1
|
Ben Tekaya S, Nouioui I, Flores GM, Neumann-Schaal M, Bredoire F, Basile F, van Diepen LTA, Ward NL. Geodermatophilus maliterrae sp. nov., a member of the Geodermatophilaceae isolated from badland surfaces in the Red Desert, Wyoming, USA. Int J Syst Evol Microbiol 2024; 74. [PMID: 39671238 DOI: 10.1099/ijsem.0.006603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
A novel Gram-stain-positive, black-pigmented bacterium, designated as WL48A T, was isolated from the surface of badland sedimentary rock in the Red Desert of Wyoming and characterized using a polyphasic taxonomic approach. Good growth occurred at 28-32 °C, pH 7-9, and NaCl less than 1% (w/v). Colonies, growing well on International Streptomyces Project media (ISP) 3 and ISP 7, were black and adhering to the agar. Phylogenetic analyses based on 16S rRNA gene and draft genome sequences showed that strain WL48AT belongs to the family Geodermatophilaceae, forming a distinct sub-branch with Geodermatophilus bullaregiensis DSM 46841T. The organism showed 16S rRNA gene sequence similarity of 98.8% with G. bullaregiensis DSM 46841T. Digital DNA-DNA hybridization value between the genome sequences of strain WL48A T and G. bullaregiensis DSM 46841T was 51.8%, below the threshold of 70% for prokaryotic species delineation. The chemotaxonomic investigation revealed the presence of galactose, glucose, mannose, xylose and ribose as well as meso-DAP in the peptidoglycan layer. The polar lipid profiles contained phosphatidylcholine (PC), phosphatidylinositol (PI), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) phosphoglycolipid, phospholipids and an unidentified lipid. The menaquinone profile consisted of MK-9(H4) (98.2%) and MK-9(H2) (10.8%). The major fatty acid profile (>15%) comprised iso-C15 : 0 and iso-C16 : 0. Based on phenotypic, genetic and genomic data, strain WL48AT (=DSM 116197T = NCIMB 15483T=NCCB 100957T =ATCC TSD-376T) merits to be considered as a novel species for which the name Geodermatophilus maliterrae sp. nov. is proposed.
Collapse
Affiliation(s)
- Seifeddine Ben Tekaya
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Imen Nouioui
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Berlin, Germany
| | - Gabryelle May Flores
- Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Meina Neumann-Schaal
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Berlin, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Felix Bredoire
- Department of Botany, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Linda T A van Diepen
- Department of Ecosystem Science & Management, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA
| | - Naomi L Ward
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| |
Collapse
|
2
|
Ding X, Lan W, Yan A, Li Y, Katayama Y, Gu JD. Microbiome characteristics and the key biochemical reactions identified on stone world cultural heritage under different climate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114041. [PMID: 34741944 DOI: 10.1016/j.jenvman.2021.114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The surfaces of historical stone monuments are visibly covered with a layer of colonizing microorganisms and their degradation products. In this study, a metadata analysis was conducted using the microbial sequencing data available from NCBI database to determine the diversity, biodeterioration potential and functionality of the stone microbiome on important world cultural heritage sites under four different climatic conditions. The retrieved stone microbial community composition in these metagenomes shows a clear association between climate types of the historical monuments and the diversity and taxonomic composition of the stone microbiomes. Shannon diversity values showed that microbial communities on stone monuments exposed to dry climate were more diverse than those under humid ones. In particular, functions associated with photosynthesis and UV resistance were identified from geographical locations under different climate types. The distribution of key microbial determinants responsible for stone deterioration was linked to survival under extreme environmental conditions and biochemical capabilities and reactions. Among them, biochemical reactions of the microbial nitrogen and sulfur cycles were most predominant. These stone-dwelling microbiomes on historical stone monuments were highly diverse and self-sustaining driven by energy metabolism and biomass accumulation. And metabolic products of the internal geomicrobiological nitrogen cycling on these ancient monuments play a unique role in the biodeterioration of stone monuments. These results highlight the significance of identifying the essential microbial biochemical reactions to advance the understanding of stone biodeterioration for protection management.
Collapse
Affiliation(s)
- Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine, Food Inspection and Quarantine Center of Shenzhen Custom, 1011 Fuqiang Road, Shenzhen, 518045, People's Republic of China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yoko Katayama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan; Tokyo National Research Institute for Cultural Properties, 13-43 Ueno Park, Taito-ku, Tokyo, 110-8713, Japan
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, People's Republic of China.
