1
|
Cao Y, Qin Y, Cheng Q, Zhong J, Han B, Li Y. Bifunctional nanomaterial enabled high-specific isolation of urinary exosomes for cervical cancer metabolomics analysis and biomarker discovery. Talanta 2024; 285:127280. [PMID: 39613490 DOI: 10.1016/j.talanta.2024.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Cervical cancer (CC) remains a critical public health issue, highlighting the importance of early detection. However, current methods such as cytological and HPV testing face challenges of invasiveness and low patient compliance. Exosomes, emerging as crucial in cancer diagnosis, offer promise due to their noninvasive, highly specificity, and abundant biomarkers. However, isolating exosomes efficiently remains challenging. In this study, we designed and synthesized a bifunctional affinity nanomaterial Fe3O4 @CD63-CLIKKPF, based on the synergistic interaction between its modified aptamer CD63 and peptide CLIKKPF, and CD63 protein and PS of exosomes which can achieve high specificity and high yield separation of urinary exosomes. Notably, the co-modified aptamer CD63 and peptide CLIKKPF not only enable efficient exosome isolation by leveraging dual-affinity mechanisms through a synergistic "AND" logic analysis, but also could be achieved on the Fe3O4 in one-step reaction at room temperature via Fe-S bonding. Combined with LC-MS/MS, we conducted exosome metabolomics analysis in healthy individuals and CC patients across various stages, and machine learning models demonstrated accurate classification (accuracy >0.822) and prediction capabilities for CC. Furthermore, six key metabolites indicative of CC progression were identified and validated in additional patient samples, highlighting their potential as biomarkers. Overall, this study establishes a novel method for exosome metabolomics in CC, offering insights for non-invasive early diagnosis and progression prediction on a large scale.
Collapse
Affiliation(s)
- Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Qunxian Cheng
- Department of Gynecology and Obstetrics, Minhang Hospital, Fudan University, Shanghai, China
| | - Jialiang Zhong
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
An J, Park H, Ju M, Woo Y, Seo Y, Min J, Lee T. An updated review on the development of a nanomaterial-based field-effect transistor-type biosensors to detect exosomes for cancer diagnosis. Talanta 2024; 279:126604. [PMID: 39068827 DOI: 10.1016/j.talanta.2024.126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.
Collapse
Affiliation(s)
- Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Minyoung Ju
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoshep Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
4
|
Li M, Sun G, Zhao J, Pu S, Lv Y, Wang Y, Li Y, Zhao X, Wang Y, Yang S, Cheng T, Cheng H. Small extracellular vesicles derived from acute myeloid leukemia cells promote leukemogenesis by transferring miR-221-3p. Haematologica 2024; 109:3209-3221. [PMID: 38450521 PMCID: PMC11443396 DOI: 10.3324/haematol.2023.284145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEV) transfer cargos between cells and participate in various physiological and pathological processes through their autocrine and paracrine effects. However, the pathological mechanisms employed by sEV-encapsulated microRNA (miRNA) in acute myeloid leukemia (AML) are still obscure. In this study, we aimed to investigate the effects of AML cell-derived sEV (AML-sEV) on AML cells and delineate the underlying mechanisms. We initially used high-throughput sequencing to identify miR-221-3p as the miRNA prominently enriched in AML-sEV. Our findings revealed that miR-221-3p promoted AML cell proliferation and leukemogenesis by accelerating cell cycle entry and inhibiting apoptosis. Furthermore, Gbp2 was confirmed as a target gene of miR-221-3p by dual luciferase reporter assays and rescue experiments. Additionally, AML-sEV impaired the clonogenicity, particularly the erythroid differentiation ability, of hematopoietic stem and progenitor cells. Taken together, our findings reveal how sEV-delivered miRNA contribute to AML pathogenesis, which can be exploited as a potential therapeutic target to attenuate AML progression.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Proliferation
- Apoptosis/genetics
- Cell Line, Tumor
- Mice
- Animals
- Gene Expression Regulation, Leukemic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Jinlian Zhao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming
| | - Shuangshuang Pu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematologyand Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Celland Regenerative Medicine, Peking Union Medical College, Tianjin
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming.
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin.
| |
Collapse
|
5
|
González-Moyotl N, Huesca-Gómez C, Torres-Paz YE, Fuentevilla-Álvarez G, Romero-Maldonado S, Sámano R, Soto ME, Martínez-Rosas M, Domínguez-López A, Gamboa R. Paediatrics congenital heart disease is associated with plasma miRNAs. Pediatr Res 2024; 96:1220-1227. [PMID: 38755412 DOI: 10.1038/s41390-024-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Congenital heart disease (CHD) are the most common malformations from birth. The severity of the different forms of CHD varies extensively from superficial mild lesions with follow-up for decades without any treatment to complex cyanotic malformations requiring urgent surgical intervention. microRNAs have been found to be crucial in cardiac development, giving rise to possible phenotypes in CHD. OBJECTIVES We aimed to evaluate the expression of miRNAs in 86 children with CHD and divided into cyanotic and non-cyanotic heart defects and 110 controls. METHODS The miRNAs expression of miR-21-5p, miR-155-5p, miR-221-3p, miR-26a-5p, and miR-144-3p were analyzed by RT-qPCR. In addition, the expressions of the miRNAs studied were correlated with the clinical characteristics of both the children and the mothers. RESULTS The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p significantly differed between CHD and control subjects. Moreover, miR-21-5p levels were higher in patients with cyanotic versus non-cyanotic CHD patients. CONCLUSION The expression levels of miRNAs of pediatric patients with CHD could participating in the development of cardiac malformations. Additionally, the high expression of miR-21-5p in cyanotic CHD children may be related to greater severity of illness relative to non-cyanotic CHD. IMPACT This study adds to knowledge of the association between microRNAs and congenital heart disease in children. The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p of pediatric patients with CHD could be involved in the development and phenotype present in pediatric patients. miR-21-5p may help to discriminate between cyanotic and non-cyanotic CHD. In the future, the miRNAs studied could have applications as clinical biomarkers.
Collapse
Affiliation(s)
- Nadia González-Moyotl
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
- Maestría en Ciencias de la Salud, Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11350, México
| | - Claudia Huesca-Gómez
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | - Yazmín Estela Torres-Paz
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | | | - Silvia Romero-Maldonado
- Instituto Nacional de Perinatología, Coordination of the Human Milk Bank, México City, 11000, México
| | - Reyna Sámano
- Instituto Nacional de Perinatología. Coordination of Nutrition and Bioprogramming, México City, 11000, México
| | - María Elena Soto
- Instituto Nacional de Cardiología Ignacio Chávez. Research Direction, México City, 14380, México
| | - Martín Martínez-Rosas
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México
| | - Aarón Domínguez-López
- Maestría en Ciencias de la Salud, Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, 11350, México
| | - Ricardo Gamboa
- Instituto Nacional de Cardiología Ignacio Chávez. Department of Physiology, México City, 14380, México.
| |
Collapse
|
6
|
Lyu K, Tang B, Huang B, Xu Z, Liu T, Fang R, Li Y, Chen Y, Chen L, Zhang M, Chen L, Lei W. Exosomal circPVT1 promotes angiogenesis in laryngeal cancer by activating the Rap1b-VEGFR2 signaling pathway. Carcinogenesis 2024; 45:642-657. [PMID: 38824399 DOI: 10.1093/carcin/bgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Laryngeal cancer (LC) is the second most common head and neck cancer and has a decreasing 5-year survival rate worldwide. Circular RNAs (circRNAs) regulate cancer development in diverse ways based on their distinct biogenesis mechanisms and expansive regulatory roles. However, currently, there is little research on how exosomal circRNAs are involved in the development of LC. Here, we demonstrated that circPVT1, a circRNA derived from the well-studied long noncoding RNA PVT1, is correlated with disease progression in LC and promotes angiogenesis both in vivo and in vitro. Mechanistically, circPVT1 is loaded into LC cell-secreted exosomes and taken up by vascular epithelium cells. By sponging miR-30c-5p, exosomal circPVT1 promotes Rap1b expression, which dramatically enhances vascular endothelial growth factor receptor 2 and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, ultimately resulting in the induction of angiogenesis. Furthermore, our xenograft models demonstrated that the combination of short hairpin RNA-circPVT1 and cetuximab showed high efficacy in inhibiting tumor growth and angiogenesis. Collectively, these findings uncover a novel mechanism of exosomal circRNA-mediated angiogenesis modulation and provide a preclinical rationale for testing this analogous combination in patients with LC.
