1
|
Sun B, Li Q, Xiao X, Zhang J, Zhou Y, Huang Y, Gao J, Cao X. The loach haplotype-resolved genome and the identification of Mex3a involved in fish air breathing. CELL GENOMICS 2024; 4:100670. [PMID: 39389021 DOI: 10.1016/j.xgen.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Fish air breathing is crucial for the transition of vertebrates from water to land. So far, the genes involved in fish air breathing have not been well identified. Here, we performed gene enrichment analysis of positively selected genes (PSGs) in loach (Misgurnus anguillicaudatus, an air-breathing fish) in comparison to Triplophysa tibetana (a non-air-breathing fish), haplotype-resolved genome assembly of the loach, and gene evolutionary analysis of air-breathing and non-air-breathing fishes and found that the PSG mex3a originated from ancient air-breathing fish species. Deletion of Mex3a impaired loach air-breathing capacity by inhibiting angiogenesis through its interaction with T-box transcription factor 20. Mex3a overexpression significantly promoted angiogenesis. Structural analysis and point mutation revealed the critical role of the 201st amino acid in loach Mex3a for angiogenesis. Our findings innovatively indicate that the ancient mex3a is a fish air-breathing gene, which holds significance for understanding fish air breathing and provides a valuable resource for cultivating hypoxia-tolerant fish varieties.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingshan Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xiao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhou
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Lusardi M, Belvedere R, Petrella A, Iervasi E, Ponassi M, Brullo C, Spallarossa A. Novel tetrasubstituted 5-Arylamino pyrazoles able to interfere with angiogenesis and Ca 2+ mobilization. Eur J Med Chem 2024; 276:116715. [PMID: 39083983 DOI: 10.1016/j.ejmech.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
3
|
Senk A, Fazzari J, Djonov V. Vascular mimicry in zebrafish fin regeneration: how macrophages build new blood vessels. Angiogenesis 2024; 27:397-410. [PMID: 38546923 PMCID: PMC11303510 DOI: 10.1007/s10456-024-09914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 08/07/2024]
Abstract
Vascular mimicry has been thoroughly investigated in tumor angiogenesis. In this study, we demonstrate for the first time that a process closely resembling tumor vascular mimicry is present during physiological blood vessel formation in tissue regeneration using the zebrafish fin regeneration assay. At the fin-regenerating front, vasculature is formed by mosaic blood vessels with endothelial-like cells possessing the morphological phenotype of a macrophage and co-expressing both endothelial and macrophage markers within single cells. Our data demonstrate that the vascular segments of the regenerating tissue expand, in part, through the transformation of adjacent macrophages into endothelial-like cells, forming functional, perfused channels and contributing to the de novo formation of microvasculature. Inhibiting the formation of tubular vascular-like structures by CVM-1118 prevents vascular mimicry and network formation resulting in a 70% shorter regeneration area with 60% reduced vessel growth and a complete absence of any signs of regeneration in half of the fin area. Additionally, this is associated with a significant reduction in macrophages. Furthermore, depleting macrophages using macrophage inhibitor PLX-3397, results in impaired tissue regeneration and blood vessel formation, namely a reduction in the regeneration area and vessel network by 75% in comparison to controls.
Collapse
Affiliation(s)
- Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
5
|
Luo YH, Wang DW, Yao J, Hu Y, Zhao L, Wen JX, Zhang JM, Wu LL, Fan GJ, Song W. Integrated metabolomics and transcriptomics analysis reveals the mechanism of Tangbi capsule for diabetic lower extremities arterial disease. Front Microbiol 2024; 15:1423428. [PMID: 39104587 PMCID: PMC11299497 DOI: 10.3389/fmicb.2024.1423428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Objective Tangbi capsule (TBC) is a traditional Chinese medicine prescription, which has the potential to improve the vascular insufficiency of lower extremities and limb numbness in diabetes. However, the potential mechanism remains unknown. This study aims to investigate the pharmacological effects and mechanism of TBC on rats with diabetic lower extremities arterial disease (LEAD). Methods The mechanism of TBC on diabetic LEAD was investigated through metabolomics and transcriptomics analysis, and the main components of TBC were determined by mass spectrometry. The efficacy and mechanism of TBC on diabetic LEAD rats were investigated through in vitro experiments, histopathology, blood flow monitoring, western blot, and real-time polymerase chain reaction. Results Mass spectrometry analysis identified 31 active chemical components in TBC including (2R)-2,3-Dihydroxypropanoic acid, catechin, citric acid, miquelianin, carminic acid, salicylic acid, formononetin, etc. In vitro analysis showed that TBC could reduce endothelial cell apoptosis and promote angiogenesis. Histopathological analysis showed that TBC led to an obvious improvement in diabetic LEAD as it improved fibrous tissue proliferation and reduced arterial wall thickening. In addition, TBC could significantly increase the expression levels of HIF-1α, eNOS, and VEGFA proteins and genes while reducing that of calpain-1 and TGF-β, suggesting that TBC can repair vascular injury. Compared with the model group, there were 47 differentially expressed genes in the whole blood of TBC groups, with 25 genes upregulated and 22 downregulated. Eighty-seven altered metabolites were identified from the serum samples. Combining the changes in differentially expressed genes and metabolites, we found that TBC could regulate arginine biosynthesis, phenylalanine metabolism, pyrimidine metabolism, arachidonic acid metabolism, pyrimidine metabolism, arachidonic acid metabolism, nucleotide metabolism, vitamin B6 metabolism and other metabolic pathways related to angiogenesis, immune-inflammatory response, and cell growth to improve diabetic LEAD. Conclusion TBC improved vascular endothelial injury, apoptosis, lipid accumulation, liver and kidney function, and restored blood flow in the lower extremities of diabetic LEAD rats. The mechanism of TBC in the treatment of diabetic LEAD may be related to the modulation of inflammatory immunity, lipid metabolism, and amino acid metabolism. This study presented preliminary evidence to guide the use of TBC as a therapy option for diabetic LEAD.
