1
|
Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams. Sci Rep 2019; 9:16186. [PMID: 31700097 PMCID: PMC6838118 DOI: 10.1038/s41598-019-52846-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Microbes in subsurface coal seams are responsible for the conversion of the organic matter in coal to methane, resulting in vast reserves of coal seam gas. This process is important from both environmental and economic perspectives as coal seam gas is rapidly becoming a popular fuel source worldwide and is a less carbon intensive fuel than coal. Despite the importance of this process, little is known about the roles of individual bacterial taxa in the microbial communities carrying out this process. Of particular interest is the role of members of the genus Pseudomonas, a typically aerobic taxa which is ubiquitous in coal seam microbial communities worldwide and which has been shown to be abundant at early time points in studies of ecological succession on coal. The current study performed aerobic isolations of coal seam microbial taxa generating ten facultative anaerobic isolates from three coal seam formation waters across eastern Australia. Subsequent genomic sequencing and phenotypic analysis revealed a range of ecological strategies and roles for these facultative anaerobes in biomass recycling, suggesting that this group of organisms is involved in the degradation of accumulated biomass in coal seams, funnelling nutrients back into the microbial communities degrading coal to methane.
Collapse
|
2
|
Yamaguchi MS, Ganz HH, Cho AW, Zaw TH, Jospin G, McCartney MM, Davis CE, Eisen JA, Coil DA. Bacteria isolated from Bengal cat (Felis catus × Prionailurus bengalensis) anal sac secretions produce volatile compounds potentially associated with animal signaling. PLoS One 2019; 14:e0216846. [PMID: 31518350 PMCID: PMC6743771 DOI: 10.1371/journal.pone.0216846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/31/2019] [Indexed: 11/23/2022] Open
Abstract
In social animals, scent secretions and marking behaviors play critical roles in communication, including intraspecific signals, such as identifying individuals and group membership, as well as interspecific signaling. Anal sacs are an important odor producing organ found across the carnivorans (species in the mammalian Order Carnivora). Secretions from the anal sac may be used as chemical signals by animals for behaviors ranging from defense to species recognition to signaling reproductive status. In addition, a recent study suggests that domestic cats utilize short-chain free fatty acids in anal sac secretions for individual recognition. The fermentation hypothesis is the idea that symbiotic microorganisms living in association with animals contribute to odor profiles used in chemical communication and that variation in these chemical signals reflects variation in the microbial community. Here we examine the fermentation hypothesis by characterizing volatile organic compounds (VOC) and bacteria isolated from anal sac secretions collected from a male Bengal cat (Felis catus × Prionailurus bengalensis), a cross between the domestic cat and the leopard cat. Both left and right anal sacs of a male Bengal cat were manually expressed (emptied) and collected. Half of the material was used to culture bacteria or to extract bacterial DNA and the other half was used for VOC analysis. DNA was extracted from the anal sac secretions and used for a 16S rRNA gene PCR amplification and sequencing based characterization of the microbial community. Additionally, some of the material was plated out in order to isolate bacterial colonies. Three taxa (Bacteroides fragilis, Tessaracoccus, and Finegoldia magna) were relatively abundant in the 16S rRNA gene sequence data and also isolated by culturing. Using Solid Phase Microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), we tentatively identified 52 compounds from the Bengal cat anal sac secretions and 67 compounds from cultures of the three bacterial isolates chosen for further analysis. Among 67 compounds tentatively identified from bacterial isolates, 51 were also found in the anal sac secretion. We show that the bacterial community in the anal sac consists primarily of only a few abundant taxa and that isolates of these taxa produce numerous volatiles that are found in the combined anal sac volatile profile. Several of these volatiles are found in anal sac secretions from other carnivorans, and are also associated with known bacterial biosynthesis pathways. This is consistent with the fermentation hypothesis and the possibility that the anal sac is maintained at least in part to house bacteria that produce volatiles for the host.