Collapse
Affiliation(s)
- Kexing Lyu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Bingjie Tang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
- Department of Otorhinolaryngology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, No. 82, Qinglong Street, Qingyang District, Chengdu, Sichuan 610014, China
| | - Bixue Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Zhenglin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Tesi Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Ruihua Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Yi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Lin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Minjuan Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Lifan Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|
7
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Guo W, Liu W, Wang J, Fan X. Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer. Heliyon 2024; 10:e35063. [PMID: 39165926 PMCID: PMC11334669 DOI: 10.1016/j.heliyon.2024.e35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Cervical cancer is a serious threat to women's health. Extracellular vesicles exist in most body fluids for communication between organisms, having different effects on the occurrence, development, angiogenesis, and metastasis of cervical cancer, and are expected to become new targets for treatment. Macrophages are natural immune systems closely linked to the development of cervical cancer. In recent years, an increasing number of studies have confirmed the role of extracellular vesicles and macrophages in the gynecologic tumor environment. This article reviews the mechanism of action and application prospects of extracellular vesicles and macrophages in the cervical cancer microenvironment. In addition, the relationship between extracellular vesicles and macrophages from different sources is described, which provides ideas for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wen Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Wenqiong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Junqing Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xinran Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
9
|
Shi R, Jia P, Zhao S, Yuan H, Shi J, Zhao H. Upregulation of circ-IGF1R increased therapeutic effect of hypoxia-pretreated ADSC-derived extracellular vesicle by regulating miR-503-5p/HK2/VEGFA axis. J Cell Mol Med 2024; 28:e18471. [PMID: 38984951 PMCID: PMC11234642 DOI: 10.1111/jcmm.18471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 07/11/2024] Open
Abstract
Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.
Collapse
Affiliation(s)
- Rongfeng Shi
- Department of Interventional and Vascular SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
- Institute of Interventional and Vascular TherapyAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
| | - Pengfei Jia
- Department of Interventional and Vascular SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
| | - Suming Zhao
- Department of Interventional and Vascular SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
| | - Hongxin Yuan
- Department of Interventional and Vascular SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
| | - Jiahai Shi
- Department of Thoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic DiseasesNantongJiangsuP.R. China
| | - Hui Zhao
- Department of Interventional and Vascular SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
- Institute of Interventional and Vascular TherapyAffiliated Hospital of Nantong UniversityNantongJiangsuP.R. China
| |
Collapse
|
10
|
Jerala M, Remic T, Hauptman N, Homan P, Zajšek N, Petitjean M, Chen L, Zidar N. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn's disease. Sci Rep 2024; 14:13810. [PMID: 38877292 PMCID: PMC11178913 DOI: 10.1038/s41598-024-64672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.
Collapse
Affiliation(s)
- Miha Jerala
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tinkara Remic
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Pia Homan
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Neža Zajšek
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | | | - Li Chen
- PharmaNest Inc., Princeton, NJ, 08540, USA
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Li A, Wu J. High STAT4 expression correlates with poor prognosis in acute myeloid leukemia and facilitates disease progression by upregulating VEGFA expression. Open Med (Wars) 2024; 19:20230840. [PMID: 38737443 PMCID: PMC11087736 DOI: 10.1515/med-2023-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 05/14/2024] Open
Abstract
The aim of our study is to explore the mechanism of transcription-4 (STAT4) in acute myeloid leukemia (AML). STAT4 level in AML bone marrow samples/cells was analyzed using bioinformatics and quantitative real-time PCR. The correlation between high STAT4 expression and the prognosis of AML patients was analyzed. The viability, apoptosis, and angiogenesis of AML cells were detected. The levels of STAT4, vascular endothelial growth factor A (VEGFA), and apoptosis-related proteins (Bcl-2 and Bax) in transfected AML cells were examined. STAT4 level was upregulated in AML. STAT4 silencing decreased the viability and angiogenesis, yet increased the apoptosis of AML cells, while overexpressed STAT4 did conversely. VEGFA silencing counteracted the impacts of overexpressed STAT4 upon promoting viability and angiogenesis as well as repressing the apoptosis of AML cells. High STAT4 expression was correlated with poor prognosis of AML patients and facilitated disease progression via upregulating VEGFA expression.
Collapse
Affiliation(s)
- Aohang Li
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Wu
- Research Ward, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
12
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
El-Lateef AEA, El-Shemi AGA, Hassanein RAM, Iqbal MS, Albloshi SA. Analysis of Correlation Between LncRNA TDRG1 Expression and its Prognosis in Cervical Carcinoma Tissues. Appl Biochem Biotechnol 2024; 196:1079-1088. [PMID: 37318688 DOI: 10.1007/s12010-023-04496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
To explore and analyze the correlation between LncRNA TDRG1 expression degree and the prognosis of cervical carcinoma tissues. The cervical cancer tissues and para-carcinoma tissues of 106 patients with cervical carcinoma surgically removed in our hospital were chosen as specimens. LncRNA TDRG1 expression in cervical carcinoma tissues and para-carcinoma tissues was inspected by real-time fluorescence quantitative PCR, and the correlation between LncRNA TDRG1 and the clinicopathological parameters and disease prognosis was analyzed. The relative expression of LncRNA TDRG1 in cervical carcinoma tissues was critically gone up (P < 0.05) compared to para-carcinoma tissues. The relative expression of LncRNA TDRG1 in cervical carcinoma was correlated with FIGO staging, lymph node metastasis, infiltrating depth of cervical basal, and the differentiation of cancer cells (P < 0.05). According to the results of the Kaplan-Meier curve and Log-rank test, the overall survival conditions of subjects with low-lncRNA TDRG1 were superior to that of those with high-lncRNA TDRG1 expression (P < 0.05). The expression of LncRNA TDRG1 in cervical carcinoma tissues and the clinicopathological features in predicting the overall survival (OS) in sufferers with cervical carcinoma were investigated by the Cox regression model. LncRNA TDRG1 expression in cervical carcinoma tissues is tightly associated with the progression and prognosis of cervical carcinoma, which may be a latent biological indicator for clinical diagnosis and prognosis of cervical carcinoma.
Collapse
Affiliation(s)
- Amal Ezzat Abd El-Lateef
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Mecca, Saudi Arabia.
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Adel Galal Ahmed El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Mecca, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Raafat Abdel Moneim Hassanein
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Mecca, Saudi Arabia
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammad Shahid Iqbal
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm-Alqura University, Mecca, Saudi Arabia
| | - Shatha Abdullah Albloshi
- College of Medicine, King Abdulaazzi Bin University, Riyadh, Saudi Arabia.
