1
|
Lavacchi D, Gelmini S, Calabri A, Rossi G, Simi L, Caliman E, Mancini I, Salvianti F, Petroni G, Guidolin A, Scolari F, Messerini L, Pillozzi S, Pinzani P, Antonuzzo L. Early changes in circulating tumor DNA (ctDNA) predict treatment response in metastatic KRAS-mutated colorectal cancer (mCRC) patients. Heliyon 2023; 9:e21853. [PMID: 38027900 PMCID: PMC10663919 DOI: 10.1016/j.heliyon.2023.e21853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The detection of RAS mutations and co-mutations in liquid biopsy offers a novel paradigm for the dynamic management of metastatic colorectal cancer (mCRC) patients. Expanding the results of the prospective OMITERC (OMIcs application from solid to liquid biopsy for a personalized ThERapy of Cancer) project, we collected blood samples at specific time points from patients who received a first-line chemotherapy (CT) for KRAS-mutated mCRC. CTC quantification was performed by CellSearch® system. Libraries from cfDNA were prepared using the Oncomine™ Colon cfDNA Assay to detect tumour-derived DNA in cfDNA. The analysis involved >240 hotspots in 14 genes. Twenty patients with KRAS-mutated mCRC treated at the Medical Oncology Unit of Careggi University Hospital were prospectively enrolled. Nine patients had available data for longitudinal monitoring of cfDNA. After 6 weeks of first-line CT an increase of KRAS-mutated clone was reported in the only patient who did not obtain disease control, while all patients with decrease of KRAS clones obtained disease control. Overall, in patients with a short (<9 months) progression-free survival (PFS) we registered, at 6 weeks, an increase in cfDNA levels and in KRAS mutations or other co-mutations, i.e. PIK3CA, FBXW7, GNAS, and TP53. In selected cases, co-mutations were able to better anticipate radiological progressive disease (PD) than the increase of KRAS-mutated clones. In conclusion, our study confirms plasma ctDNA as a crucial tool for anticipating PD at an early time point and highlights the value of a comprehensive assessment of clonal dynamics to improve the management of patients with mCRC.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Stefania Gelmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Adele Calabri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gemma Rossi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Lisa Simi
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Irene Mancini
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Francesca Salvianti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Federico Scolari
- Department of Health Science, University of Florence, Florence, Italy
| | - Luca Messerini
- Pathology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Clinical and Molecular Biochemistry Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Resveratrol derivatives: Synthesis and their biological activities. Eur J Med Chem 2023; 246:114962. [PMID: 36463729 DOI: 10.1016/j.ejmech.2022.114962] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Resveratrol, a natural compound known especially for its antioxidant properties and protective action, opens the door for both it and its structural derivatives to be considered not only as chemopreventive but also as cancer chemotherapeutic agents. Due to the pharmacokinetic problems of resveratrol that demonstrate its poor bioavailability, the study of new derivatives is of interest. Thus, in this work (E)-stilbenes derived directly from resveratrol and other cyclic analogues containing the benzofuran or indole nucleus have been synthesized. The synthesized compounds have been evaluated for their ability to affect tumor growth in vitro. Compounds 2, 3, 4 and 5 have shown cytotoxicity in human colon cancer (HT-29) and human pancreatic adenocarcinoma cells (MIA PaCa-2) higher than those of (E)-resveratrol. The indolic derivative 13, a cyclic analog of resveratrol, has shown in vitro cytotoxic activity 8 times higher than resveratrol against HT-29 cancer cells. The cyclic derivatives 8, 9 and 12 showed a high inhibition of cell growth in HCT-116 (KRas mutant) at 20 μM, while 13 shows moderate antiangiogenesis activity at 10 μM.
Collapse
|
3
|
Meng M, Zhong K, Jiang T, Liu Z, Kwan HY, Su T. The current understanding on the impact of KRAS on colorectal cancer. Biomed Pharmacother 2021; 140:111717. [PMID: 34044280 DOI: 10.1016/j.biopha.2021.111717] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS (kirsten rat sarcoma viral oncogene) is a member of the RAS family. KRAS mutations are one of most dominant mutations in colorectal cancer (CRC). The impact of KRAS mutations on the prognosis and survival of CRC patients drives many research studies to explore potential therapeutics or target therapy for the KRAS mutant CRC. This review summarizes the current understanding of the pathological consequences of the KRAS mutations in the development of CRC; and the impact of the mutations on the response and the sensitivity to the current front-line chemotherapy. The current therapeutic strategies for treating KRAS mutant CRC, the difficulties and challenges will also be discussed.
