1
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
2
|
Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14:1386772. [PMID: 38737903 PMCID: PMC11082301 DOI: 10.3389/fonc.2024.1386772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangming Ding
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhang R, Yao Y, Gao H, Hu X. Mechanisms of angiogenesis in tumour. Front Oncol 2024; 14:1359069. [PMID: 38590656 PMCID: PMC10999665 DOI: 10.3389/fonc.2024.1359069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic factor-targeting drugs have been approved as first line agents in a variety of oncology treatments. Clinical drugs frequently target the VEGF signalling pathway during sprouting angiogenesis. Accumulating evidence suggests that tumours can evade antiangiogenic therapy through other angiogenesis mechanisms in addition to the vascular sprouting mechanism involving endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2) vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5) cancer stem cell-derived angiogenesis, and (6) bone marrow-derived angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely dependent on the VEGF signalling pathway. In clinical practice, the conversion of vascular mechanisms is closely related to the enhancement of tumour drug resistance, which often leads to clinical treatment failure. This article summarizes recent studies on six processes of tumour angiogenesis and provides suggestions for developing more effective techniques to improve the efficacy of antiangiogenic treatment.
Collapse
Affiliation(s)
| | | | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Wang S, Riedstra CP, Zhang Y, Anandh S, Dudley AC. PTEN-restoration abrogates brain colonisation and perivascular niche invasion by melanoma cells. Br J Cancer 2024; 130:555-567. [PMID: 38148377 PMCID: PMC10876963 DOI: 10.1038/s41416-023-02530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options. Highly invasive melanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence. PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described. METHODS We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion. RESULTS We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion. CONCLUSIONS PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma cells to both survive and spread along the brain vasculature.
Collapse
Affiliation(s)
- Sarah Wang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Caroline P Riedstra
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Yu Zhang
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Swetha Anandh
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
- The University of Virginia Comprehensive Cancer Center, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Xu Y, Ni F, Sun D, Peng Y, Zhao Y, Wu X, Li S, Qi X, He X, Li M, Zhou Y, Zhang C, Yan M, Yao C, Zhu S, Yang Y, An B, Yang C, Zhang G, Jiang W, Mi J, Chen X, Wei P, Tian G, Zhang Y. Glucagon Enhances Chemotherapy Efficacy By Inhibition of Tumor Vessels in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307271. [PMID: 38072640 PMCID: PMC10853751 DOI: 10.1002/advs.202307271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/19/2023] [Indexed: 02/10/2024]
Abstract
Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.
Collapse
|
6
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
7
|
Marines J, Lorenzini F, Kissa K, Fontenille L. Modelling 3D Tumour Microenvironment In Vivo: A Tool to Predict Cancer Fate. Curr Issues Mol Biol 2023; 45:9076-9083. [PMID: 37998746 PMCID: PMC10670573 DOI: 10.3390/cimb45110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Recently, many studies demonstrated the fundamental role of the tumour microenvironment (TME) in cancer progression. Here, we describe a method to visualize in 3D the behaviour of tumours in zebrafish embryos. We highlight two major actors of the TME, macrophages and vessels. This valuable tool is transposable to Patient-Derived Xenograft imaging in order to predict the fate of malignant tumours according to the dynamics of their TME.
Collapse
Affiliation(s)
- Johanna Marines
- AZELEAD, 377 rue du Pr Blayac, 34080 Montpellier, France; (J.M.); (F.L.)
- Molecular Basis of Inflammation Laboratory, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34090 Montpellier, France
| | | | - Karima Kissa
- VBIC, INSERM U1047, Université de Montpellier, 34090 Montpellier, France
| | - Laura Fontenille
- AZELEAD, 377 rue du Pr Blayac, 34080 Montpellier, France; (J.M.); (F.L.)