| |
Collapse
|
3
|
Ennis NJ, Dharumaduri D, Bryce JG, Tisa LS. Metagenome Across a Geochemical Gradient of Indian Stone Ruins Found at Historic Sites in Tamil Nadu, India. MICROBIAL ECOLOGY 2021; 81:385-395. [PMID: 32918562 DOI: 10.1007/s00248-020-01598-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Although stone surfaces seem unlikely to be habitable, they support microbial life. Life on these surfaces are subjected to many varying harsh conditions and require the inhabitants to exhibit resistance to environmental factors including UV irradiation, toxic metal exposure, and fluctuating temperatures and humidity. Here we report the effect of hosting stone geochemistry on the microbiome of stone ruins found in Tamil Nadu, India. The microbial communities found on the two lithologies, granite and granodiorite, hosted distinct populations of bacteria. Geochemical composition analysis of sampled stones revealed quartz mineral content as a major driver of microbial community structure, particularly promoting community richness and proportions of Cyanobacteria and Deinococcus-Thermus. Other geochemical parameters including ilmenite, albite, anorthite, and orthoclase components or elemental concentrations (Ti, Fe, Mn, Na, and K) also influenced community structure to a lesser degree than quartz. Core members of the stone microbiome community found on both lithologies were also identified and included Cyanobacteria (Chroococcidiopsaceae and Dapisostemonum CCIBt 3536), Rubrobacter, and Deinococcus. A cluster of taxa including Sphingomonas, Geodermatophilus, and Truepera were mostly found in the granodiorite samples. Community diversity correlated with quartz mineral content in these samples may indicate that the microbial communities that attach to quartz surfaces may be transient and regularly changing. This work has expanded our understanding of built-stone microbial community structure based on lithology and geochemistry.
Collapse
Affiliation(s)
- Nathaniel J Ennis
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
| | - Dhanasekaran Dharumaduri
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Julia G Bryce
- Department of Earth Sciences, University of New Hampshire, Durham, 03824, NH, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA.
| |
Collapse
|
4
|
Louati M, Ennis NJ, Ghodhbane-Gtari F, Hezbri K, Sevigny JL, Fahnestock MF, Cherif-Silini H, Bryce JG, Tisa LS, Gtari M. Elucidating the ecological networks in stone-dwelling microbiomes. Environ Microbiol 2019; 22:1467-1480. [PMID: 31158316 DOI: 10.1111/1462-2920.14700] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
Stone surfaces are extreme environments that support microbial life. This microbial growth occurs despite unfavourable conditions associated with stone including limited sources of nutrients and water, high pH and exposure to extreme variations in temperature, humidity and irradiation. These stone-dwelling microbes are often resistant to extreme environments including exposure to desiccation, heavy metals, UV and Gamma irradiation. Here, we report on the effects of climate and stone geochemistry on microbiomes of Roman stone ruins in North Africa. Stone microbiomes were dominated by Actinobacteria, Cyanobacteria and Proteobacteria but were heavily impacted by climate variables that influenced water availability. Stone geochemistry also influenced community diversity, particularly through biologically available P, Mn and Zn. Functions associated with photosynthesis and UV protection were enriched in the metagenomes, indicating the significance of these functions for community survival on stones. Core members of the stone microbial communities were also identified and included Geodermatophilaceae, Rubrobacter, Sphingomonas and others. Our research has helped to expand the understanding of stone microbial community structure and functional capacity within the context of varying climates, geochemical properties and stone conditions.
Collapse
Affiliation(s)
- Moussa Louati
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia
| | - Nathaniel J Ennis
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.,Laboratoire Microorganismeset Biomolécules Actives (LR03ES03), Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Karima Hezbri
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia
| | - Joseph L Sevigny
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Maria F Fahnestock
- Department of Earth Sciences, University of New Hampshire, Durham, NH, USA
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000, Setif, Algeria
| | - Julia G Bryce
- Department of Earth Sciences, University of New Hampshire, Durham, NH, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia
| |
Collapse
|
5
|
Castro JF, Nouioui I, Sangal V, Trujillo ME, Montero-Calasanz MDC, Rahmani T, Bull AT, Asenjo JA, Andrews BA, Goodfellow M. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst Appl Microbiol 2018; 41:427-436. [PMID: 29789182 DOI: 10.1016/j.syapm.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 01/20/2023]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.