Collapse
Affiliation(s)
- Mingjing Meng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Keying Zhong
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ting Jiang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Tao Su
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Yan LH, Zhang D, Mo SS, Yuan H, Mo XW, Zhao JM. Anlotinib suppresses metastasis and multidrug resistance via dual blockade of MET/ABCB1 in colorectal carcinoma cells. J Cancer 2021; 12:2092-2104. [PMID: 33754008 PMCID: PMC7974540 DOI: 10.7150/jca.45618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Anlotinib, a highly selective multi-targeted tyrosine kinase inhibitor (TKI) has therapeutic effects on non-small-cell lung cancer (NSCLC). In this study, the anti-tumor activity and molecular mechanism of anlotinib in metastatic colorectal cancer (mCRC) was explored. The anti-angiogenesis, anti-metastasis, anti-proliferative, and anti-multidrug resistance efficacy of anlotinib were analyzed by using in vitro and in vivo models of human CRC cells. The results indicated that anlotinib boosted chemo-sensitivity of CRC cells, and restrained its proliferation. Besides the suppression of the MET signaling pathway, anlotinib also inhibited invasion and migration of CRC cells. Furthermore, anlotinib prevented VEGF-induced angiogenesis, N-cadherin (CDH2)-induced cell migration, and reversed ATP-binding cassette subfamily B member 1 (ABCB1) -mediated CRC multidrug resistance in CRC. The CRC liver metastasis and subcutaneously implanted xenograft model testified that anlotinib could inhibit proliferation and liver metastasis in CRC cells. Such an observation suggested that a combination of anlotinib with anti-cancer drugs could attenuate angiogenesis, metastasis, proliferative, and multidrug resistance, which constitutes a novel treatment strategy for CRC patients with metastasis.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Min Zhao
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Liang X, Shen J. Impact of KRAS mutation status on outcomes of metastatic colorectal cancer treated with anti-angiogenic agents: a meta-analysis. J Chemother 2019; 32:41-48. [PMID: 31838964 DOI: 10.1080/1120009x.2019.1692282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaojun Liang
- Department of ICU, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Shen
- Department of ICU, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lee S, Lim J, Yu J, Ahn J, Lee Y, Jeon NL. Engineering tumor vasculature on an injection-molded plastic array 3D culture (IMPACT) platform. LAB ON A CHIP 2019; 19:2071-2080. [PMID: 31049508 DOI: 10.1039/c9lc00148d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in microfluidic organ-on-a-chip technology have enabled the growth of 3D microphysiological systems for diverse biological studies. Fabrication and usage limitations inherent to conventional soft lithographic polydimethylsiloxane (PDMS) based microfluidic platforms drive demands for more accessible, standardized, and mass producible platforms for wider applications. Here, we introduce a novel injection-molded plastic array 3D culture (IMPACT) platform, a microfluidic system designed for easy and diverse patterning of 3D cellular hydrogel. The flexibility of the IMPACT platform enabled simultaneous high-content morphological profiling of the effect of nine different types of tumor cells on vascular formation. Moreover, screening of three different known anti-tumor drugs (5-FU, axitinib and cetuximab) was done at various delivered dosages. We observed distinct and expected molecular mechanism dependent response on both tumor and vasculature in response to treatment, confirming the applicability of the IMPACT as high-content drug testing tool. Therefore, we propose IMPACT as the next generation of 3D microfluidic co-culture platform compatible with any biological, clinical, and pharmaceutical investigations requiring robust high-throughput and high-content assays.
Collapse
Affiliation(s)
- Somin Lee
- Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
7
|
Zhang SC, Yu MY, Xi L, Zhang JX. Tegafur deteriorates established cardiovascular atherosclerosis in colon cancer: A case report and review of the literature. World J Clin Cases 2019; 7:89-94. [PMID: 30637257 PMCID: PMC6327125 DOI: 10.12998/wjcc.v7.i1.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cardiac toxic effect of tegafur (S-1) is extremely rare, and there has been no report on this issue so far.
CASE SUMMARY We herein report a typical case of single S-1 administration after radical operation for colon cancer. The patient had no background or medical history of acute coronary syndrome (ACS), and only aortic and coronary atherosclerosis was revealed by computed tomography (CT) before surgery. He complained of sternum pain during the fifth cycle of S-1 treatment. Electrocardiogram (ECG) and serum cardiac marker cardiac troponin T (cTnT) strongly suggested ACS, which was possibly caused by S-1 cardiotoxicity.