Collapse
Affiliation(s)
- Mei S. Yamaguchi
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, United States of America
| | - Holly H. Ganz
- Genome Center, University of California, Davis, California, United States of America
| | - Adrienne W. Cho
- Genome Center, University of California, Davis, California, United States of America
| | - Thant H. Zaw
- Genome Center, University of California, Davis, California, United States of America
| | - Guillaume Jospin
- Genome Center, University of California, Davis, California, United States of America
| | - Mitchell M. McCartney
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, United States of America
| | - Cristina E. Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| | - David A. Coil
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
3
|
Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, Tamburini C, Garel M, Ménez B, Postec A. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol 2019; 10:1497. [PMID: 31379757 PMCID: PMC6647913 DOI: 10.3389/fmicb.2019.01497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 01/03/2023] Open
Abstract
Rock-hosted subseafloor habitats are very challenging for life, and current knowledge about microorganisms inhabiting such lithic environments is still limited. This study explored the cultivable microbial diversity in anaerobic enrichment cultures from cores recovered during the International Ocean Discovery Program (IODP) Expedition 357 from the Atlantis Massif (Mid-Atlantic Ridge, 30°N). 16S rRNA gene survey of enrichment cultures grown at 10–25°C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa. This strain named Petrocella atlantisensis is a novel species of a new genus within the newly described family Vallitaleaceae (order Clostridiales, phylum Firmicutes). It is a mesophilic, moderately halotolerant and piezophilic chemoorganotroph, able to grow by fermentation of carbohydrates and proteinaceous compounds. Its 3.5 Mb genome contains numerous genes for ABC transporters of sugars and amino acids, and pathways for fermentation of mono- and di-saccharides and amino acids were identified. Genes encoding multimeric [FeFe] hydrogenases and a Rnf complex form the basis to explain hydrogen and energy production in strain 70B-AT. This study outlines the importance of using hydrostatic pressure in culture experiments for isolation and characterization of autochthonous piezophilic microorganisms from subseafloor rocks.
Collapse
Affiliation(s)
- Marianne Quéméneur
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Eléonore Frouin
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Emna Zeghal
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | | | - Bernard Ollivier
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Christian Tamburini
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Marc Garel
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Bénédicte Ménez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, France
| | - Anne Postec
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| |
Collapse
|
4
|
Leandro T, Rodriguez N, Rojas P, Sanz JL, da Costa MS, Amils R. Study of methanogenic enrichment cultures of rock cores from the deep subsurface of the Iberian Pyritic Belt. Heliyon 2018; 4:e00605. [PMID: 29862366 PMCID: PMC5968172 DOI: 10.1016/j.heliyon.2018.e00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Two deep boreholes were drilled at 320 and 620 meters below surface in the Iberian Pyritic Belt (IPB) at Peña de Hierro (Huelva, Southwestern Spain). Cores were sampled and used for the establishment of enrichment cultures with methanogenic activity. The cultivable diversity of these enrichments was accessed using different cultivation techniques and several isolates were recovered in pure culture from various depths in both boreholes. Although no archaeal isolates were obtained in pure culture, strict anaerobes and facultative anaerobic bacteria belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were isolated and identified using the 16S rRNA gene sequence. Analysis of three selected enrichment cultures by amplification of both bacterial and archaeal 16S rRNA gene followed by pyrosequencing revealed further information on the populations enriched. The archaeal sequences obtained from the methanogenic enrichment cultures belonged to the orders Methanosarcinales and Methanocellales. To best of our knowledge this is the first report of enrichment in members of the Methanocellales in a deep terrestrial subsurface ecosystem. Several bacterial populations, predominantly consisting of Firmicutes and Proteobacteria, were also enriched. The prevalent microbial populations enriched as detected by pyrosequencing analysis, as well as the bacterial isolates cultivated were affiliated with known fermentative, sulfate reducing and acetogenic bacteria or methanogenic archaea. Our results show a great diversity in the microbial communities of the IPB deep subsurface.
Collapse
Affiliation(s)
- Tânia Leandro
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Nuria Rodriguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Jose L. Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Milton S. da Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
5
|
Complete Genome Sequence of Tessaracoccus sp. Strain T2.5-30 Isolated from 139.5 Meters Deep on the Subsurface of the Iberian Pyritic Belt. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00238-17. [PMID: 28450513 PMCID: PMC5408111 DOI: 10.1128/genomea.00238-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we report the complete genome sequence of Tessaracoccus sp. strain T2.5-30, which consists of a chromosome with 3.2 Mbp, 70.4% G+C content, and 3,005 coding DNA sequences. The strain was isolated from a rock core retrieved at a depth of 139.5 m in the subsurface of the Iberian Pyritic Belt (Spain).