- Department Family and Community Medicine, College of Medicine - King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Wang Y, Xie Y, Wang X, Yang N, Wu Z, Zhang X. Tumor cells-derived extracellular vesicles carry circ_0064516 competitively inhibit microRNA-6805-3p and promote cervical cancer angiogenesis and tumor growth. Expert Opin Ther Targets 2024; 28:97-112. [PMID: 38270096 DOI: 10.1080/14728222.2024.2306353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The current study tried to elucidate the regulatory role of tumor cell-derived exosomes (Exos)-circ_0064516 in angiogenesis and growth of cervical cancer. RESEARCH DESIGN AND METHODS Related cirRNAs and downstream target genes were identified through bioinformatics analysis. Exos were isolated from cervical cancer cell line CaSki, followed by co-cultured with human umbilical vein endothelial cells (HUVECs). Then, the roles of circ_0064516, miR-6805-3p, and MAPK1 in migration and angiogenesis of HUVECs were assayed. Furthermore, xenografted tumors were transplanted into nude mice for in vivo validation. RESULTS In vitro assay validated highly expressed circ_0064516 in cervical cancer cells. Tumor cell-derived Exos carried circ_0064516 to HUVECs. circ_0064516 increased MAPK1 expression by binding to miR-6805-3p, thus enhancing migration and angiogenesis. Exos containing circ_0064516 also promoted tumorigenesis of cervical cancer cells in nude mice. CONCLUSIONS We confirmed the oncogenic role of tumor cell-derived Exos carrying circ_0064516 in cervical cancer progression through miR-6805-3p/MAPK1.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, Sichuan, China
| | - Nian Yang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Wen S, Lv X, Li P, Li J, Qin D. Analysis of cancer-associated fibroblasts in cervical cancer by single-cell RNA sequencing. Aging (Albany NY) 2023; 15:15340-15359. [PMID: 38157264 PMCID: PMC10781451 DOI: 10.18632/aging.205353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Since scRNA-seq is an effective tool to study tumor heterogeneity, this paper intends to reveal the differences of cervical cancer in patients at the individual cell level by scRNA-seq, and focus on the biological functions of cancer-associated fibroblasts (CAFs) in cervical cancer, facilitating the provision of a new interpretation of the heterogeneity of the microenvironment of cervical cancer, and an in-depth exploration of the pathogenesis of cervical cancer as well as pursuit of effective means of treatment intake. METHODS 3 cervical cancer specimens were collected by clinical surgery for single-cell RNA sequencing. Cell suspensions of fresh cervical cancer tissues were prepared, and cDNA libraries were created and sequenced on the machine. Furthermore, the sequencing data were analyzed using bioinformatics, including descending clustering of cells, identification of cell populations, mimetic time series analysis, inferCNV, cell communication analysis, and identification of transcription factors. RESULTS A total of 9 cell types were identified, encompassing T cells, epithelial cells, smooth muscle cells, CAFs, endothelial cells, macrophages, B cells, lymphocytes, and plasma cells. CAFs were further divided into three cell subtypes, named type1 cells, type2 cells, and type3 cells. With key transcription factors for the three cells, TCF21, ZC3H11A, and MYEF2 obtained, this research revealed the communication relationship between CAFs and several other cells, and found an important role of CAFs in the MK signaling pathway. CONCLUSIONS scRNA-seq technology contributed to exploring the tumor heterogeneity of cervical cancer more deeply, and also further gaining insight into the biological functions of CAFs in cervical cancer.
Collapse
Affiliation(s)
- Shuang Wen
- Reproductive Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuefeng Lv
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengxiang Li
- Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Jinpeng Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongchun Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Barani A, Beikverdi K, Mashhadi B, Parsapour N, Rezaei M, Javid P, Azadeh M. Transcription Analysis of the THBS2 Gene through Regulation by Potential Noncoding Diagnostic Biomarkers and Oncogenes of Gastric Cancer in the ECM-Receptor Interaction Signaling Pathway: Integrated System Biology and Experimental Investigation. Int J Genomics 2023; 2023:5583231. [PMID: 38162289 PMCID: PMC10756743 DOI: 10.1155/2023/5583231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Background Gastric cancer (GC) is the second most frequent cause of cancer-related death worldwide and the fourth most common malignancy. Despite significant improvements in patient survival over the past few decades, the prognosis for patients with GC remains dismal because of the high recurrence rate. In this comprehensive system biology and experimental investigation, we aimed to find new novel diagnostic biomarkers of GC through a regulatory RNA interaction network. Methods Gene expression, coexpression, and survival analyses were performed using microarray and RNAseq datasets (analyzed by RStudio, GEPIA2, and ENCORI). RNA interaction analysis was performed using miRWalk and ENCORI online databases. Gene set enrichment analysis (GSEA) was performed to find related signaling pathways of up- and downregulated genes in the microarray dataset. Gene ontology and pathway enrichment analysis were performed by the enrichr database. Protein interaction analysis was performed by STRING online database. Validation of expression and coexpression analyses was performed using a qRT-PCR experiment. Results Based on bioinformatics analyses, THBS2 (FC: 7.14, FDR < 0.0001) has a significantly high expression in GC samples. lncRNAs BAIAP2-AS1, TSIX, and LINC01215 have RNA interaction with THBS2. BAIAP2-AS1 (FC: 1.44, FDR: 0.018), TSIX (FC: 1.34, FDR: 0.038), and LINC01215 (FC: 1.19, FDR: 0.046) have significant upregulation in GC samples. THBS2 has a significant role in the regulation of the ECM-receptor signaling pathway. miR-4677-5p has a significant RNA interaction with THBS2. The expression level of THBS2, BAIAP2-AS1, TSIX, and LINC01215 has a nonsignificant negative correlation with the survival rate of GC patients (HR: 0.28, logrank p: 0.28). qRT-PCR experiment validates mentioned bioinformatics expression analyses. BAIAP2-AS1 (AUC: 0.7136, p value: 0.0096), TSIX (AUC: 0.7456, p value: 0.0029), and LINC01215 (AUC: 0.7872, p value: 0.0005) could be acceptable diagnostic biomarkers of GC. Conclusion BAIAP2-AS1, lncRNA LINC01215, lncRNA TSIX, and miR-4677-5p might modulate the ECM-receptor signaling pathway via regulation of THBS2 expression level, as the high-expressed noncoding RNAs in GC. Furthermore, mentioned lncRNAs could be considered potential diagnostic biomarkers of GC.
