1
|
Yang Z, Chen H, Lu Y, Gao Y, Sun H, Wang J, Jin L, Chu J, Xu S. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biol 2022; 20:166. [PMID: 35864541 PMCID: PMC9306206 DOI: 10.1186/s12915-022-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yunnan is located in Southwest China and consists of great cultural, linguistic, and genetic diversity. However, the genomic diversity of ethnic minorities in Yunnan is largely under-investigated. To gain insights into population history and local adaptation of Yunnan minorities, we analyzed 242 whole-exome sequencing data with high coverage (~ 100-150 ×) of Yunnan minorities representing Achang, Jingpo, Dai, and Deang, who were linguistically assumed to be derived from three ancient lineages (the tri-genealogy hypothesis), i.e., Di-Qiang, Bai-Yue, and Bai-Pu. RESULTS Yunnan minorities show considerable genetic differences. Di-Qiang populations likely migrated from the Tibetan area about 6700 years ago. Genetic divergence between Bai-Yue and Di-Qiang was estimated to be 7000 years, and that between Bai-Yue and Bai-Pu was estimated to be 5500 years. Bai-Pu is relatively isolated, but gene flow from surrounding Di-Qiang and Bai-Yue populations was also found. Furthermore, we identified genetic variants that are differentiated within Yunnan minorities possibly due to the living circumstances and habits. Notably, we found that adaptive variants related to malaria and glucose metabolism suggest the adaptation to thalassemia and G6PD deficiency resulting from malaria resistance in the Dai population. CONCLUSIONS We provided genetic evidence of the tri-genealogy hypothesis as well as new insights into the genetic history and local adaptation of the Yunnan minorities.
Collapse
Affiliation(s)
- Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
2
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
3
|
Phang SJ, Arumugam B, Kuppusamy UR, Fauzi MB, Looi ML. A review of diabetic wound models-Novel insights into diabetic foot ulcer. J Tissue Eng Regen Med 2021; 15:1051-1068. [PMID: 34551455 DOI: 10.1002/term.3246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. Many research investigations have been conducted with the aims to uncover the diabetic wound healing mechanisms, develop novel therapeutics, and screen bioactive wound dressings in order to improve the current management of DFU. These would have not been possible without the utilization of an appropriate wound model, especially in a diabetic wound context. This review focuses on the different in vitro research models used in DFU investigations such as the 2D scratch wound assay, 3D skin model, and 3D angiogenesis model as well as their limitations. The current efforts and challenges to apply the 2D and 3D in vitro models in a hyperglycemic context to provide insights into DFU modeling will be reviewed. Perspectives of utilizing 3D bioprinting and skin-on-the-chip model as a diabetic wound model in the future will also be highlighted. By leveraging knowledge from past experiences and current research, an improved experimental model for DFU is anticipated to be established in near future.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Li X, Zhao X, Xing J, Li J, He F, Hou R, Wang Q, Yin G, Li X, Zhang K. Different epigenome regulation and transcriptome expression of CD4 + and CD8 + T cells from monozygotic twins discordant for psoriasis. Australas J Dermatol 2020; 61:e388-e394. [PMID: 32441058 DOI: 10.1111/ajd.13325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Psoriasis is an immunodeficient skin disorder, and its exact pathogenesis is unclear. Monozygotic twins are presumed to be genetically identical, and their phenotypic differences may be due to transcriptional regulation or epigenome factors. To explain the inconsistency between twins, we have collected 3 pairs of monozygotic twins who are discordant for psoriasis. METHODS Reduced representation of bisulfite sequencing and RNA sequencing was conducted using the peripheral blood of the twins to find the genes playing important roles in psoriasis pathogenesis. RESULTS As a result, we found methylation diversity in four genes (MAST3, MTOR, PM20D1 and ZNF99), and we also found 9 differentially expressed genes (PPAN-P2RY11, PIGV, RPS18, TMEM121, KIF21A, KCNH2, WNT10B, PRX and CDH24) by RNA sequencing. According to the conjoint analysis of methylation and the mRNA results, PTPN6, CCL5, NFATC1 and PRF1 were found to be closely related to psoriasis. We then annotated the genes to explore the associations between these genes and psoriasis. CONCLUSIONS These findings provide a better understanding of psoriasis that can improve the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Fusheng He
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Comparison of suction blistering and tape stripping for analysis of epidermal genes, proteins and lipids. Arch Dermatol Res 2017; 309:757-765. [DOI: 10.1007/s00403-017-1776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
|
6
|
Ge H, Zhu H, Xu N, Zhang D, Ou J, Wang G, Fang X, Zhou J, Song Y, Bai C. Increased Lung Ischemia-Reperfusion Injury in Aquaporin 1-Null Mice Is Mediated via Decreased Hypoxia-Inducible Factor 2α Stability. Am J Respir Cell Mol Biol 2017; 54:882-91. [PMID: 26649797 DOI: 10.1165/rcmb.2014-0363oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aquaporin (AQP) 1, a water channel protein expressed widely in vascular endothelia, has been shown to regulate cell migration, angiogenesis, and organ regeneration. Even though its role in the pathogenesis of lung ischemia-reperfusion (IR) injury has been defined, the functional role of AQP1 during long-term IR resolution remains to be clarified. Here, we found that AQP1 expression was increased at late time points (7-14 d) after IR and colocalized with endothelial cell (EC) marker CD31. Compared with IR in wild-type mice, IR in Aqp1(-/-) mice had significantly enhanced leukocyte infiltration, collagen deposition, and microvascular permeability, as well as inhibited angiogenic factor expression. AQP1 knockdown repressed hypoxia-inducible factor (HIF)-2α protein stability. HIF-2α overexpression rescued the angiogenic factor expression in pulmonary microvascular ECs with AQP1 knockdown exposed to hypoxia-reoxygenation. Furthermore, AQP1 knockdown suppressed cellular viability and capillary tube formation, and enhanced permeability in pulmonary microvascular ECs, which were partly rescued by HIF-2α overexpression. Thus, this study demonstrates that AQP1 deficiency delays long-term IR resolution, partly through repressing angiogenesis mediated by destabilizing HIF-2α. These results suggest that AQP1 participates in long-term IR resolution, at least in part by promoting angiogenesis.