| |
Collapse
|
8
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Dudley AC, Griffioen AW. The modes of angiogenesis: an updated perspective. Angiogenesis 2023; 26:477-480. [PMID: 37640982 PMCID: PMC10777330 DOI: 10.1007/s10456-023-09895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Following the process of vasculogenesis during development, angiogenesis generates new vascular structures through a variety of different mechanisms or modes. These different modes of angiogenesis involve, for example, increasing microvasculature density by sprouting of endothelial cells, splitting of vessels to increase vascular surface area by intussusceptive angiogenesis, fusion of capillaries to increase blood flow by coalescent angiogenesis, and the recruitment of non-endothelial cells by vasculogenic mimicry. The recent reporting on coalescent angiogenesis as a new mode of vessel formation warrants a brief overview of angiogenesis mechanisms to provide a more complete picture. The journal Angiogenesis is devoted to the delineation of the different modes and mechanisms that collectively dictate blood vessel formation, inhibition, and function in health and disease.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, & The UVA Comprehensive Cancer Center, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Wang K, Liu X, Lian XL, Bao X, Li K. Editorial: Bioengineered gene and cell therapy for treating cardiovascular diseases. Front Bioeng Biotechnol 2023; 11:1250175. [PMID: 37600323 PMCID: PMC10436003 DOI: 10.3389/fbioe.2023.1250175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Kai Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xujie Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Xiaoping Bao
- Davdidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kailong Li
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Gupta J, Tayyib NA, Jalil AT, Hlail SH, Zabibah RS, Vokhidov UN, Alsaikhan F, Ramaiah P, Chinnasamy L, Kadhim MM. Angiogenesis and prostate cancer: MicroRNAs comes into view. Pathol Res Pract 2023; 248:154591. [PMID: 37343381 DOI: 10.1016/j.prp.2023.154591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/23/2023]
Abstract
Angiogenesis, the formation of new blood vessels, is an important stage in the growth of cancer. Extracellular matrix, endothelial cells, and soluble substances must be carefully coordinated during the multistep procedure of angiogenesis. Inducers and inhibitors have been found to control pretty much every phase. In addition to benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and angiogenesis have a critical role in the initiation and progression of prostate cancer. MicroRNA (miRNA) is endogenous, short, non-coding RNA molecules of almost 22 nucleotides play a role in regulating cellular processes and regulating several genes' expression. Through controlling endothelial migration, differentiation, death, and cell proliferation, miRNAs have a significant function in angiogenesis. A number of pathological and physiological processes, particularly prostate cancer's emergence, depend on the regulation of angiogenesis. Investigating the functions played with miRNAs in angiogenesis is crucial because it might result in the creation of novel prostate cancer therapies that entail regulating angiogenesis. The function of several miRNAs and its targeting genes engaged in cancer of the prostate angiogenesis will be reviewed in this review in light of the most recent developments. The potential clinical utility of miRNAs potentially a novel therapeutic targets will also be explored, as well as their capacity to control prostate cancer angiogenesis and the underlying mechanisms.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India.
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla 51001, Babylon, Iraq.
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ulug'bek N Vokhidov
- Department of ENT Diseases, Head of the Department of Quality Education, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| |
Collapse
|
13
|
Kim N, Ko Y, Shin Y, Park J, Lee AJ, Kim KW, Pyo J. Comprehensive Analysis for Anti-Cancer Target-Indication Prioritization of Placental Growth Factor Inhibitor (PGF) by Use of Omics and Patient Survival Data. BIOLOGY 2023; 12:970. [PMID: 37508400 PMCID: PMC10376188 DOI: 10.3390/biology12070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The expression of the placental growth factor (PGF) in cancer cells and the tumor microenvironment can contribute to the induction of angiogenesis, supporting cancer cell metabolism by ensuring an adequate blood supply. Angiogenesis is a key component of cancer metabolism as it facilitates the delivery of nutrients and oxygen to rapidly growing tumor cells. PGF is recognized as a novel target for anti-cancer treatment due to its ability to overcome resistance to existing angiogenesis inhibitors and its impact on the tumor microenvironment. We aimed to integrate bioinformatics evidence using various data sources and analytic tools for target-indication identification of the PGF target and prioritize the indication across various cancer types as an initial step of drug development. The data analysis included PGF gene function, molecular pathway, protein interaction, gene expression and mutation across cancer type, survival prognosis and tumor immune infiltration association with PGF. The overall evaluation was conducted given the totality of evidence, to target the PGF gene to treat the cancer where the PGF level was highly expressed in a certain tumor type with poor survival prognosis as well as possibly associated with poor tumor infiltration level. PGF showed a significant impact on overall survival in several cancers through univariate or multivariate survival analysis. The cancers considered as target diseases for PGF inhibitors, due to their potential effects on PGF, are adrenocortical carcinoma, kidney cancers, liver hepatocellular carcinoma, stomach adenocarcinoma, and uveal melanoma.