Collapse
Affiliation(s)
- Ali Barani
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Department of Biosciences, University of Milan, Milan, Italy
| | - Kamyar Beikverdi
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Benyamin Mashhadi
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Naeimeh Parsapour
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Mohammad Rezaei
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Pegah Javid
- Zist Fanavari Novin Biotechnology Institute, Isfahan, Iran
- Molecular Genetics Research Lab, Persian Gulf Biotechnology Park, Qeshm Island, Hormozgan, Iran
| | | |
Collapse
|
17
|
Huang J, Wang C, Hou Y, Tian Y, Li Y, Zhang H, Zhang L, Li W. Molecular mechanisms of Thrombospondin-2 modulates tumor vasculogenic mimicry by PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2023; 167:115455. [PMID: 37696083 DOI: 10.1016/j.biopha.2023.115455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Vasculogenic mimicry (VM) differs from the classical tumor angiogenesis model. VM does not depend on endothelial cells; instead, highly aggressive tumor cells mimic endothelial cells to form a vascular-like channel structure. VM mediated by tumor cells is significantly and positively associated with a poor prognosis and low survival rates in patients with highly aggressive cancer. In the treatment of highly aggressive malignancies, the presence of VM is considered an important reason for the unsatisfactory clinical efficacy of anti-tumor-angiogenesis therapy (e.g., therapy targeting vascular endothelial growth factor A). Many targeted therapeutic drugs based on traditional tumor blood vessels have been used clinically. Although some progress has been made in certain tumors, problems such as drug resistance have restricted the expected therapeutic effects. Thrombospondin 2 (THBS2) is one of the most important genes associated with angiogenesis, and this gene exerts angiogenesis-related functions through the PI3K/AKT signaling pathway. Although the PI3K/AKT/mTOR signaling pathway is closely related to the progression of VM, the mechanism by which the promising biomarker THBS2 participates in and regulates tumor VM by activating the PI3K/AKT/mTOR signaling pathway is unclear. In this review, we analyze the monomer structure and biological activity of THBS2, the structure and potential synthesis mechanisms of VM, and the complex mechanisms between THBS2, the PI3K/AKT/mTOR signaling pathway, and VM.
Collapse
Affiliation(s)
- Ju Huang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Congcong Wang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yixuan Hou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuanyuan Tian
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
18
|
Yu Y, Huang X, Liang C, Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol 2023; 957:176007. [PMID: 37611839 DOI: 10.1016/j.ejphar.2023.176007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Prostate cancer (PCa) is among the most commonly diagnosed solid cancers in male adults. However, most anti-angiogenic therapies and immunotherapies fail to achieve durable remission in advanced PCa. Integrative analysis indicated that Sema3A was negatively correlated with the pathological malignancy and was involved in angiogenesis, cell adhesion, and immune infiltrates in PCa. Sema3A significantly inhibited vascular endothelial growth factor (VEGFA)-induced colony formation, cell proliferation, and PD-L1 expression in PCa cells. Network pharmacological analysis demonstrated that evodiamine, a natural alkaloid compound derived from Evodiae fructus fruits, might regulate Sema3A, lipid metabolism, and monocarboxylic acid transport signaling of PCa. Evodiamine evidently inhibited PCa cell viability in a time-dose-dependent manner. Furthermore, evodiamine impaired angiogenesis by increasing Sema3A expression, and induced ferroptosis by reducing glutathione peroxidase 4 (GPX4) expression, which could be reversed by the ferroptosis blocker ferrostatin-1. Lactate treatment increased hypoxia-inducible factor (HIF)-1α and PD-L1 expressions while restricting Sema3A expression in PCa cells, which could be reversed by silencing monocarboxylate transporter 4 (MCT4) expression. Moreover, evodiamine markedly blocked lactate-induced angiogenesis by restricting histone lactylation and expression of HIF1A in PCa cells, further enhancing Sema3A transcription while inhibiting that of PD-L1. In vivo, evodiamine remarkably inhibited PCa xenograft growth in nude mice, repressing expressions of HIF1α, H3K18la, GPX4, PD-L1, and proliferation, while hindering angiogenesis by increasing Sema3A expression. Therefore, Sema3A represents an essential antineoplastic biomarker, while evodiamine may act as a metabolic-epigenetic modulator, as well as a promising agent in either PCa anti-angiogenic therapy or immunotherapy.
Collapse
Affiliation(s)
- Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xing Huang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
19
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
20
|
Gu L, Feng C, Li M, Hong Z, Di W, Qiu L. Exosomal NOX1 promotes tumor-associated macrophage M2 polarization-mediated cancer progression by stimulating ROS production in cervical cancer: a preliminary study. Eur J Med Res 2023; 28:323. [PMID: 37679792 PMCID: PMC10483767 DOI: 10.1186/s40001-023-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cervical cancer the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 for high rates of recurrence and metastasis. Identification of novel targets could aid in the prediction and treatment of cervical cancer. NADPH oxidase 1 (NOX1) gene-mediated production of reactive oxygen species (ROS) could induce migration and invasion of cervical cancer cells. Tumor-associated macrophages (TAMs) play important roles in cervical cancer. Tumor cell-derived exosomes mediate signal transduction between the tumor and tumor microenvironment. Elucidation of the mechanisms of NOX1-carrying exosomes involved in the regulation of TAMs may provide valuable insights into the progression of cervical cancer. METHODS Uniformly standardized mRNA data of pan-carcinoma from the UCSC database were downloaded. Expression of NOX1 in tumor and adjacent normal tissues for each tumor type was calculated using R language software and significant differences were analyzed. SNP data set were downloaded for all TCGA samples processed using MuTect2 software from GDC. Cell experiment and animal tumor formation experiment were used to evaluate whether exosomal NOX1 stimulating ROS production to promote M2 polarization of TAM in cervical cancer. RESULTS NOX1 is highly expressed with a low mutational frequency in pan-carcinoma. Upregulation of NOX1 may be associated with infiltration of M2-type macrophages in cervical cancer tissues, and NOX1 promotes malignant features of cervical cancer cells by stimulating ROS production. Exosomal NOX1 promotes M2 polarization of by stimulating ROS production. Exosomal NOX1 enhances progression of cervical cancer and M2 polarization in vivo by stimulating ROS production. CONCLUSION Exosomal NOX1 promotes TAM M2 polarization-mediated cancer progression through stimulating ROS production in cervical cancer.
Collapse
Affiliation(s)
- Liying Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyang Feng
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Li
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zubei Hong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhang X, Huang Y, Liu Y, Liu Y, He X, Ma X, Gan C, Zou X, Wang S, Shu K, Lei T, Zhang H. Local transplantation of mesenchymal stem cells improves encephalo-myo-synangiosis-mediated collateral neovascularization in chronic brain ischemia. Stem Cell Res Ther 2023; 14:233. [PMID: 37667370 PMCID: PMC10478472 DOI: 10.1186/s13287-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.
