1
|
Zhang QW, Lin XL, Dai ZH, Zhao R, Hou YC, Liang Q, Zhang Y, Ge ZZ. Hypoxia and low-glucose environments co-induced HGDILnc1 promote glycolysis and angiogenesis. Cell Death Discov 2024; 10:132. [PMID: 38472215 DOI: 10.1038/s41420-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Small bowel vascular malformation disease (SBVM) commonly causes obscure gastrointestinal bleeding (OGIB). However, the pathogenetic mechanism and the role of lncRNAs in SBVM remain largely unknown. Here, we found that hypoxia and low-glucose environments co-augment angiogenesis and existed in SBVM. Mechanistically, hypoxia and low-glucose environments supported angiogenesis via activation of hypoxia and glucose deprivation-induced lncRNA (HGDILnc1) transcription by increasing binding of the NeuroD1 transcription factor to the HGDILnc1 promoter. Raised HGDILnc1 acted as a suppressor of α-Enolase 1 (ENO1) small ubiquitin-like modifier modification (SUMOylation)-triggered ubiquitination, and an activator of transcription of Aldolase C (ALDOC) via upregulation of Histone H2B lysine 16 acetylation (H2BK16ac) level in the promoter of ALDOC, and consequently promoting glycolysis and angiogenesis. Moreover, HGDILnc1 was clinically positively correlated with Neurogenic differentiation 1 (NeuroD1), ENO1, and ALDOC in SBVM tissues, and could function as a biomarker for SBVM diagnosis and therapy. These findings suggest that hypoxia and low-glucose environments were present in SBVM tissues, and co-augmented angiogenesis. Hypoxia and low-glucose environments co-induced HGDILnc1, which is higher expressed in SBVM tissue compared with normal tissue, could promoted glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Zi-Hao Dai
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhao
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Chao Hou
- Department of Gastroenterology, Shanghai Nineth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
2
|
Yabe M, Karakida T, Onuma K, Yamamoto R, Chiba-Ohkuma R, Asada S, Yamakoshi Y, Gomi K. Synergistic effect of FGF-2 and TGF-β1 on the mineralization of human umbilical cord perivascular cells. Arch Oral Biol 2023; 156:105826. [PMID: 37898061 DOI: 10.1016/j.archoralbio.2023.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE Human umbilical cord perivascular cells (HUCPVCs) are derived from the human umbilical cord perivascular tissue and are expected to replace mesenchymal stromal cells in the future. We investigated the synergistic effects of fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 1 (TGF-β1) on HUCPVC mineralization. DESIGN We prepared HUCPVCs with (FGF(+)HUCPVCs) or without FGF-2 (FGF(-)HUCPVCs) in the presence of activated vitamin D3, a bone morphogenic protein inhibitor, and TGF-β1. We examined the cell proliferative capacity, expression of various hard tissue-forming cell gene markers, and mineralization induction ability and identified the crystalline phases of the mineralized nodules. RESULTS FGF(+)HUCPVCs exhibited higher intracellular alkaline phosphatase (ALP) gene expression and ALP activity, and their cell proliferation rate was higher than that of FGF(-)HUCPVCs. The expression levels of osteoblast marker genes increased in FGF(+)HUCPVCs, whereas those of elastic fiber and muscle cell markers increased in FGF(-)HUCPVCs. The expression of genes related to matrix vesicle-mediated mineralization was increased in FGF(+)HUCPVCs. While FGF(-)HUCPVCs displayed myofibroblast-like properties and could not induce mineralization, FGF(+)HUCPVCs demonstrated the ability to produce mineralized nodules. The resulting mineralized nodules consisted of hydroxyapatite as the major phase and minor amounts of octacalcium phosphate. The mineralized nodules exhibited the morphological characteristics of bone hydroxyapatite, composed of fibrous hydroxyapatite nanorods and polycrystalline sheets. CONCLUSION We found that FGF-2 synergizes with TGF-β1 and is a key factor in the differentiation of HUCPVCs into osteoblast-like cells. Thus, HUCPVCs can potentially serve as a new stem cell source for future bone regeneration and dental treatments.