Collapse
Affiliation(s)
- Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yousun Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Youngbin Shin
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jisuk Park
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Amy Junghyun Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyung Won Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Junhee Pyo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
14
|
Ribatti D, Tamma R, Annese T, d’Amati A, Ingravallo G, Specchia G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers (Basel) 2023; 15:3262. [PMID: 37370872 PMCID: PMC10296318 DOI: 10.3390/cancers15123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The formation of new blood vessels is a critical process for tumor growth and may be achieved through different mechanisms. Angiogenesis represents the first described and most studied mode of vessel formation, but tumors may also use alternative ways to secure blood supply and eventually acquire resistance to anti-angiogenic treatments. These non-angiogenic mechanisms have been described more recently, including intussusceptive microvascular growth (IMG), vascular co-option, and vasculogenic mimicry. Like solid tumors, angiogenic and non-angiogenic pathways in lymphomas play a fundamental role in tumor growth and progression. In view of the relevant prognostic and therapeutic implications, a comprehensive understanding of these mechanisms is of paramount importance for improving the efficacy of treatment in patients with lymphoma. In this review, we summarize the current knowledge on angiogenic and non-angiogenic mechanisms involved in the formation of new blood vessels in Hodgkin's and non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Roberto Tamma
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) “Giuseppe Degennaro”, 70124 Bari, Italy;
| | - Antonio d’Amati
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
15
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
16
|
Wen Q, Huang M, Xie J, Liu R, Miao Q, Huang J, Zhang J, Lyu W, Qi M, Wu C, Qi Q, Zhang Z, Deng R, Wang C, Chen ZS, Zhang D, Ye W, Chen M. lncRNA SYTL5-OT4 promotes vessel co-option by inhibiting the autophagic degradation of ASCT2. Drug Resist Updat 2023; 69:100975. [PMID: 37207473 DOI: 10.1016/j.drup.2023.100975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
AIMS Vessel co-option is responsible for tumor resistance to antiangiogenic therapies (AATs) in patients with colorectal cancer liver metastasis (CRCLM). However, the mechanisms underlying vessel co-option remain largely unknown. Herein, we investigated the roles of a novel lncRNA SYTL5-OT4 and Alanine-Serine-Cysteine Transporter 2 (ASCT2) in vessel co-option-mediated AAT resistance. METHODS SYTL5-OT4 was identified by RNA-sequencing and verified by RT-qPCR and RNA fluorescence in situ hybridization assays. The effects of SYTL5-OT4 and ASCT2 on tumor cells were investigated by gain- and loss-of-function experiments, and those of SYTL5-OT4 on ASCT2 expression were analyzed by RNA immunoprecipitation and co-immunoprecipitation assays. The roles of SYTL5-OT4 and ASCT2 in vessel co-option were detected by histological, immunohistochemical, and immunofluorescence analyses. RESULTS The expression of SYTL5-OT4 and ASCT2 was higher in patients with AAT-resistant CRCLM. SYTL5-OT4 enhanced the expression of ASCT2 by inhibiting its autophagic degradation. SYTL5-OT4 and ASCT2 promoted vessel co-option by increasing the proliferation and epithelial-mesenchymal transition of tumor cells. Combination therapy of ASCT2 inhibitor and antiangiogenic agents overcame vessel co-option-mediated AAT resistance in CRCLM. CONCLUSION This study highlights the crucial roles of lncRNA and glutamine metabolism in vessel co-option and provides a potential therapeutic strategy for patients with AAT-resistant CRCLM.
Collapse
Affiliation(s)
- Qing Wen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingwen Xie
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Runyu Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jinjun Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junqiu Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunyi Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijing Zhang
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chenran Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Nowak-Sliwinska P, van Beijnum JR, Griffioen CJ, Huinen ZR, Sopesens NG, Schulz R, Jenkins SV, Dings RPM, Groenendijk FH, Huijbers EJM, Thijssen VLJL, Jonasch E, Vyth-Dreese FA, Jordanova ES, Bex A, Bernards R, de Gruijl TD, Griffioen AW. Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy. Angiogenesis 2022; 26:279-293. [PMID: 36459240 PMCID: PMC10119234 DOI: 10.1007/s10456-022-09863-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Abstract
Purpose
Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions.
Experimental design
Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration.
Results
It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment.
Conclusion
The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.
Collapse
|
18
|
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest 2022; 132:e157399. [PMID: 35951441 PMCID: PMC9525122 DOI: 10.1172/jci157399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.