Collapse
Affiliation(s)
- Ye-hao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Da-wei Wang
- Shunde Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Yao
- Department of Endocrinology Guangzhou 12th People’s Hospital, Guangzhou, China
| | - Yue Hu
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-xuan Wen
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-ming Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu-Lu Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guan-jie Fan
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Song
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
6
|
Wang Y, Li C, Wang R, Zhao X, Pan Y, Zhang Q, Li S, Fan J, Wang Y, Sun X. PIEZO1 Promotes the Migration of Endothelial Cells via Enhancing CXCR4 Expression under Simulated Microgravity. Int J Mol Sci 2024; 25:7254. [PMID: 39000362 PMCID: PMC11242226 DOI: 10.3390/ijms25137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Exposure to microgravity during spaceflight induces the alterations in endothelial cell function associated with post-flight cardiovascular deconditioning. PIEZO1 is a major mechanosensitive ion channel that regulates endothelial cell function. In this study, we used a two-dimensional clinostat to investigate the expression of PIEZO1 and its regulatory mechanism on human umbilical vein endothelial cells (HUVECs) under simulated microgravity. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, we observed that PIEZO1 expression was significantly increased in response to simulated microgravity. Moreover, we found microgravity promoted endothelial cells migration by increasing expression of PIEZO1. Proteomics analysis highlighted the importance of C-X-C chemokine receptor type 4(CXCR4) as a main target molecule of PIEZO1 in HUVECs. CXCR4 protein level was increased with simulated microgravity and decreased with PIEZO1 knock down. The mechanistic study showed that PIEZO1 enhances CXCR4 expression via Ca2+ influx. In addition, CXCR4 could promote endothelial cell migration under simulated microgravity. Taken together, these results suggest that the upregulation of PIEZO1 in response to simulated microgravity regulates endothelial cell migration due to enhancing CXCR4 expression via Ca2+ influx.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China; (Y.W.); (C.L.); (R.W.); (X.Z.); (Y.P.); (Q.Z.); (S.L.); (J.F.); (Y.W.)
| |
Collapse
|
7
|
Lange M, Babczyk P, Tobiasch E. Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. Int J Mol Sci 2024; 25:5204. [PMID: 38791243 PMCID: PMC11120942 DOI: 10.3390/ijms25105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bone-specific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Babczyk
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, University Bonn-Rhein-Sieg, D-53559 Rheinbach, Germany
| |
Collapse
|
8
|
Liu Y, Wu H, Sang Y, Chong W, Shang L, Li L. Research progress of exosomes in the angiogenesis of digestive system tumour. Discov Oncol 2024; 15:33. [PMID: 38341827 PMCID: PMC10859358 DOI: 10.1007/s12672-024-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
Malignant tumours of the digestive system cover a wide range of diseases that affect the health of people to a large extent. Angiogenesis is indispensable in the development, and metastasis of tumours, mainly in two ways: occupation or formation. Vessels can provide nutrients, oxygen, and growth factors for tumours to encourage growth and metastasis, so cancer progression depends on simultaneous angiogenesis. Recently, exosomes have been proven to participate in the angiogenesis of tumours. They influence angiogenesis by binding to tyrosine kinase receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 with different affinities, regulating Yap-VEGF pathway, Akt pathway or other signaling pathway. Additionally, exosomes are potential therapeutic vectors that can deliver many types of cargoes to different cells. In this review, we summarize the roles of exosomes in the angiogenesis of digestive system tumours and highlight the clinical application prospects, directly used as targers or delivery vehicles, in antiangiogenic therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Hao Wu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
9
|
Fazekas LA, Szabo B, Szegeczki V, Filler C, Varga A, Godo ZA, Toth G, Reglodi D, Juhasz T, Nemeth N. Impact Assessment of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Hemostatic Sponge on Vascular Anastomosis Regeneration in Rats. Int J Mol Sci 2023; 24:16695. [PMID: 38069018 PMCID: PMC10706260 DOI: 10.3390/ijms242316695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Collapse
Affiliation(s)
- Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Csaba Filler
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Zoltan Attila Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Kassai ut 26, H-4028 Debrecen, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dom ter 8, H-6720 Szeged, Hungary;
| | - Dora Reglodi
- HUN-REN-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary;
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| |
Collapse
|