Collapse
Affiliation(s)
- Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
22
|
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ, Wang JP. Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci 2023; 10:1220193. [PMID: 37602326 PMCID: PMC10436220 DOI: 10.3389/fmolb.2023.1220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Jie Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying-Ke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lu-Shan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Diabate Ousmane
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Pu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Li Y, Liu F. The extracellular vesicles targeting tumor microenvironment: a promising therapeutic strategy for melanoma. Front Immunol 2023; 14:1200249. [PMID: 37575250 PMCID: PMC10419216 DOI: 10.3389/fimmu.2023.1200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small particles secreted by numerous cell types and circulate in almost all body fluids, acting as crucial messengers for cell-to-cell communication. EVs involves multiple physiological and pathological processes, including tumor progression, via their multiple cargoes. Therefore, EVs have become attractive candidates for the treatment of tumor, including melanoma. Notably, due to the crucial role of the tumor microenvironment (TME) in promoting tumor malignant phenotype, and the close intercellular communication in TME, EVs-based therapy by targeting TME has become a cutting-edge and prospective strategy for inhibiting melanoma progression and strengthening the anti-tumor immunity. In this review, we aimed to summarize and discuss the role of therapeutic EVs, which target the components of TME in melanoma, thereby providing insights into these promising clinical strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
24
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
25
|
Shi YJ, Fang YX, Tian TG, Chen WP, Sun Q, Guo FQ, Gong PQ, Li CM, Wang H, Hu ZQ, Li XX. Discovery of extracellular vesicle-delivered miR-185-5p in the plasma of patients as an indicator for advanced adenoma and colorectal cancer. J Transl Med 2023; 21:421. [PMID: 37386465 PMCID: PMC10308673 DOI: 10.1186/s12967-023-04249-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND We aimed to evaluate whether extracellular vesicles (EV)-derived microRNAs (miRNAs) can be used as biomarkers for advanced adenoma (AA) and colorectal cancer (CRC). METHODS We detected the changes in the plasma EV-delivered miRNA profiles in healthy donor (HD), AA patient, and I-II stage CRC patient groups using miRNA deep sequencing assay. We performed the TaqMan miRNA assay using 173 plasma samples (two independent cohorts) from HDs, AA patients, and CRC patients to identify the candidate miRNA(s). The accuracy of candidate miRNA(s) in diagnosing AA and CRC was determined using the area under the receiver-operating characteristic curve (AUC) values. Logistic regression analysis was performed to evaluate the association of candidate miRNA(s) as an independent factor for the diagnosis of AA and CRC. The role of candidate miRNA(s) in the malignant progression of CRC was explored using functional assays. RESULTS We screened and identified four prospective EV-delivered miRNAs, including miR-185-5p, which were significantly upregulated or downregulated in AA vs. HD and CRC vs. AA groups. In two independent cohorts, miR-185-5p was the best potential biomarker with the AUCs of 0.737 (Cohort I) and 0.720 (Cohort II) for AA vs. HD diagnosis, 0.887 (Cohort I) and 0.803 (Cohort II) for CRC vs. HD diagnosis, and 0.700 (Cohort I) and 0.631 (Cohort II) for CRC vs. AA diagnosis. Finally, we demonstrated that the upregulated expression of miR-185-5p promoted the malignant progression of CRC. CONCLUSION EV-delivered miR-185-5p in the plasma of patients is a promising diagnostic biomarker for colorectal AA and CRC. Trial registration The study protocol was approved by the Ethics Committee of Changzheng Hospital, Naval Medical University, China (Ethics No. 2022SL005, Registration No. of China Clinical Trial Registration Center: ChiCTR220061592).
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
- Department of Anorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tong-Guan Tian
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Wei-Ping Chen
- Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qiang Sun
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Fang-Qi Guo
- Department of Ultrasound, Shanghai Fourth People' Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pi-Qing Gong
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Chun-Mei Li
- Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Hao Wang
- Department of Anorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zhi-Qian Hu
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Xin-Xing Li
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
26
|
Gu Y, Becker MA, Müller L, Reuss K, Umlauf F, Tang T, Menger MD, Laschke MW. MicroRNAs in Tumor Endothelial Cells: Regulation, Function and Therapeutic Applications. Cells 2023; 12:1692. [PMID: 37443725 PMCID: PMC10340284 DOI: 10.3390/cells12131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor endothelial cells (TECs) are key stromal components of the tumor microenvironment, and are essential for tumor angiogenesis, growth and metastasis. Accumulating evidence has shown that small single-stranded non-coding microRNAs (miRNAs) act as powerful endogenous regulators of TEC function and blood vessel formation. This systematic review provides an up-to-date overview of these endothelial miRNAs. Their expression is mainly regulated by hypoxia, pro-angiogenic factors, gap junctions and extracellular vesicles, as well as long non-coding RNAs and circular RNAs. In preclinical studies, they have been shown to modulate diverse fundamental angiogenesis-related signaling pathways and proteins, including the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway; the rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; the phosphoinositide 3-kinase (PI3K)/AKT pathway; and the transforming growth factor (TGF)-β/TGF-β receptor (TGFBR) pathway, as well as krüppel-like factors (KLFs), suppressor of cytokine signaling (SOCS) and metalloproteinases (MMPs). Accordingly, endothelial miRNAs represent promising targets for future anti-angiogenic cancer therapy. To achieve this, it will be necessary to further unravel the regulatory and functional networks of endothelial miRNAs and to develop safe and efficient TEC-specific miRNA delivery technologies.
Collapse
Affiliation(s)
- Yuan Gu
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Saar, Germany; (M.A.B.); (L.M.); (K.R.); (F.U.); (T.T.); (M.D.M.); (M.W.L.)
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou B, Guo W, Guo L, Li Y, Zheng Z, Huai Q, Tan F, Li Y, Xue Q, Ying J, Zhao L, Gao S, He J. Single-cell RNA-sequencing data reveals the genetic source of extracellular vesicles in esophageal squamous cell carcinoma. Pharmacol Res 2023; 192:106800. [PMID: 37217040 DOI: 10.1016/j.phrs.2023.106800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is invasive cancer and the complex mechanisms underlying carcinogenesis remain unclear. Extracellular vesicles (EVs), secreted by most cell types, serve as a critical factor in tumorigenesis via intercellular communications. Our study aims to investigate the cellular origin of EVs in ESCC, and unveil the unknown molecular and cellular mechanisms underlying cell-cell communications. Six ESCC patients were enrolled and single-cell RNA sequencing (scRNA-seq) analyses were conducted to screen different cell subpopulations. The genetic origin of EVs was tracked using the supernatant from different cellular extracts. Nanoparticle tracking analysis (NTA), western blot analysis, and transmission electron microscopy (TEM) were performed for validation. Using scRNA-seq analysis, eleven cell subpopulations were identified in ESCC. Differences in gene expression in EVs between malignant and non-malignant esophageal tissues were found. Our findings demonstrated that epithelial cells releasing EVs were the most prevalent in malignant tissues, while endothelial cells and fibroblasts releasing EVs were predominant in non-malignant tissues. Furthermore, the high levels of gene expression in EVs released from these cells were correlated significantly with a worse prognosis. Our findings revealed the genetic origin of EVs in malignant and non-malignant esophageal tissues and provided a comprehensive overview of the associated cell-cell interactions in ESCC.
Collapse
Affiliation(s)
- Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Mo Y, Liang Z, Lan L, Xiong X, Zhang C, Liu W, Huang H, Fan J, Yang L. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res 2023; 428:113621. [PMID: 37137462 DOI: 10.1016/j.yexcr.2023.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Tumor cells can promote angiogenesis by secreting extracellular vesicles (EVs). Meanwhile, tumor-derived EVs can carry long non-coding RNAs to activate pro-angiogenic signaling in endothelial cells. Here, we investigated the role of long non-coding RNA MCM3AP-AS1 carried by cervical cancer (CC) cell-derived EVs in the angiogenesis and the resultant tumor growth in CC, as well as the potential molecular mechanisms. LncRNAs significantly expressed in CC cell-derived EVs and CC were screened, followed by prediction of downstream target genes. EVs were isolated from HcerEpic and CaSki cell supernatants, followed by identification. The expression of MCM3AP-AS1 in CC was analyzed and its interaction with miR-93-p21 was confirmed. Following co-culture system, the role of MCM3AP-AS1 carried by EVs in HUVEC angiogenic ability, CC cell invasion and migration in vitro along with angiogenesis and tumorigenicity in vivo was assayed. MCM3AP-AS1 was overexpressed in CC cell-derived EVs as well as in CC tissues and cell lines. Cervical cancer cell-derived EVs could transfer MCM3AP-AS1 into HUVECs where MCM3AP-AS1 competitively bound to miR-93 and upregulate the expression of the miR-93 target p21 gene. Thus, MCM3AP-AS1 promoted angiogenesis of HUVECs. In the similar manner, MCM3AP-AS1 enhanced CC cell malignant properties. In nude mice, EVs-MCM3AP-AS1 induced angiogenesis and tumor growth. Overall, this study reveals that CC cell-derived EVs may transport MCM3AP-AS1 to promote angiogenesis and tumor growth in CC.