Collapse
Affiliation(s)
- Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuran Fan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiqing Deng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaodong Chu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenqian Yin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| |
Collapse
|
19
|
Wu X, Zhou X, Lai S, Liu J, Qi J. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J 2022; 36:e22505. [PMID: 35971779 DOI: 10.1096/fj.202200543rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
The hallmark feature of Diabetes mellitus (DM) is hyperglycemia which can lead to excess production of reactive oxygen species (ROS) in the myocardium, contributing to diabetic cardiomyopathy (DCM). Nuclear factor erythroid2-related factor2 (Nrf2), a transcriptional activator, enhances its ability to resist oxidative stress by activating multiple downstream anti-oxidants, anti-inflammatory proteins, and detoxifying enzymes. However, the mechanism of Nrf2 signaling in HG-induced DCM is unclear. In this study, we used HG pretreated H9c2 cells as the experimental basis in vitro, and established a high fat-diet, streptozotocin (STZ) induced Type 2 diabetic rat model in vivo. Meanwhile, we used shRNA-Nrf2 and curcumin (CUR) (as an activator) to affect H9c2 cells, to verify the role of the Nrf2 signaling pathway in DCM. The results showed that the excessive production of ROS caused by HG, which could inhibit the activation of Nrf2-related signaling, resulting in a decrease in cell energy metabolism and an increase in cell apoptosis. Surprisingly, we found that the activation of the Nrf2 signaling pathway significantly increased cardiomyocyte viability, reduced ROS formation, increased antioxidant enzyme activity, and inhibited cardiomyocyte apoptosis. In conclusion, these findings conclusively infer that CUR activation of the Nrf2/HO-1 signaling pathway exerts myocardial protection by reducing ROS formation.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueliang Zhou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Songqing Lai
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jichun Liu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jianwei Qi
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Cuypers A, Truong ACK, Becker LM, Saavedra-García P, Carmeliet P. Tumor vessel co-option: The past & the future. Front Oncol 2022; 12:965277. [PMID: 36119528 PMCID: PMC9472251 DOI: 10.3389/fonc.2022.965277] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor vessel co-option (VCO) is a non-angiogenic vascularization mechanism that is a possible cause of resistance to anti-angiogenic therapy (AAT). Multiple tumors are hypothesized to primarily rely on growth factor signaling-induced sprouting angiogenesis, which is often inhibited during AAT. During VCO however, tumors invade healthy tissues by hijacking pre-existing blood vessels of the host organ to secure their blood and nutrient supply. Although VCO has been described in the context of AAT resistance, the molecular mechanisms underlying this process and the profile and characteristics of co-opted vascular cell types (endothelial cells (ECs) and pericytes) remain poorly understood, resulting in the lack of therapeutic strategies to inhibit VCO (and to overcome AAT resistance). In the past few years, novel next-generation technologies (such as single-cell RNA sequencing) have emerged and revolutionized the way of analyzing and understanding cancer biology. While most studies utilizing single-cell RNA sequencing with focus on cancer vascularization have centered around ECs during sprouting angiogenesis, we propose that this and other novel technologies can be used in future investigations to shed light on tumor EC biology during VCO. In this review, we summarize the molecular mechanisms driving VCO known to date and introduce the models used to study this phenomenon to date. We highlight VCO studies that recently emerged using sequencing approaches and propose how these and other novel state-of-the-art methods can be used in the future to further explore ECs and other cell types in the VCO process and to identify potential vulnerabilities in tumors relying on VCO. A better understanding of VCO by using novel approaches could provide new answers to the many open questions, and thus pave the way to develop new strategies to control and target tumor vascularization.
Collapse
Affiliation(s)
- Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co Khanh Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Lisa M. Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Paula Saavedra-García
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Ileiwat ZE, Tabish TA, Zinovkin DA, Yuzugulen J, Arghiani N, Pranjol MZI. The mechanistic immunosuppressive role of the tumour vasculature and potential nanoparticle-mediated therapeutic strategies. Front Immunol 2022; 13:976677. [PMID: 36045675 PMCID: PMC9423123 DOI: 10.3389/fimmu.2022.976677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
The tumour vasculature is well-established to display irregular structure and hierarchy that is conducive to promoting tumour growth and metastasis while maintaining immunosuppression. As tumours grow, their metabolic rate increases while their distance from blood vessels furthers, generating a hypoxic and acidic tumour microenvironment. Consequently, cancer cells upregulate the expression of pro-angiogenic factors which propagate aberrant blood vessel formation. This generates atypical vascular features that reduce chemotherapy, radiotherapy, and immunotherapy efficacy. Therefore, the development of therapies aiming to restore the vasculature to a functional state remains a necessary research target. Many anti-angiogenic therapies aim to target this such as bevacizumab or sunitinib but have shown variable efficacy in solid tumours due to intrinsic or acquired resistance. Therefore, novel therapeutic strategies such as combination therapies and nanotechnology-mediated therapies may provide alternatives to overcoming the barriers generated by the tumour vasculature. This review summarises the mechanisms that induce abnormal tumour angiogenesis and how the vasculature’s features elicit immunosuppression. Furthermore, the review explores examples of treatment regiments that target the tumour vasculature.