Collapse
Affiliation(s)
- Masahiro Yabe
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Sakurako Asada
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuhiro Gomi
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
3
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
4
|
Shuster-Hyman H, Siddiqui F, Gallagher D, Gauthier-Fisher A, Librach CL. Time course and mechanistic analysis of human umbilical cord perivascular cell mitigation of lipopolysaccharide-induced systemic and neurological inflammation. Cytotherapy 2023; 25:125-137. [PMID: 36473795 DOI: 10.1016/j.jcyt.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate. This study was designed to evaluate the time course and mechanisms by which HUCPVCs mitigate lipopolysaccharide (LPS)-induced systemic and neurological inflammation in immunocompetent mice. To explore the underlying mechanisms, the authors investigated the biodistribution and fate of HUCPVCs. METHODS Male C57BL/6 mice were randomly allocated to four groups: control, LPS, HUCPVCs or LPS + HUCPVCs. Quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and cytokine arrays were used to assess changes in pro-inflammatory mediators systemically and in the brain. Depressive-like behavioral changes were evaluated via a forced swim test. Quantum dot (qDot) labeling and immunohistochemistry were used to assess the biodistribution and fate of HUCPVCs and interactions with recipient innate immune cells. RESULTS A single intravenously delivered dose of HUCPVCs significantly reduced the systemic inflammation induced by LPS within the first 24 h after administration. HUCPVC treatment abrogated the upregulated expression of pro-inflammatory genes in the hippocampus and cortex and attenuated depressive-like behavior induced by LPS treatment. Biodistribution analysis revealed that HUCPVC-derived qDots rapidly accumulated in the lungs and demonstrated limited in vivo persistence. Furthermore, qDot signals were associated with major recipient innate immune cells and promoted a shift in macrophages toward a regulatory phenotype in the lungs. CONCLUSIONS Overall, this study demonstrates that HUCPVCs can successfully reduce systemic and neurological inflammation induced by LPS within the first 24 h after administration. Biodistribution and fate analyses suggest a critical role for the innate immune system in the HUCPVC-based immunomodulation mechanism.
Collapse
Affiliation(s)
- Hannah Shuster-Hyman
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Clifford L Librach
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
6
|
Ma X, Wang S, Cheng H, Ouyang H, Ma X. Melatonin Attenuates Ischemia/Reperfusion-Induced Oxidative Stress by Activating Mitochondrial Fusion in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7105181. [PMID: 35047108 PMCID: PMC8763517 DOI: 10.1155/2022/7105181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Shengchi Wang
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Hui Cheng
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Haichun Ouyang
- Department of Cardiology, The Seventh Affiliated Hospital, Southern Medical University, China
| | - Xiaoning Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
7
|
FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal 2022; 92:110249. [DOI: 10.1016/j.cellsig.2022.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
|
8
|
Development and Characterization of Alkaline Phosphatase-Positive Human Umbilical Cord Perivascular Cells. Cells 2021; 10:cells10113011. [PMID: 34831233 PMCID: PMC8616437 DOI: 10.3390/cells10113011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Human umbilical cord perivascular cells (HUCPVCs), harvested from human umbilical cord perivascular tissue, show potential for future use as an alternative to mesenchymal stromal cells. Here, we present the results for the characterization of the properties alkaline phosphatase-positive HUCPVCs (ALP(+)-HUCPVCs). These ALP(+)-HUCPVCs were created from HUCPVCs in this study by culturing in the presence of activated vitamin D3, an inhibitor of bone morphogenetic protein signaling and transforming growth factor-beta1 (TGF-β1). The morphological characteristics, cell proliferation, gene expression, and mineralization-inducing ability of ALP(+)-HUCPVCs were investigated at the morphological, biological, and genetic levels. ALP(+)-HUCPVCs possess high ALP gene expression and activity in cells and a slow rate of cell growth. The morphology of ALP(+)-HUCPVCs is fibroblast-like, with an increase in actin filaments containing alpha-smooth muscle actin. In addition to ALP expression, the gene expression levels of type I collagen, osteopontin, elastin, fibrillin-1, and cluster of differentiation 90 are increased in ALP(+)-HUCPVCs. ALP(+)-HUCPVCs do not have the ability to induce mineralization nodules, which may be due to the restriction of phosphate uptake into matrix vesicles. Moreover, ALP(+)-HUCPVCs may produce anti-mineralization substances. We conclude that ALP(+)-HUCPVCs induced from HUCPVCs by a TGF-β1 stimulation possess myofibroblast-like properties that have little mineralization-inducing ability.