Collapse
Affiliation(s)
- Haiyan Ge
- 1 Department of Pulmonary Medicine, Huadong Hospital, and.,2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huili Zhu
- 1 Department of Pulmonary Medicine, Huadong Hospital, and
| | - Nuo Xu
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxian Ou
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guifang Wang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaocong Fang
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M, Spiller KL. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology 2017; 222:847-856. [PMID: 28318799 DOI: 10.1016/j.imbio.2017.02.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/15/2017] [Indexed: 01/23/2023]
Abstract
Alternatively activated "M2" macrophages are believed to function during late stages of wound healing, behaving in an anti-inflammatory manner to mediate the resolution of the pro-inflammatory response caused by "M1" macrophages. However, the differences between two main subtypes of M2 macrophages, namely interleukin-4 (IL-4)-stimulated "M2a" macrophages and IL-10-stimulated "M2c" macrophages, are not well understood. M2a macrophages are characterized by their ability to inhibit inflammation and contribute to the stabilization of angiogenesis. However, the role and temporal profile of M2c macrophages in wound healing are not known. Therefore, we performed next generation sequencing (RNA-seq) to identify biological functions and gene expression signatures of macrophages polarized in vitro with IL-10 to the M2c phenotype in comparison to M1 and M2a macrophages and an unactivated control (M0). We then explored the expression of these gene signatures in a publicly available data set of human wound healing. RNA-seq analysis showed that hundreds of genes were upregulated in M2c macrophages compared to the M0 control, with thousands of alternative splicing events. Following validation by Nanostring, 39 genes were found to be upregulated by M2c macrophages compared to the M0 control, and 17 genes were significantly upregulated relative to the M0, M1, and M2a phenotypes (using an adjusted p-value cutoff of 0.05 and fold change cutoff of 1.5). Many of the identified M2c-specific genes are associated with angiogenesis, matrix remodeling, and phagocytosis, including CD163, MMP8, TIMP1, VCAN, SERPINA1, MARCO, PLOD2, PCOCLE2 and F5. Analysis of the macrophage-conditioned media for secretion of matrix-remodeling proteins showed that M2c macrophages secreted higher levels of MMP7, MMP8, and TIMP1 compared to the other phenotypes. Interestingly, temporal gene expression analysis of a publicly available microarray data set of human wound healing showed that M2c-related genes were upregulated at early times after injury, similar to M1-related genes, while M2a-related genes appeared at later stages or were downregulated after injury. While further studies are required to confirm the timing and role of M2c macrophages in vivo, these results suggest that M2c macrophages may function at early stages of wound healing. Identification of markers of the M2c phenotype will allow more detailed investigations into the role of M2c macrophages in vivo.
Collapse
Affiliation(s)
- Emily B Lurier
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Donald Dalton
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N Broad St. Philadelphia, PA, 19107, USA
| | - Pichai Raman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Deparment of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sina Nassiri
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Nicole M Ferraro
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Ramakrishan Rajagopalan
- Deparment of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Chiu WC, Chiou TJ, Chung MJ, Chiang AN. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase. PLoS One 2016; 11:e0161950. [PMID: 27579889 PMCID: PMC5006999 DOI: 10.1371/journal.pone.0161950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Wen-Chin Chiu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Chung
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Stamm A, Reimers K, Strauß S, Vogt P, Scheper T, Pepelanova I. In vitro wound healing assays – state of the art. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2016-0002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractWound healing is essential for the restoration of the barrier function of the skin. During this process, cells at the wound edges proliferate and migrate, leading to re-epithelialization of the wound surface. Wound healing assays are used to study the molecular mechanisms of wound repair, as well as in the investigation of potential therapeutics and treatments for improved healing. Numerous models of wound healing have been developed in recent years. In this review, we focus on in vitro assays, as they allow a fast, cost-efficient and ethical alternative to animal models. This paper gives a general overview of 2-dimensional (2D) cell monolayer assays by providing a description of injury methods, as well as an evaluation of each assay’s strengths and limitations. We include a section reviewing assays performed in 3-dimensional (3D) culture, which employ bioengineered skin models to capture complex wound healing mechanics like cell-matrix interactions and the interplay of different cell types in the healing process. Finally, we discuss in detail available software tools and algorithms for data analysis.
Collapse
|