Collapse
Affiliation(s)
- Zakaria Elias Ileiwat
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| | - Md Zahidul I. Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| |
Collapse
|
22
|
Jin M, Zeng B, Liu Y, Jin L, Hou Y, Liu C, Liu W, Wu H, Chen L, Gao Z, Huang W. Co-Delivery of Repurposing Itraconazole and VEGF siRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071369. [PMID: 35890264 PMCID: PMC9317122 DOI: 10.3390/pharmaceutics14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer. The nanoparticles had a suitable particle size (117.9 ± 10.3 nm) and weak positive surface charge (6.69 ± 2.46 mV), as well as good stability and drug release profile in vitro. Moreover, the nanoparticles successfully escaped from endosomes and realized cell apoptosis and cell proliferation inhibition in vitro. In vitro and in vivo experiments showed that the nanoparticles could induce the silencing of VEGF-related expressions as well as anti-angiogenesis efficacy, and the co-loaded ITZ-VEGF siRNA NPs could inhibit tumor growth effectively with low toxicity and side effects. Taken together, the as-prepared delivery vehicles are a simple and safe nano-platform that improves the antitumor efficacy of VEGF siRNA and ITZ, which allows the repositioning of the generic drug ITZ as a great candidate for antitumor therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Jin
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China;
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (M.J.); (B.Z.); (Y.L.); (Y.H.); (C.L.); (W.L.); (H.W.); (L.C.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (W.H.)
| |
Collapse
|
23
|
Ribatti D, Pezzella F. Vascular Co-Option and Other Alternative Modalities of Growth of Tumor Vasculature in Glioblastoma. Front Oncol 2022; 12:874554. [PMID: 35433447 PMCID: PMC9005970 DOI: 10.3389/fonc.2022.874554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Non-angiogenic tumors grow in the absence of angiogenesis by two main mechanisms: cancer cells infiltrating and occupying the normal tissues to exploit pre-existing vessels (vascular co-option); the cancer cells themselves forms channels able to provide blood flow (the so called vasculogenic mimicry). In the original work on vascular co-option initiated by Francesco Pezzella, the non-angiogenic cancer cells were described as “exploiting” pre-existing vessels. Vascular co-option has been described in primary and secondary (metastatic) sites. Vascular co-option is defined as a process in which tumor cells interact with and exploit the pre-existing vasculature of the normal tissue in which they grow. As part of this process, cancer cells first migrate toward vessels of the primary tumor, or extravasate at a metastatic site and rest along the ab-luminal vascular surface. The second hallmark of vascular co-option is the interaction of cancer cells with the ab-luminal vascular surface. The first evidence for this was provided in a rat C6 glioblastoma model, showing that the initial tumor growth phase was not always avascular as these initial tumors can be vascularized by pre-existing vessels. The aim of this review article is to analyze together with vascular co-option, other alternative mode of vascularization occurring in glioblastoma multiforme (GBM), including vasculogenic mimicry, angiotropism and trans-differentiation of glioblastoma stem cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
24
|
Rado M, Fisher D. The Paracrine Effect of Hypoxic and Normoxic Cancer Secretion on the Proliferation of Brain Endothelial Cells (bEnd.3). Cells 2022; 11:cells11071197. [PMID: 35406760 PMCID: PMC8997846 DOI: 10.3390/cells11071197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background: This study aimed to investigate the disruption of cell cycle phases of bEnd.3 cells exposed to cancer paracrine secretion. Cancer cells have been reported to use the secretion of paracrine factors to compromise the endothelial barrier to prepare for their passage into the parenchyma. As cancer cells are known to act differently under conditions of hypoxia, we investigated how conditional media (CM) derived from breast and glioblastoma cells incubated under conditions of normoxia and hypoxia would affect proliferation of brain endothelial cells (bEnd.3). Methods: Brain endothelial cells (bEnd.3) were cultivated with normoxic and hypoxic CM generated from breast cancer MCF7 cells and glioblastoma U-87 cells. Cell proliferation was evaluated using the trypan blue exclusion assay and phases of the cell cycle were evaluated using flow cytometry. Results: bEnd.3 proliferations was suppressed more aggressively with hypoxic CM after 72 and 96 h; cell cycle analysis showed that paracrine treatment tended to prevent BECs from entering the G2 phase, thus suppressing cell division. Conclusions: MCF7 and U-87 cells induce suppressed proliferation of BECs deferentially under hypoxia by blocking cell cycle progression to the G2 phase.