Collapse
|
6
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
7
|
Purkamo L, Bomberg M, Nyyssönen M, Ahonen L, Kukkonen I, Itävaara M. Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during ∼2 months Incubation in Microcosms. Front Microbiol 2017; 8:232. [PMID: 28265265 PMCID: PMC5316538 DOI: 10.3389/fmicb.2017.00232] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022] Open
Abstract
Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments. Aceticlastic methanogens use acetate as an electron donor and/or a carbon source. The goal of this study was to shed light on carbon cycling and competition in microbial communities in fracture fluids of Finnish crystalline bedrock groundwater system. Fracture fluid was anaerobically collected from a fracture zone at 967 m depth of the Outokumpu Deep Drill Hole and amended with acetate, acetate + sulfate, sulfate only or left unamended as a control and incubated up to 68 days. The headspace atmosphere of microcosms consisted of 80% hydrogen and 20% CO2. We studied the changes in the microbial communities with community fingerprinting technique as well as high-throughput 16S rRNA gene amplicon sequencing. The amended microcosms hosted more diverse bacterial communities compared to the intrinsic fracture zone community and the control treatment without amendments. The majority of the bacterial populations enriched with acetate belonged to clostridial hydrogenotrophic thiosulfate reducers and Alphaproteobacteria affiliating with groups earlier found from subsurface and groundwater environments. We detected a slight increase in the number of sulfate reducers after the 68 days of incubation. The microbial community changed significantly during the experiment, but increase in specifically acetate-cycling microbial groups was not observed.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland Espoo, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Espoo, Finland
| | | | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki Helsinki, Finland
| | | |
Collapse
|
8
|
Puente-Sánchez F, Pieper DH, Arce-Rodríguez A. Draft Genome Sequence of the Deep-Subsurface Actinobacterium Tessaracoccus lapidicaptus IPBSL-7T. GENOME ANNOUNCEMENTS 2016; 4:e01078-16. [PMID: 27688325 PMCID: PMC5043573 DOI: 10.1128/genomea.01078-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022]
Abstract
The type strain of Tessaracoccus lapidicaptus was isolated from the deep subsurface of the Iberian Pyrite Belt (southwest Spain). Here, we report its draft genome, consisting of 27 contigs with a ~3.1-Mb genome size. The annotation revealed 2,905 coding DNA sequences, 45 tRNA genes, and three rRNA genes.
Collapse
Affiliation(s)
- Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alejandro Arce-Rodríguez
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Srinivasan S, Sundararaman A, Lee SS. Tessaracoccus defluvii sp. nov., isolated from an aeration tank of a sewage treatment plant. Antonie van Leeuwenhoek 2016; 110:1-9. [DOI: 10.1007/s10482-016-0766-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/10/2016] [Indexed: 11/24/2022]
|
10
|
Sánchez-Román M, Puente-Sánchez F, Parro V, Amils R. Nucleation of Fe-rich phosphates and carbonates on microbial cells and exopolymeric substances. Front Microbiol 2015; 6:1024. [PMID: 26441946 PMCID: PMC4585095 DOI: 10.3389/fmicb.2015.01024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022] Open
Abstract
Although phosphate and carbonate are important constituents in ancient and modern environments, it is not yet clear their biogeochemical relationships and their mechanisms of formation. Microbially mediated carbonate formation has been widely studied whereas little is known about the formation of phosphate minerals. Here we report that a new bacterial strain, Tessarococcus lapidicaptus, isolated from the subsurface of Rio Tinto basin (Huelva, SW Spain), is capable of precipitating Fe-rich phosphate and carbonate minerals. We observed morphological differences between phosphate and carbonate, which may help us to recognize these minerals in terrestrial and extraterrestrial environments. Finally, considering the scarcity and the unequal distribution and preservation patterns of phosphate and carbonates, respectively, in the geological record and the biomineralization process that produces those minerals, we propose a hypothesis for the lack of Fe-phosphates in natural environments and ancient rocks.
Collapse
Affiliation(s)
- Mónica Sánchez-Román
- Department of Planetology and Habitability, Centro de Astrobiología (INTA-CSIC) Madrid, Spain
| | | | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC) Madrid, Spain
| | - Ricardo Amils
- Department of Planetology and Habitability, Centro de Astrobiología (INTA-CSIC) Madrid, Spain ; Department of Virology and Microbiology, Centro de Biología Molecular Severo Ochoa Madrid, Spain
| |
Collapse
|
11
|
Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291-321. [DOI: 10.1007/s00253-013-5229-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
|
12
|
Breuker A, Köweker G, Blazejak A, Schippers A. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA. Front Microbiol 2011; 2:156. [PMID: 21811489 PMCID: PMC3141351 DOI: 10.3389/fmicb.2011.00156] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/05/2011] [Indexed: 12/01/2022] Open
Abstract
For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition–fluorescence in situ hybridization, CARD–FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 109 to 106 cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD–FISH. The CARD–FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80–140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers. The gene mcrA of methanogens was not detectable. Cloning and sequencing data of 16S rRNA genes revealed sequences of typical soil Bacteria. The closest relatives of the archaeal sequences were Archaea recovered from terrestrial and marine environments. Phylogenetic analysis of the Crenarchaeota and Euryarchaeota revealed new members of the uncultured South African Gold Mine Group, Deep Sea Hydrothermal Vent Euryarchaeotal Group 6, and Miscellaneous Crenarcheotic Group clusters.
Collapse
Affiliation(s)
- Anja Breuker
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources Hannover, Germany
| | | | | | | |
Collapse
|