Collapse
Affiliation(s)
- Yuzhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China.
| | - Zhishan Liang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Liu Lan
- Department of Radiotherapy, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Haowei Huang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Jiangxia Fan
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| | - Li Yang
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, China
| |
Collapse
|
29
|
Tian W, Niu X, Feng F, Wang X, Wang J, Yao W, Zhang P. The promising roles of exosomal microRNAs in osteosarcoma: A new insight into the clinical therapy. Biomed Pharmacother 2023; 163:114771. [PMID: 37119740 DOI: 10.1016/j.biopha.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Osteosarcoma is the most common malignant bone sarcoma in children. Chemotherapy drugs resistance significantly hinders the overall survival of patients. Due to high biocompatibility and immunocompatibility, exosomes have been explored extensively. Multiple parent cells can actively secrete numerous exosomes, and the membrane structure of exosomes can protect miRNAs from degradation. Based on these characteristics, exosomal miRNAs play an important role in the occurrence, development, drug resistance. Therefore, in-depth exploration of exosome biogenesis and role of exosomal miRNAs will provide new strategies and targets for understanding the pathogenesis of osteosarcoma and overcoming chemotherapy drug resistance. Moreover, advancing evidences have showed that engineering modification could attribute stronger targeting to exosomes to deliver cargos to recipient cells more effectively. In this review, we focus on the mechanisms of exosomal miRNAs on the occurrence and development of osteosarcoma and the potential to function as tumor biomarkers for diagnosis and prognosis prediction. In addition, we also summarize recent advances in the clinical application values of engineering exosomes to provide novel ideas and directions for overcoming the chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Henan 450001, China
| | - Xin Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiaqiang Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
30
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
31
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
32
|
Xie L, Zhang K, You B, Yin H, Zhang P, Shan Y, Gu Z, Zhang Q. Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62:803-819. [PMID: 36929868 DOI: 10.1002/mc.23525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Collapse
Affiliation(s)
- Lixiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
33
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
34
|
Liu Y, Yang C, Chen S, Liu W, Liang J, He S, Hui J. Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther 2023; 30:437-449. [PMID: 36434177 DOI: 10.1038/s41417-022-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Bone metastasis is the most common complication responsible for most deaths in the advanced stages of prostate cancer (PCa). However, the exact mechanism of bone metastasis in PCa remains unelucidated. Herein, we explored the function and potential underlying mechanism of exosomal miR-375 in bone metastasis and tumor progression in PCa. This study revealed that miR-375 expression was markedly upregulated in advanced PCa with bone metastasis and metastatic PCa cell lines. Moreover, miR-375 showed high expression in PCa-derived exosomes and could be delivered to human mesenchymal stem cells (hMSCs) via exosomes. Mechanistically, miR-375 directly targeted DIP2C and upregulated the Wnt signaling pathway, thereby promoting osteoblastic differentiation in hMSCs. Furthermore, miR-375 promoted the proliferation, invasion, and migration of PCa cells in vitro and enhanced tumor progression and osteoblastic metastasis in vivo. Notably, the expression of miR-375, TCF-1, LEF-1, and β-catenin in was higher in PCa tissues with bone metastasis than in PCa tissues without bone metastasis and showed a continuous increase, whereas DIP2C, cyclin D1, and Axin2 showed an opposite expression pattern. In conclusion, our study suggests that cancer-derived exosomal miR-375 targets DIP2C, activates the Wnt signaling pathway, and promotes osteoblastic metastasis and PCa progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510810, Guangdong, China
| | - Changmou Yang
- Department of Urology, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516600, Guangdong, China.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shisheng Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Urology, Dongguan Tungwah Hospital, Dongguan, 523110, Guangdong, China
| | - Weihao Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingyi Liang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuhua He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jialiang Hui
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
35
|
Guo J, Jiang G, Chen J, Zhang M, Xiang K, Wang C, Jiang T, Kang Y, Sun Y, Xu X, Yang X, Chen Z. Tumor tissue derived extracellular vesicles promote diabetic wound healing. J Diabetes Complications 2023; 37:108435. [PMID: 36933279 DOI: 10.1016/j.jdiacomp.2023.108435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The diabetic wound nowadays remains a major public health challenge, which is characterized by overproduced reactive oxygen species (ROS). However, the current therapy for diabetic wounds is limited for reliable data in the general application. The growth of tumors has been revealed to share parallels with wound healing. Extracellular vesicles (EVs) derived from breast cancer have been reported to promote cell proliferation, migration and angiogenesis. The tumor tissue-derived EVs (tTi-EVs) of breast cancer performance a feature inheritance from original tissue and might accelerate the diabetic wound healing. We wonder whether the tumor-derived EVs are able to accelerate diabetic wound healing. In this study, tTi-EVs were extracted from breast cancer tissue via ultracentrifugation and size exclusion. Subsequently, tTi-EVs reversed the H2O2-induced inhibition of fibroblast proliferation and migration. Moreover, tTi-EVs significantly accelerated wound closure, collagen deposition and neovascularization, and finally promoted wound healing in diabetic mice. The tTi-EVs also reduced the level of oxidative stress in vitro and in vivo. Besides, the biosafety of tTi-EVs were preliminarily confirmed by blood tests and morphological analysis of major organs. Collectively, the present study proves that tTi-EVs can suppress oxidative stress and facilitate diabetic wound healing, which puts forward a novel function of tTi-EVs and provides potential treatment for diabetic wounds.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
36
|
Identification of a Novel Angiogenesis Signalling circSCRG1/miR-1268b/NR4A1 Pathway in Atherosclerosis and the Regulatory Effects of TMP-PF In Vitro. Molecules 2023; 28:molecules28031271. [PMID: 36770940 PMCID: PMC9919304 DOI: 10.3390/molecules28031271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Angiogenesis contributes to plaque instability in atherosclerosis and further increases cardio-cerebrovascular risk. Circular RNAs (circRNAs) are promising biomarkers and potential therapeutic targets for atherosclerosis. Previous studies have demonstrated that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination treatment (TMP-PF) inhibited oxidized low-density lipoprotein (ox-LDL)-induced angiogenesis in vitro. However, whether circRNAs regulate angiogenesis in atherosclerosis and whether TMP-PF can regulate angiogenesis-related target circRNAs in atherosclerosis are unknown. In this study, human RNA sequencing (RNA-seq) data were analysed to identify differentially expressed (DE) circRNAs in atherosclerosis and to obtain angiogenesis-associated circRNA-microRNA (miRNA)-messenger RNA (mRNA) networks. Target circRNA-related mechanisms in angiogenesis in atherosclerosis and the regulatory effects of TMP-PF on target circRNA signalling were studied in ox-LDL-induced human umbilical vein endothelial cells (HUVECs) by cell proliferation, migration, tube formation, and luciferase reporter assays, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. A novel circRNA (circular stimulator of chondrogenesis 1, circSCRG1) was initially identified associated with angiogenesis in atherosclerosis, and circSCRG1 silencing up-regulated miR-1268b expression, increased nuclear receptor subfamily 4 group A member 1 (NR4A1) expression and then promoted ox-LDL-induced angiogenesis. TMP-PF (1 μmol/L TMP combined with 10 μmol/L PF) up-regulated circSCRG1 expression, mediated miR-1268b to suppress NR4A1 expression and then inhibited ox-LDL-induced angiogenesis. However, circSCRG1 silencing abolished the inhibitory effects of TMP-PF on ox-LDL-induced angiogenesis, which were rescued by the miR-1268b inhibitor. In conclusion, circSCRG1 might serve as a new target regulating angiogenesis in atherosclerosis via the circSCRG1/miR-1268b/NR4A1 axis and TMP-PF could regulate the circSCRG1/miR-1268b/NR4A1 axis to inhibit angiogenesis in atherosclerosis in vitro, indicating a novel angiogenesis signalling circSCRG1/miR-1268b/NR4A1 pathway in atherosclerosis and the regulatory effects of TMP-PF, which might provide a new pharmaceutical strategy to combat atherosclerotic plaque instability.