CONCLUSION Monitoring protocols based on ECG, CT, and cTnT should be performed in real time to evaluate cardiac function during S-1 administration.
Collapse
Affiliation(s)
- Shi-Chang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Meng-Yao Yu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lei Xi
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie-Xin Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
8
|
Baraniskin A, Buchberger B, Pox C, Graeven U, Holch JW, Schmiegel W, Heinemann V. Efficacy of bevacizumab in first-line treatment of metastatic colorectal cancer: A systematic review and meta-analysis. Eur J Cancer 2019; 106:37-44. [DOI: 10.1016/j.ejca.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
9
|
Harigai R, Sakai S, Nobusue H, Hirose C, Sampetrean O, Minami N, Hata Y, Kasama T, Hirose T, Takenouchi T, Kosaki K, Kishi K, Saya H, Arima Y. Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells. Sci Rep 2018; 8:6069. [PMID: 29666462 PMCID: PMC5904101 DOI: 10.1038/s41598-018-24484-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by germline mutations in the NF1 gene and is characterized by café au lait spots and benign tumours known as neurofibromas. NF1 encodes the tumour suppressor protein neurofibromin, which negatively regulates the small GTPase Ras, with the constitutive activation of Ras signalling resulting from NF1 mutations being thought to underlie neurofibroma development. We previously showed that knockdown of neurofibromin triggers epithelial-mesenchymal transition (EMT) signalling and that such signalling is activated in NF1-associated neurofibromas. With the use of a cell-based drug screening assay, we have now identified the antiallergy drug tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) as an inhibitor of EMT and found that it attenuated the expression of mesenchymal markers and angiogenesis-related genes in NF1-mutated sNF96.2 cells and in neurofibroma cells from NF1 patients. Tranilast also suppressed the proliferation of neurofibromin-deficient cells in vitro more effectively than it did that of intact cells. In addition, tranilast inhibited sNF96.2 cell migration and proliferation in vivo. Knockdown of type III collagen (COL3A1) also suppressed the proliferation of neurofibroma cells, whereas expression of COL3A1 and SOX2 was increased in tranilast-resistant cells, suggesting that COL3A1 and the transcription factor SOX2 might contribute to the development of tranilast resistance.
Collapse
Affiliation(s)
- Ritsuko Harigai
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chikako Hirose
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noriaki Minami
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.,Department of Neurosurgery, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Yukie Hata
- Department of Biomedical Research & Development, Link Genomics Inc, Tokyo, 103-0024, Japan
| | - Takashi Kasama
- Department of Biomedical Research & Development, Link Genomics Inc, Tokyo, 103-0024, Japan
| | - Takanori Hirose
- Department of Pathology for Regional Communication, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Toshiki Takenouchi
- Department of Paediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
10
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
11
|
Shi L, Hu Y, Lin A, Ma C, Zhang C, Su Y, Zhou L, Niu Y, Zhu X. Matrix Metalloproteinase Responsive Nanoparticles for Synergistic Treatment of Colorectal Cancer via Simultaneous Anti-Angiogenesis and Chemotherapy. Bioconjug Chem 2016; 27:2943-2953. [DOI: 10.1021/acs.bioconjchem.6b00643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leilei Shi
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Yi Hu
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Ang Lin
- Department
of Medicine, Immunology and Allergy Unit, Karolinska Institute, Stockholm, SE 17176, Sweden
| | - Chuan Ma
- School
of Dental Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Chuan Zhang
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Yue Su
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Linzhu Zhou
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Yumei Niu
- Department
of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, Harbin 150001, P. R. China
| | - Xinyuan Zhu
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
12
|