Collapse
|
9
|
Cheng D, Zheng J, Hu F, Lv W, Lu C. Abnormal Mitochondria-Endoplasmic Reticulum Communication Promotes Myocardial Infarction. Front Physiol 2021; 12:717187. [PMID: 34413791 PMCID: PMC8369510 DOI: 10.3389/fphys.2021.717187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 01/06/2023] Open
Abstract
Myocardial infarction is characterized by cardiomyocyte death, and can be exacerbated by mitochondrial damage and endoplasmic reticulum injury. In the present study, we investigated whether communication between mitochondria and the endoplasmic reticulum contributes to cardiomyocyte death after myocardial infarction. Our data demonstrated that hypoxia treatment (mimicking myocardial infarction) promoted cardiomyocyte death by inducing the c-Jun N-terminal kinase (JNK) pathway. The activation of JNK under hypoxic conditions was dependent on overproduction of mitochondrial reactive oxygen species (mtROS) in cardiomyocytes, and mitochondrial division was identified as the upstream inducer of mtROS overproduction. Silencing mitochondrial division activators, such as B cell receptor associated protein 31 (BAP31) and mitochondrial fission 1 (Fis1), repressed mitochondrial division, thereby inhibiting mtROS overproduction and preventing JNK-induced cardiomyocyte death under hypoxic conditions. These data revealed that a novel death-inducing mechanism involving the BAP31/Fis1/mtROS/JNK axis promotes hypoxia-induced cardiomyocyte damage. Considering that BAP31 is localized within the endoplasmic reticulum and Fis1 is localized in mitochondria, abnormal mitochondria-endoplasmic reticulum communication may be a useful therapeutic target after myocardial infarction.
Collapse
Affiliation(s)
- Degang Cheng
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Jia Zheng
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Fang Hu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Wei Lv
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
10
|
Jiang X, Cai S, Jin Y, Wu F, He J, Wu X, Tan Y, Wang Y. Irisin Attenuates Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in the H9C2 Cellular Model of Septic Cardiomyopathy through Augmenting Fundc1-Dependent Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2989974. [PMID: 34457111 PMCID: PMC8390168 DOI: 10.1155/2021/2989974] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
In the present study, we used lipopolysaccharide- (LPS-) stimulated H9C2 cardiomyocytes to investigate whether irisin treatment attenuates septic cardiomyopathy via Fundc1-related mitophagy. Fundc1 levels and mitophagy were significantly reduced in LPS-stimulated H9C2 cardiomyocytes but were significantly increased by irisin treatment. Irisin significantly increased ATP production and the activities of mitochondrial complexes I and III in the LPS-stimulated cardiomyocytes. Irisin also improved glucose metabolism and significantly reduced LPS-induced levels of reactive oxygen species by increasing the activities of antioxidant enzymes, glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as levels of reduced glutathione (GSH). TUNEL assays showed that irisin significantly reduced LPS-stimulated cardiomyocyte apoptosis by suppressing the activation of caspase-3 and caspase-9. However, the beneficial effects of irisin on oxidative stress, mitochondrial metabolism, and viability of LPS-stimulated H9C2 cardiomyocytes were abolished by silencing Fundc1. These results demonstrate that irisin abrogates mitochondrial dysfunction, oxidative stress, and apoptosis through Fundc1-related mitophagy in LPS-stimulated H9C2 cardiomyocytes. This suggests irisin is a potentially useful treatment for septic cardiomyopathy, though further investigations are necessary to confirm our findings.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xixuan Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Melatonin Attenuates Cardiac Ischemia-Reperfusion Injury through Modulation of IP3R-Mediated Mitochondria-ER Contact. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1370862. [PMID: 34422206 PMCID: PMC8371645 DOI: 10.1155/2021/1370862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
Although the interplay between mitochondria and ER has been identified as a crucial regulator of cellular homeostasis, the pathogenic impact of alterations in mitochondria-ER contact sites (MERCS) during myocardial postischemic reperfusion (I/R) injury remains incompletely understood. Therefore, in our study, we explored the beneficial role played by melatonin in protecting cardiomyocytes against reperfusion injury via stabilizing mitochondria-ER interaction. In vitro exposure of H9C2 rat cardiomyocytes to hypoxia/reoxygenation (H/R) augmented mitochondrial ROS synthesis, suppressed both mitochondrial potential and ATP generation, and increased the mitochondrial permeability transition pore (mPTP) opening rate. Furthermore, H/R exposure upregulated the protein content of CHOP and caspase-12, two markers of ER stress, and enhanced the transcription of main MERCS tethering proteins, namely, Fis1, BAP31, Mfn2, and IP3R. Interestingly, all the above changes could be attenuated or reversed by melatonin treatment. Suggesting that melatonin-induced cardioprotection works through normalization of mitochondria-ER interaction, overexpression of IP3R abolished the protective actions offered by melatonin on mitochondria-ER fitness. These results expand our knowledge on the cardioprotective actions of melatonin during myocardial postischemic reperfusion damage and suggest that novel, more effective treatments for acute myocardial reperfusion injury might be achieved through modulation of mitochondria-ER interaction in cardiac cells.