Collapse
|
25
|
Lugassy C, Vermeulen PB, Ribatti D, Pezzella F, Barnhill RL. Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread? Br J Cancer 2022; 126:973-980. [PMID: 34987186 PMCID: PMC8980005 DOI: 10.1038/s41416-021-01686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Two fields of cancer research have emerged dealing with the biology of tumour cells localised to the abluminal vascular surface: vessel co-option (VCo), a non-angiogenic mode of tumour growth and angiotropic extravascular migratory metastasis (EVMM), a non-hematogenous mode of tumour migration and metastasis. VCo is a mechanism by which tumour cells gain access to a blood supply by spreading along existing blood vessels in order to grow locally. Angiotropic EVMM involves "pericytic mimicry" (PM), which is characterised by tumour cells continuously migrating in the place of pericytes distantly along abluminal vascular surfaces. When cancer cells are engaged in PM and EVMM, they migrate along blood vessels beyond the advancing front of the tumour to secondary sites with the formation of regional and distant metastases. In the present perspective, the authors review the current scientific literature, emphasising the analogies between embryogenesis and cancer progression, the re-activation of embryonic signals by "cancer stem cells", and the important role of laminins and epithelial-mesenchymal-transition. This perspective maintains that VCo and angiotropic EVMM constitute complementary processes and represent a continuum of cancer progression from the primary tumour to metastases and of tumour growth to EVMM, analogous to the embryonic development program.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris UFR de Médecine, Paris, France
| |
Collapse
|
26
|
TMEM60 Promotes the Proliferation and Migration and Inhibits the Apoptosis of Glioma through Modulating AKT Signaling. JOURNAL OF ONCOLOGY 2022; 2022:9913700. [PMID: 35027926 PMCID: PMC8749377 DOI: 10.1155/2022/9913700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Glioma is a highly fatal malignancy with aggressive proliferation, migration, and invasion metastasis due to aberrant genetic regulation. This work aimed to determine the function of transmembrane protein 60 (TMEM60) during glioma development. The level of TMEM60 in glioma tissues and normal tissues and its correlation with glioma prognosis were checked in The Cancer Genome Atlas (TCGA) database. The levels of TMEM60 in glioma cell lines and normal astrocytes were determined by quantitative real-time PCR and western blotting assay. TMEM60 knockdown and overexpression were conducted, followed by detection of cell viability, migration, invasion, and apoptosis. CCK-8 and colony formation assay were adopted to detect cell viability proliferation. Transwell assay was performed to measure cell migration and invasion. Cell apoptosis was evaluated by flow cytometry. The alternation of key proteins in the PI3K/Akt signaling pathway was measured by western blotting. TMEM60 expression was significantly higher in glioma tissues than that in the healthy control and was correlated with poor overall survival of patients. The protein and mRNA levels of TMEM60 were both elevated in glioma cell lines in comparison with the normal cell lines. Elevated level of TMEM60 led to enhanced proliferation, migration, and invasion and suppressed cell apoptosis. TMEM60 promoted the activation of PI3K/Akt signaling. Our data suggested that TMEM60 plays an oncogenic role in glioma progression via activating the PI3K/Akt signaling pathway.
Collapse
|
27
|
FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal 2022; 92:110249. [DOI: 10.1016/j.cellsig.2022.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
|
28
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
29
|
Wu D, Kampmann E, Qian G. Novel Insights Into the Role of Mitochondria-Derived Peptides in Myocardial Infarction. Front Physiol 2021; 12:750177. [PMID: 34777013 PMCID: PMC8582487 DOI: 10.3389/fphys.2021.750177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are a new class of bioactive peptides encoded by small open reading frames (sORFs) within known mitochondrial DNA (mtDNA) genes. MDPs may affect the expression of nuclear genes and play cytoprotective roles against chronic and age-related diseases by maintaining mitochondrial function and cell viability in the face of metabolic stress and cytotoxic insults. In this review, we summarize clinical and experimental findings indicating that MDPs act as local and systemic regulators of glucose homeostasis, immune and inflammatory responses, mitochondrial function, and adaptive stress responses, and focus on evidence supporting the protective effects of MDPs against myocardial infarction. These insights into MDPs actions suggest their potential in the treatment of cardiovascular diseases and should encourage further research in this field.