Ding C, Li L, Yang T, Fan X, Wu G. Combined application of anti-VEGF and anti-EGFR attenuates the growth and angiogenesis of colorectal cancer mainly through suppressing AKT and ERK signaling in mice model. BMC Cancer 2016; 16:791. [PMID: 27729020 PMCID: PMC5059930 DOI: 10.1186/s12885-016-2834-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiogenesis is generally involved during the cancer development and hematogenous metastasis. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) are considered to have an important role in tumor-associated angiogenesis. However, the effects of simultaneously targeting on VEGF and EGFR on the growth and angiogenesis of colorectal cancer (CRC), and its underlying mechanisms remain unknown. METHODS Immunohistochemical staining was used to detect the VEGF and EGFR expression in different CRC tissue specimens, and the correlation between VEGF/EGFR expression with the clinicopathologic features was analyzed. Cell counting kit‑8 (CCK-8) and transwell assays were used to assess the cellular proliferation and invasion of CRC cells after treated with anti-VEGF antibody and/or anti-EGFR antibody in vitro, respectively. Moreover, in vivo tumor formation was performed on nude mice model, and the tumor microvessel density (MVD) was determined by anti-CD34 staining in different groups. Finally, we evaluated the impact of anti-VEGF antibody and/or anti-EGFR antibody on the activation of downstream signaling effectors using western blot. RESULTS VEGF and EGFR were upregulated in CRC tissues, and their expression levels were correlated with hepatic metastasis. Blockage on VEGF or EGFR alone could inhibit the cellular proliferation and metastasis while their combination could reach a good synergism in vitro. In addition, in vivo xenograft mice model demonstrated that the tumor formation and angiogenesis were strongly suppressed by combination treatment of anti-VEGF and anti-EGFR antibodies. Besides, the combination treatment significantly reduced the activation of AKT and ERK1/2, but barely affected the activation of c-Myc, NF-κB/p65 and IκBα in CRC cells tumors. Interestingly, anti-VEGF antibody or anti-EGFR antibody alone could attenuate the phosphorylation of STAT3 as compared with negative control group, whereas the combined application not further suppressed but at least partially restored the activation of STAT3 in vivo. CONCLUSIONS Simultaneous targeting on VEGF and EGFR does show significant inhibition on CRC tumor growth and angiogenesis in mice model, and these effects are mainly attributed to suppression of the AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Longmei Li
- Department of Immunology, Zunyi Medical University, Zunyi, 563003, China
| | - Taoyu Yang
- Department of Oncology, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, 210009, China. .,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Leuci V, Maione F, Rotolo R, Giraudo E, Sassi F, Migliardi G, Todorovic M, Gammaitoni L, Mesiano G, Giraudo L, Luraghi P, Leone F, Bussolino F, Grignani G, Aglietta M, Trusolino L, Bertotti A, Sangiolo D. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. J Transl Med 2016; 14:119. [PMID: 27149858 PMCID: PMC4857418 DOI: 10.1186/s12967-016-0872-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022] Open
Abstract
Background Angiogenesis inhibition is a promising approach for treating metastatic colorectal cancer (mCRC). Recent evidences support the seemingly counterintuitive ability of certain antiangiogenic drugs to promote normalization of residual tumor vessels with important clinical implications. Lenalidomide is an oral drug with immune-modulatory and anti-angiogenic activity against selected hematologic malignancies but as yet little is known regarding its effectiveness for solid tumors. The aim of this study was to determine whether lenalidomide can normalize colorectal cancer neo-vessels in vivo, thus reducing tumor hypoxia and improving the benefit of chemotherapy. Methods We set up a tumorgraft model with NOD/SCID mice implanted with a patient-derived colorectal cancer liver metastasis. The mice were treated with oral lenalidomide (50 mg/Kg/day for 28 days), intraperitoneal 5-fluorouracil (5FU) (20 mg/Kg twice weekly for 3 weeks), combination (combo) of lenalidomide and 5FU or irrelevant vehicle. We assessed tumor vessel density (CD146), pericyte coverage (NG2; alphaSMA), in vivo perfusion capability of residual vessels (lectin distribution essay), hypoxic areas (HP2-100 Hypoxyprobe) and antitumor activity in vivo and in vitro. Results Treatment with lenalidomide reduced tumor vessel density (p = 0.0001) and enhanced mature pericyte coverage of residual vessels (p = 0.002). Perfusion capability of tumor vessels was enhanced in mice treated with lenalidomide compared to controls (p = 0.004). Accordingly, lenalidomide reduced hypoxic tumor areas (p = 0.002) and enhanced the antitumor activity of 5FU in vivo. The combo treatment delayed tumor growth (p = 0.01) and significantly reduced the Ki67 index (p = 0.0002). Lenalidomide alone did not demonstrate antitumor activity compared to untreated controls in vivo or against 4 different mCRC cell lines in vitro. Conclusions We provide the first evidence of tumor vessel normalization and hypoxia reduction induced by lenalidomide in mCRC in vivo. This effect, seemingly counterintuitive for an antiangiogenic compound, translates into indirect antitumor activity thus enhancing the therapeutic index of chemotherapy. Our findings suggest that further research should be carried out on synergism between lenalidomide and conventional therapies for treating solid tumors that might benefit from tumor vasculature normalization.