Collapse
|
12
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Ji H, Wu D, Kimberlee O, Li R, Qian G. Molecular Perspectives of Mitophagy in Myocardial Stress: Pathophysiology and Therapeutic Targets. Front Physiol 2021; 12:700585. [PMID: 34276422 PMCID: PMC8279814 DOI: 10.3389/fphys.2021.700585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
A variety of complex risk factors and pathological mechanisms contribute to myocardial stress, which ultimately promotes the development of cardiovascular diseases, including acute cardiac insufficiency, myocardial ischemia, myocardial infarction, high-glycemic myocardial injury, and acute alcoholic cardiotoxicity. Myocardial stress is characterized by abnormal metabolism, excessive reactive oxygen species production, an insufficient energy supply, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. Mitochondria, the main organelles contributing to the energy supply of cardiomyocytes, are key determinants of cell survival and death. Mitophagy is important for cardiomyocyte function and metabolism because it removes damaged and aged mitochondria in a timely manner, thereby maintaining the proper number of normal mitochondria. In this review, we first introduce the general characteristics and regulatory mechanisms of mitophagy. We then describe the three classic mitophagy regulatory pathways and their involvement in myocardial stress. Finally, we discuss the two completely opposite effects of mitophagy on the fate of cardiomyocytes. Our summary of the molecular pathways underlying mitophagy in myocardial stress may provide therapeutic targets for myocardial protection interventions.
Collapse
Affiliation(s)
- Haizhe Ji
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - O'Maley Kimberlee
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Center, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
14
|
Wang Y, Jasper H, Toan S, Muid D, Chang X, Zhou H. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol 2021; 45:102049. [PMID: 34174558 PMCID: PMC8246635 DOI: 10.1016/j.redox.2021.102049] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a fundamental challenge in septic cardiomyopathy. Mitophagy and the mitochondrial unfolded protein response (UPRmt) are the predominant stress-responsive and protective mechanisms involved in repairing damaged mitochondria. Although mitochondrial homeostasis requires the coordinated actions of mitophagy and UPRmt, their molecular basis and interactive actions are poorly understood in sepsis-induced myocardial injury. Our investigations showed that lipopolysaccharide (LPS)-induced sepsis contributed to cardiac dysfunction and mitochondrial damage. Although both mitophagy and UPRmt were slightly activated by LPS in cardiomyocytes, their endogenous activation failed to prevent sepsis-mediated myocardial injury. However, administration of urolithin A, an inducer of mitophagy, obviously reduced sepsis-mediated cardiac depression by normalizing mitochondrial function. Interestingly, this beneficial action was undetectable in cardiomyocyte-specific FUNDC1 knockout (FUNDC1CKO) mice. Notably, supplementation with a mitophagy inducer had no impact on UPRmt, whereas genetic ablation of FUNDC1 significantly upregulated the expression of genes related to UPRmt in LPS-treated hearts. In contrast, enhancement of endogenous UPRmt through oligomycin administration reduced sepsis-mediated mitochondrial injury and myocardial dysfunction; this cardioprotective effect was imperceptible in FUNDC1CKO mice. Lastly, once UPRmt was inhibited, mitophagy-mediated protection of mitochondria and cardiomyocytes was partly blunted. Taken together, it is plausible that endogenous UPRmt and mitophagy are slightly activated by myocardial stress and they work together to sustain mitochondrial performance and cardiac function. Endogenous UPRmt, a downstream signal of mitophagy, played a compensatory role in maintaining mitochondrial homeostasis in the case of mitophagy inhibition. Although UPRmt activation had no negative impact on mitophagy, UPRmt inhibition compromised the partial cardioprotective actions of mitophagy. This study shows how mitophagy modulates UPRmt to attenuate inflammation-related myocardial injury and suggests the potential application of mitophagy and UPRmt targeting in the treatment of myocardial stress. Mitochondrial dysfunction is a fundamental challenge in septic cardiomyopathy. LPS-induced sepsis contributes to cardiac dysfunction and mitochondrial damage. Endogenous UPRmt and mitophagy could be slightly activated by myocardial stress. Mitophagy modulates UPRmt to attenuate inflammation-related myocardial injury. Mitophagy and UPRmt targeting can be applied in treatment of myocardial stress.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Heinrich Jasper
- Center for Molecular Medicine, Tarrant County College, TX, 76102, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - David Muid
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hao Zhou
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, 100853, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|