Collapse
Affiliation(s)
- Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Enny Kampmann
- School of Life Sciences, City College of San Francisco, San Francisco, CA, United States
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
30
|
Jiang X, Cai S, Jin Y, Wu F, He J, Wu X, Tan Y, Wang Y. Irisin Attenuates Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in the H9C2 Cellular Model of Septic Cardiomyopathy through Augmenting Fundc1-Dependent Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2989974. [PMID: 34457111 PMCID: PMC8390168 DOI: 10.1155/2021/2989974] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
In the present study, we used lipopolysaccharide- (LPS-) stimulated H9C2 cardiomyocytes to investigate whether irisin treatment attenuates septic cardiomyopathy via Fundc1-related mitophagy. Fundc1 levels and mitophagy were significantly reduced in LPS-stimulated H9C2 cardiomyocytes but were significantly increased by irisin treatment. Irisin significantly increased ATP production and the activities of mitochondrial complexes I and III in the LPS-stimulated cardiomyocytes. Irisin also improved glucose metabolism and significantly reduced LPS-induced levels of reactive oxygen species by increasing the activities of antioxidant enzymes, glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as levels of reduced glutathione (GSH). TUNEL assays showed that irisin significantly reduced LPS-stimulated cardiomyocyte apoptosis by suppressing the activation of caspase-3 and caspase-9. However, the beneficial effects of irisin on oxidative stress, mitochondrial metabolism, and viability of LPS-stimulated H9C2 cardiomyocytes were abolished by silencing Fundc1. These results demonstrate that irisin abrogates mitochondrial dysfunction, oxidative stress, and apoptosis through Fundc1-related mitophagy in LPS-stimulated H9C2 cardiomyocytes. This suggests irisin is a potentially useful treatment for septic cardiomyopathy, though further investigations are necessary to confirm our findings.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xixuan Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Mo J, Zhao X, Wang W, Zhao N, Dong X, Zhang Y, Cheng R, Sun B. TFPI2 Promotes Perivascular Migration in an Angiotropism Model of Melanoma. Front Oncol 2021; 11:662434. [PMID: 34249699 PMCID: PMC8264799 DOI: 10.3389/fonc.2021.662434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Angiotropism is the process by which cancer cells attach to and migrate along blood vessels to acquire vasculature, disseminate, and metastasize. However, the molecular basis for such vessel–tumor interactions has not been fully elucidated, partly due to limited experimental models. In this study, we aimed to observe and explore the molecular mechanism underlying angiotropism in melanoma. Methods To monitor the interactions of human melanoma cells with the vasculature in vivo, a murine coxenograft model was employed by co-injecting highly and poorly invasive melanoma cells subcutaneously. To identify key pathways and genes involved in the angiotropic phenotype of melanoma, analysis of differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) were performed. The role of tissue factor pathway inhibitor 2 (TFPI2) in angiotropism was evaluated by immunostaining, adhesion assay, shRNA, and in vivo tumorigenicity. Angiotropism and TFPI2 expression were examined in surgical specimens of melanoma by immunohistochemical staining. Data from The Cancer Genome Atlas (TCGA) were analyzed to explore the expression and prognostic implications of TFPI2 in uveal and cutaneous melanoma. Results Highly invasive melanoma cells spread along the branches of intratumor blood vessels to the leading edge of invasion in the coxenograft model, resembling angiotropic migration. Mechanisms underlying angiotropism were primarily associated with molecular function regulators, regulation of cell population proliferation, developmental processes, cell differentiation, responses to cytokines and cell motility/locomotion. TFPI2 downregulation weakened the perivascular migration of highly invasive melanoma cells. High levels of TFPI2 were correlated with worse and better survival in uveal and cutaneous melanoma, respectively. Conclusion These results provide a straightforward in vivo model for the observation of angiotropism and suggest that TFPI2 could inhibit the angiotropic phenotype of melanoma.
Collapse
Affiliation(s)
- Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci 2021; 22:6514. [PMID: 34204510 PMCID: PMC8235363 DOI: 10.3390/ijms22126514] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Rosińska
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Julie Gavard
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| |
Collapse
|
33
|
Affiliation(s)
- Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, & The Emily Couric Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
34
|
Hernández-Barranco A, Nogués L, Peinado H. Could Extracellular Vesicles Contribute to Generation or Awakening of "Sleepy" Metastatic Niches? Front Cell Dev Biol 2021; 9:625221. [PMID: 33738282 PMCID: PMC7960773 DOI: 10.3389/fcell.2021.625221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-metastatic niches provide favorable conditions for tumor cells to disseminate, home to and grow in otherwise unfamiliar and distal microenvironments. Tumor-derived extracellular vesicles are now recognized as carriers of key messengers secreted by primary tumors, signals that induce the formation of pre-metastatic niches. Recent evidence suggests that tumor cells can disseminate from the very earliest stages of primary tumor development. However, once they reach distal sites, tumor cells can persist in a dormant state for long periods of time until their growth is reactivated and they produce metastatic lesions. In this new scenario, the question arises as to whether extracellular vesicles could influence the formation of these metastatic niches with dormant tumor cells? (here defined as "sleepy niches"). If so, what are the molecular mechanisms involved? In this perspective-review article, we discuss the possible influence of extracellular vesicles in early metastatic dissemination and whether they might play a role in tumor cell dormancy. In addition, we comment whether extracellular vesicle-mediated signals may be involved in tumor cell awakening, considering the possibility that extracellular vesicles might serve as biomarkers to detect early metastasis and/or minimal residual disease (MRD) monitoring.