Collapse
|
37
|
Zhang C, Chen W, Pan S, Zhang S, Xie H, Zhang Z, Lei W, Bao L, You Y. SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR. Cell Death Dis 2023; 9:2. [PMID: 36609569 PMCID: PMC9823008 DOI: 10.1038/s41420-022-01262-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023]
Abstract
Reliable detection of circulating small extracellular vesicles (SEVs) and their miRNA cargo has been needed to develop potential specific non-invasive diagnostic and therapeutic marker for cancer metastasis. Here, we detected miR-6750, the precise molecular function of which was largely unknown, was significantly enriched in serum-SEVs from normal volunteers vs. patients with nasopharyngeal carcinoma (NPC). And we determined that miR-6750-SEVs attenuated NPC metastasis. Subsequently, miR-6750-SEVs was proven to inhibit angiogenesis and activate macrophage toward to M1 phenotype to inhibit pre-metastatic niche formation. After analyzing the expression level of miR-6750 in NPC cells, HUVECs and macrophage, we found that once miR-6750 level in NPC cells was close to or higher than normal nasopharyngeal epithelial cells (NP69), miR-6750-SEVs would be transferred from NPC cells to macrophage and then to HUVECs to modulate metastatic niche. Moreover, in vitro assays and BALB/c mouse tumor models revealed that miR-6750 directly targeted mannose 6-phosphate receptor (M6PR). Taken together, our findings revealed that miR-6750-M6PR axis can mediate NPC metastasis by remodeling tumor microenvironment (TME) via SEVs, which give novel sights to pathogenesis of NPC.
Collapse
Affiliation(s)
- Caiming Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenhui Chen
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Si Pan
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Haijing Xie
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zixiang Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Lei
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lili Bao
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiwen You
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
38
|
Zhou Z, Wu X, Zhan R, Li X, Cheng D, Chen L, Wang T, Yu H, Zhang G, Tang X. Exosomal epidermal growth factor receptor is involved in HPV-16 E7-induced epithelial-mesenchymal transition of non-small cell lung cancer cells: A driver of signaling in vivo? Cancer Biol Ther 2022; 23:1-13. [PMID: 36224722 PMCID: PMC9559043 DOI: 10.1080/15384047.2022.2133332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Our previous studies have demonstrated that human papillomavirus (HPV)-16 E7 oncoprotein promoted epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells. Moreover, recent studies have found that exosomes can mediate EMT of NSCLC cells and epidermal growth factor receptor (EGFR) is related to the progression of NSCLC. Here, we further investigated the role of exosomal EGFR in HPV-16 E7-induced EMT of NSCLC cells. Our results showed that the exosomes derived from the stable HPV-16 E7-overexpressing A549 and NCI-H460 NSCLC cells (E7 Exo) significantly increased migration, invasion, and proliferation abilities of NSCLC cells as compared with the exosomes derived from empty vector-infected NSCLC cells (ev Exo). Moreover, both in vitro and in vivo results demonstrated that E7 Exo dramatically enhanced EMT of NSCLC cells and promoted the growth of subcutaneous NSCLC xenografts. Additionally, HPV-16 E7 enhanced the expression of EGFR and p-EGFR in both NSCLC cells and exosomes. Furthermore, the inhibition of EGFR activation or exosome secretion suppressed E7 Exo-induced migration, invasion, and EMT of NSCLC. Moreover, 12 kinds of differentially expressed miRNAs between E7 Exo and ev Exo (fold change≥2, P ≤ .05) were screened out, of which 7 miRNAs were up-regulated while 5 miRNAs were down-regulated in A549 E7 Exo. Taken together, our findings suggest that exosomal EGFR is involved in HPV-16 E7-induced EMT of NSCLC cells, which may play a key role in the progression of HPV-related NSCLC.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Xiaofeng Wu
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Center for Laboratory Medicine, Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Riming Zhan
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Center for Laboratory Medicine, Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Dazhao Cheng
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Li Chen
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Tianyu Wang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Hua Yu
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Guihong Zhang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang, China,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China,CONTACT Xudong Tang ; Institute of Biochemistry and Molecular Biology, Guangdong Medical University, 2 Wenming Donglu, Xiashan, Zhanjiang, Guangdong524023, P.R. China
| |
Collapse
|
39
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
40
|
Peng S, Liu C, Fan X, Zhu J, Zhang S, Zhou X, Wang T, Gao F, Zhu W. Analysis of aberrant miRNA-mRNA interaction networks in prostate cancer to conjecture its molecular mechanisms. Cancer Biomark 2022; 35:395-407. [PMID: 36373308 DOI: 10.3233/cbm-220051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) capable of post-transcriptionally regulating mRNA expression are essential to tumor occurrence and progression. OBJECTIVE This study aims to find negatively regulatory miRNA-mRNA pairs in prostate adenocarcinoma (PRAD). METHODS Combining The Cancer Genome Atlas (TCGA) RNA-Seq data with Gene Expression Omnibus (GEO) mRNA/miRNA expression profiles, differently expressed miRNA/mRNA (DE-miRNAs/DE-mRNAs) were identified. MiRNA-mRNA pairs were screened by miRTarBase and TarBase, databases collecting experimentally confirmed miRNA-mRNA pairs, and verified in 30 paired prostate specimens by real-time reverse transcription polymerase chain reaction (RT-qPCR). The diagnostic values of miRNA-mRNA pairs were measured by receiver operation characteristic (ROC) curve and Decision Curve Analysis (DCA). DAVID-mirPath database and Connectivity Map were employed in GO/KEGG analysis and compounds research. Interactions between miRNA-mRNA pairs and phenotypic features were analyzed with correlation heatmap in hiplot. RESULTS Based on TCGA RNA-Seq data, 22 miRNA and 14 mRNA GEO datasets, 67 (20 down and 47 up) miRNAs and 351 (139 up and 212 down) mRNAs were selected. After screening from 2 databases, 8 miRNA (up)-mRNA (down) and 7 miRNA (down)-mRNA (up) pairs were identified with Pearson's correlation in TCGA. By external validation, miR-221-3p (down)/GALNT3 (up) and miR-20a-5p (up)/FRMD6 (down) were chosen. The model combing 4 signatures possessed better diagnostic value. These two miRNA-mRNA pairs were significantly connected with immune cells fraction and tumor immune microenvironment. CONCLUSIONS The diagnostic model containing 2 negatively regulatory miRNA-mRNA pairs was established to distinguish PRADs from normal controls.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingchen Fan
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingfeng Zhu
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Gao
- Department of Osteology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
42
|
Meagher NS, Gorringe KL, Wakefield M, Bolithon A, Pang CNI, Chiu DS, Anglesio MS, Mallitt KA, Doherty JA, Harris HR, Schildkraut JM, Berchuck A, Cushing-Haugen KL, Chezar K, Chou A, Tan A, Alsop J, Barlow E, Beckmann MW, Boros J, Bowtell DD, Brand AH, Brenton JD, Campbell I, Cheasley D, Cohen J, Cybulski C, Elishaev E, Erber R, Farrell R, Fischer A, Fu Z, Gilks B, Gill AJ, Gourley C, Grube M, Harnett PR, Hartmann A, Hettiaratchi A, Høgdall CK, Huzarski T, Jakubowska A, Jimenez-Linan M, Kennedy CJ, Kim BG, Kim JW, Kim JH, Klett K, Koziak JM, Lai T, Laslavic A, Lester J, Leung Y, Li N, Liauw W, Lim BW, Linder A, Lubiński J, Mahale S, Mateoiu C, McInerny S, Menkiszak J, Minoo P, Mittelstadt S, Morris D, Orsulic S, Park SY, Pearce CL, Pearson JV, Pike MC, Quinn CM, Mohan GR, Rao J, Riggan MJ, Ruebner M, Salfinger S, Scott CL, Shah M, Steed H, Stewart CJ, Subramanian D, Sung S, Tang K, Timpson P, Ward RL, Wiedenhoefer R, Thorne H, Cohen PA, Crowe P, Fasching PA, Gronwald J, Hawkins NJ, Høgdall E, Huntsman DG, James PA, Karlan BY, Kelemen LE, Kommoss S, Konecny GE, Modugno F, Park SK, Staebler A, Sundfeldt K, Wu AH, Talhouk A, Pharoah PD, Anderson L, DeFazio A, Köbel M, Friedlander ML, Ramus SJ. Gene-Expression Profiling of Mucinous Ovarian Tumors and Comparison with Upper and Lower Gastrointestinal Tumors Identifies Markers Associated with Adverse Outcomes. Clin Cancer Res 2022; 28:5383-5395. [PMID: 36222710 PMCID: PMC9751776 DOI: 10.1158/1078-0432.ccr-22-1206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04-7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04-1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01-1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies.
