells (HUVEC). Increased expression levels of DKK-1 were concordant with increased expression levels of VEGF in the synovial fluid from patients with TMD. In the synovial fibroblasts, DKK-1 increased the expression levels of VEGF, and promoted HIF-1α nuclear localization. In addition, DKK-1 induced HUVEC migration, and HIF-1α siRNA inhibited DKK-1-induced cell migration. The results of the present study indicate that DKK-1 is associated with angiogenesis in the synovial fluid of patients with TMD. Furthermore, HIF-1α may be associated with DKK-1-induced HUVEC activation.
Collapse
Affiliation(s)
- Sheng-Jun Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Ying-Jie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
40
|
Overexpression of Wnt5a promotes angiogenesis in NSCLC. BIOMED RESEARCH INTERNATIONAL 2014; 2014:832562. [PMID: 24999479 PMCID: PMC4066942 DOI: 10.1155/2014/832562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 01/15/2023]
Abstract
To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC), immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD), vasculogenic mimicry (VM), and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.
Collapse
|