Collapse
Affiliation(s)
- Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
35
|
Tan S, Zang G, Wang Y, Sun Z, Li Y, Lu C, Wang Z. Differences of Angiogenesis Factors in Tumor and Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:3375-3388. [PMID: 34335038 PMCID: PMC8318726 DOI: 10.2147/dmso.s315362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, as a process occurring under the regulation of a variety of factors, is one of the important ways of vascular development. It coexists in a variety of pathological and physiological processes. Now a large number of studies have proved that tumor growth, metastasis, and various vascular complications of diabetes are closely related to angiogenesis, and an increasing number of studies have shown that there are many common factors between the two. But angiogenesis is the opposite of the two: it is enhanced in tumors and suppressed in diabetes. Therefore, this review discusses the causes of the phenomenon from the expression of various factors affecting angiogenesis in these two diseases and their effects on angiogenesis in the relevant microenvironment, as well as the application status of these factors or cells as therapeutic targets in the treatment of these two diseases.
Collapse
Affiliation(s)
- Shidong Tan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Cheng Lu
- General Office, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Correspondence: Cheng Lu General Office, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People's Republic of China, +86 511 88986902 Email
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
- Zhongqun Wang Department of Cardiology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, People’s Republic of ChinaTel +86 511 85030586 Email
| |
Collapse
|
36
|
Yetkin-Arik B, Kastelein AW, Klaassen I, Jansen CHJR, Latul YP, Vittori M, Biri A, Kahraman K, Griffioen AW, Amant F, Lok CAR, Schlingemann RO, van Noorden CJF. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188446. [PMID: 33058997 DOI: 10.1016/j.bbcan.2020.188446] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvironment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor microenvironment.
Collapse
Affiliation(s)
- Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Charlotte H J R Jansen
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Yani P Latul
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Miloš Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aydan Biri
- Department of Obstetrics and Gynecology, Koru Ankara Hospital, Ankara, Turkey
| | - Korhan Kahraman
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Frederic Amant
- Department of Oncology, KU Leuven, Leuven, Belgium; Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Christianne A R Lok
- Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cornelis J F van Noorden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
37
|
Alvarez-Ochoa E, Froldi F, Cheng LY. Interorgan communication in development and cancer. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e394. [PMID: 32852143 DOI: 10.1002/wdev.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022]
Abstract
Studies in model organisms have demonstrated that extensive communication occurs between distant organs both during development and in diseases such as cancer. Organs communicate with each other to coordinate growth and reach the correct size, while the fate of tumor cells depend on the outcome of their interaction with the immune system and peripheral tissues. In this review, we outline recent studies in Drosophila, which have enabled an improved understanding of the complex crosstalk between organs in the context of both organismal and tumor growth. We argue that Drosophila is a powerful model organism for studying these interactions, and these studies have the potential for improving our understanding of signaling pathways and candidate factors that mediate this conserved interorgan crosstalk. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Development to the Basic Body Plan Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Edel Alvarez-Ochoa
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Qin XS, Zhang CL, Huang ZS. Influence of tumor microenvironment on angiogenesis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:493-500. [DOI: 10.11569/wcjd.v28.i12.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main malignant tumors that endanger human health, and hepatocellular carcinoma (HCC) is the most common histological type of this heterogeneous cancer. The tumor microenvironment (TME) is a dynamic system composed of tumor cells and tumor-related stroma. HCC can form tumor-related blood vessels through a variety of angiogenesis modes. Previous studies have shown that various components of TME mediate HCC angiogenesis in multiple ways, which brings big challenges to clinical anti-angiogenesis therapy. This article reviews the research progress of HCC angiogenesis model and the role of TME in the regulation of HCC angiogenesis, with an aim to provide a reference for basic and clinical research of liver cancer.
Collapse
Affiliation(s)
- Xiao-Shan Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Cai-Ling Zhang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|