Collapse
Affiliation(s)
- Nicola S. Meagher
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Kylie L. Gorringe
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Bioinformatics Unit, Children's Medical Research Institute, Westmead, Sydney, Australia
| | - Derek S. Chiu
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael S. Anglesio
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kylie-Ann Mallitt
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Centre for Big Data Research in Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ksenia Chezar
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Angela Chou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Adeline Tan
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Western Women's Pathology, Western Diagnostic Pathology, Wembley, Western Australia, Australia
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ellen Barlow
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Alison H. Brand
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joshua Cohen
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Rhonda Farrell
- The University of Sydney, Sydney, New South Wales, Australia
- Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Anna Fischer
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Zhuxuan Fu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony J. Gill
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Arndt Hartmann
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Anusha Hettiaratchi
- The Health Precincts Biobank (formerly the Health Science Alliance Biobank), UNSW Biospecimen Services, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Claus K. Høgdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Department of Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Catherine J. Kennedy
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kayla Klett
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Tiffany Lai
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Angela Laslavic
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Yee Leung
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Department of Gynaecological Oncology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
- Australia New Zealand Gynaecological Oncology Group, Camperdown, New South Wales, Australia
| | - Na Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Winston Liauw
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Sydney, New South Wales, Australia
| | - Belle W.X. Lim
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anna Linder
- Department of Obstetrics and Gynecology, Inst of Clinical Science, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Sakshi Mahale
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantina Mateoiu
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simone McInerny
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Parham Minoo
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Suzana Mittelstadt
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - David Morris
- St George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center Institute for Cancer Control, Goyang, Republic of Korea
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Carmel M. Quinn
- The Health Precincts Biobank (formerly the Health Science Alliance Biobank), UNSW Biospecimen Services, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ganendra Raj Mohan
- Department of Gynaecological Oncology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
- School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Stuart Salfinger
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Clare L. Scott
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Colin J.R. Stewart
- School for Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | | | - Soseul Sung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Katrina Tang
- Department of Anatomical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robyn L. Ward
- The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekka Wiedenhoefer
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Heather Thorne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Paul A. Cohen
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Philip Crowe
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Department of Surgery, Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Nicholas J. Hawkins
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David G. Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul A. James
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Linda E. Kelemen
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Gottfried E. Konecny
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sue K. Park
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Inst of Clinical Science, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Aline Talhouk
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Lyndal Anderson
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Michael L. Friedlander
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Susan J. Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Wang X, Huang D, Wu J, Li Z, Yi X, Zhong T. The Biological Effect of Small Extracellular Vesicles on Colorectal Cancer Metastasis. Cells 2022; 11:cells11244071. [PMID: 36552835 PMCID: PMC9777375 DOI: 10.3390/cells11244071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is a malignancy that seriously threatens human health, and metastasis from CRC is a major cause of death and poor prognosis for patients. Studying the potential mechanisms of small extracellular vesicles (sEVs) in tumor development may provide new options for early and effective diagnosis and treatment of CRC metastasis. In this review, we systematically describe how sEVs mediate epithelial mesenchymal transition (EMT), reconfigure the tumor microenvironment (TME), modulate the immune system, and alter vascular permeability and angiogenesis to promote CRC metastasis. We also discuss the current difficulties in studying sEVs and propose new ideas.
Collapse
Affiliation(s)
- Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-07978266042
| |
Collapse
|
44
|
Cancer-derived exosomal miR-197-3p confers angiogenesis via targeting TIMP2/3 in lung adenocarcinoma metastasis. Cell Death Dis 2022; 13:1032. [PMID: 36494333 PMCID: PMC9734149 DOI: 10.1038/s41419-022-05420-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Cancer-derived exosomal miRNAs are implicated in tumorigenesis and development of lung adenocarcinoma (LUAD). The objective of this study is to unravel the biological function of exosomal miR-197-3p in LUAD metastasis. qRT-PCR showed that elevated miR-197-3p in LUAD tissues was positively correlated with LUAD metastasis. CCK-8, tube formation, transwell and wound healing assays revealed that exosomal miR-197-3p from LUAD cells promoted the proliferation, angiogenesis and migration of HUVECs in vitro. LUAD cells-derived exosomal miR-197-3p also facilitated tumor growth and angiogenesis in LUAD cells-derived tumor xenograft model. TIMP2 and TIMP3 were identified as target genes of miR-197-3p in HUVECs by bioinformatics analysis and luciferase reporter assay. Functional studies illustrated that exosomal miR-197-3p promoted angiogenesis and migration via targeting TIMP2 and TIMP3 in HUVECs. In vivo data further supported that exosomal miR-197-3p promoted lung metastasis via TIMP2/3-mediated angiogenesis. In conclusion, LUAD cells-derived exosomal miR-197-3p conferred angiogenesis via targeting TIMP2/3 in LUAD metastasis.
Collapse
|
45
|
Zhang R, Zou Y, Luo J. Application of Extracellular Vesicles in Gynecologic Cancer Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120740. [PMID: 36550946 PMCID: PMC9774372 DOI: 10.3390/bioengineering9120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Ovarian, cervical, and endometrial cancer are the three most common gynecological malignancies that seriously threaten women's health. With the development of molecular biology technology, immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment. Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in intercellular communication and in the regulation of various biological process. Several studies have shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This article reviews the progress of research into extracellular vesicles in common gynecologic tumors and discusses the role of extracellular vesicles in gynecologic tumor treatment.
Collapse
Affiliation(s)
- Renwen Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Zou
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
46
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
47
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
48
|
HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer. Int J Biol Macromol 2022; 222:2225-2243. [DOI: 10.1016/j.ijbiomac.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
49
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
50
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|