Collapse
Affiliation(s)
- V Leuci
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - F Maione
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - R Rotolo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - E Giraudo
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.,Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - F Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - G Migliardi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - M Todorovic
- Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - L Gammaitoni
- Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - G Mesiano
- Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - L Giraudo
- Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - P Luraghi
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - F Leone
- Department of Oncology, University of Torino, Turin, Italy.,Division and Laboratory of Medical Oncology, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - F Bussolino
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute, Candiolo, Turin, Italy
| | - G Grignani
- Division and Laboratory of Medical Oncology, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - M Aglietta
- Department of Oncology, University of Torino, Turin, Italy.,Division and Laboratory of Medical Oncology, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - L Trusolino
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - A Bertotti
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy
| | - D Sangiolo
- Department of Oncology, University of Torino, Turin, Italy. .,Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
14
|
Glucose Transporter 1 (SLC2A1) and Vascular Endothelial Growth Factor A (VEGFA) Predict Survival After Resection of Colorectal Cancer Liver Metastasis. Ann Surg 2016; 263:138-45. [PMID: 25563886 DOI: 10.1097/sla.0000000000001109] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the individual and combined prognostic value of HIF1α, SLC2A1, and vascular endothelial growth factor A (VEGFA) in a multi-institutional cohort of patients with resected colorectal cancer liver metastasis (CRCLM). BACKGROUND In the majority of patients with CRCLM, resection seems not to be curative, despite its curative intent. Overexpression of hypoxia-inducible factor 1α (HIF1α), glucose transporter 1 (SLC2A1; also known as GLUT1), and VEGFA has been associated with tumor progression and poor prognosis of patients with colorectal cancer (CRC). METHODS Tissue microarrays were generated using CRCLM and patient-matched primary CRC from patients who underwent CRCLM resection between 1990 and 2010. Prognostic value of HIF1α, SLC2A1, and VEGFA was determined by immunohistochemistry. A 500-fold cross-validated hazard rate ratio (HRRav) for overall survival was calculated. RESULTS HIF1α, SLC2A1, and VEGFA expression could be evaluated in 328, 350, and 335 patients, respectively. High SLC2A1 expression was associated with good prognosis (HRRav, 0.67; P (HRR >1) < 0.01) and high VEGFA expression to poor prognosis (HRRav, 1.84; P (HRR < 1) = 0.02), also after multivariate analysis including established clinicopathological prognostic variables (HRRav, 0.67; P (HRR > 1) < 0.01 and HRRav, 1.50; P (HRR < 1) = 0.02, respectively). SLC2A1 showed prognostic value particularly in patients treated with systemic therapy (P < 0.01), whereas the prognostic value of VEGFA expression was mainly observed in patients not treated with systemic therapy (P < 0.01). Prognosis was especially poor in patients with both low SLC2A1 and high VEGFA expression (P < 0.01). HIF1α expression was not associated with survival. CONCLUSIONS SLC2A1 and VEGFA expression are prognostic molecular biomarkers for patients with CRCLM with added value to established clinicopathological variables.
Collapse
|
15
|
SCHERZED A, HACKENBERG S, FROELICH K, RAK K, SCHENDZIELORZ P, GEHRKE T, HAGEN R, KLEINSASSER N. The differentiation of hMSCs counteracts their migration capability and pro-angiogenic effects in vitro. Oncol Rep 2015; 35:219-26. [DOI: 10.3892/or.2015.4383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/10/2015] [Indexed: 11/06/2022] Open
|
16
|
Liu J, Yang M, Kong R, Chen H, Wang Y, Pan S, Jiang H, Sun B. Icotinib Enhances Bufalin-Induced Apoptosis via the Suppression of PI3K/Akt Signaling Pathway in Human Colon Cancer Cells. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.910.919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Aprile G, Rihawi K, Scartozzi M, Bordonaro R. Steps ahead in the treatment of advanced colorectal cancer: past, current and possible future scenarios. Future Oncol 2015; 11:2625-2628. [PMID: 26357968 DOI: 10.2217/fon.15.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Giuseppe Aprile
- Department of Medical Oncology, University & General Hospital, Udine, Italy
| | - Karim Rihawi
- Department of Medical Oncology, University & General Hospital, Udine, Italy
| | - Mario Scartozzi
- Department of Oncology, University Hospital, Cagliari, Italy
| | | |
Collapse
|
18
|
Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461687. [PMID: 25302298 PMCID: PMC4180203 DOI: 10.1155/2014/461687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promising in vitro results highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.
Collapse
|