Collapse
Affiliation(s)
- Jean Franco Castro
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Tara Rahmani
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, United Kingdom
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
6
|
Montero-Calasanz MDC, Meier-Kolthoff JP, Zhang DF, Yaramis A, Rohde M, Woyke T, Kyrpides NC, Schumann P, Li WJ, Göker M. Genome-Scale Data Call for a Taxonomic Rearrangement of Geodermatophilaceae. Front Microbiol 2017; 8:2501. [PMID: 29312207 PMCID: PMC5742155 DOI: 10.3389/fmicb.2017.02501] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Geodermatophilaceae (order Geodermatophilales, class Actinobacteria) form a comparatively isolated family within the phylum Actinobacteria and harbor many strains adapted to extreme ecological niches and tolerant against reactive oxygen species. Clarifying the evolutionary history of Geodermatophilaceae was so far mainly hampered by the insufficient resolution of the main phylogenetic marker in use, the 16S rRNA gene. In conjunction with the taxonomic characterisation of a motile and aerobic strain, designated YIM M13156T and phylogenetically located within the family, we here carried out a phylogenetic analysis of the genome sequences now available for the type strains of Geodermatophilaceae and re-analyzed the previously assembled phenotypic data. The results indicated that the largest genus, Geodermatophilus, is not monophyletic, hence the arrangement of the genera of Geodermatophilaceae must be reconsidered. Taxonomic markers such as polar lipids and fatty-acids profile, cellular features and temperature ranges are indeed heterogeneous within Geodermatophilus. In contrast to previous studies, we also address which of these features can be interpreted as apomorphies of which taxon, according to the principles of phylogenetic systematics. We thus propose a novel genus, Klenkia, with the type species Klenkia marina sp. nov. and harboring four species formerly assigned to Geodermatophilus, G. brasiliensis, G. soli, G. taihuensis, and G. terrae. Emended descriptions of all species of Geodermatophilaceae are provided for which type-strain genome sequences are publicly available. Our study again demonstrates that the principles of phylogenetic systematics can and should guide the interpretation of both genomic and phenotypic data.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dao-Feng Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Adnan Yaramis
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Peter Schumann
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus Göker
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
7
|
Huang J, Li J, Cao M, Liao S, Wang G. Cumulibacter manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2017; 67:2646-2652. [DOI: 10.1099/ijsem.0.002004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiahong Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Min Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Basic Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
8
|
Wang Y, Zhang L, Zhang X, Huang J, Zhao Y, Zhao Y, Liu J, Huang C, Wang J, Hu Y, Ren G, Xu X. Geodermatophilus daqingensis sp. nov., isolated from petroleum-contaminated soil. Antonie Van Leeuwenhoek 2017; 110:803-809. [PMID: 28289918 DOI: 10.1007/s10482-017-0853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
A novel Gram-positive actinobacterium, designated WT-2-1T, was isolated from a sample of petroleum-contaminated soil collected in Daqing, Heilongjiang province, China and characterised using a polyphasic taxonomic approach. The optimal growth for strain WT-2-1T was found to be at 25-35 °C and at pH 6.0-9.0 and with 0-4% (w/v) NaCl, forming blackish green-coloured colonies. Chemotaxonomic and molecular characteristics of the isolate match those described for members of the genus Geodermatophilus. The peptidoglycan was found to contain meso-diaminopimelic acid; galactose, glucose and xylose were detected as diagnostic sugars. The main phospholipids were identified as diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine and phosphatidylglycerol; MK-9(H4) was the dominant menaquinone present. The major cellular fatty acids were identified as iso-C16:0 and iso-C15:0. 16S rRNA gene sequence analysis showed that strain WT-2-1T is a member of the genus Geodermatophilus, with high sequence similarities to Geodermatophilus aquaeductus BMG801T (98.4%), Geodermatophilus saharensis CF5/5T (98.4%), Geodermatophilus bullaregiensis BMG841T (98.3%) and Geodermatophilus normandii CF5/3T (98.3%). Based on the phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, the isolate is concluded to represent a novel species of the genus Geodermatophilus, for which the name Geodermatophilus daqingensis sp. nov. is proposed. The type strain is WT-2-1T (=CGMCC 4.7381T = DSM 104001T).
Collapse
Affiliation(s)
- Yang Wang
- College of Resources and Environment, Northeast Agricultural University Harbin, Harbin, 150030, People's Republic of China.,Daqing Normal University, Daqing, 163712, People's Republic of China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Xiaofei Zhang
- College of Mathematics and Information Sciences of Guangxi University, Nanning, 530004, People's Republic of China
| | - Jinying Huang
- Department of Mathematics, Jiamusi University, Jiamusi, 154007, People's Republic of China
| | - Yu Zhao
- Department of Mathematics, Jiamusi University, Jiamusi, 154007, People's Republic of China
| | - Yuanling Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Jianxin Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Cui Huang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Jing Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Yingying Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, People's Republic of China
| | - Guoling Ren
- Daqing Normal University, Daqing, 163712, People's Republic of China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University Harbin, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Hezbri K, Louati M, Nouioui I, Gtari M, Rohde M, Spröer C, Schumann P, Klenk HP, Ghodhbane-Gtari F, Montero-Calasanz MDC. Blastococcus capsensis sp. nov., isolated from an archaeological Roman pool and emended description of the genus Blastococcus, B. aggregatus, B. saxobsidens, B. jejuensis and B. endophyticus. Int J Syst Evol Microbiol 2016; 66:4864-4872. [PMID: 27553620 DOI: 10.1099/ijsem.0.001443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-reaction-positive actinobacterium, designated BMG 804T, was isolated from an archaeological Roman pool located in Gafsa, Tunisia. The strain grew as dry bright orange colonies at 30 °C and pH 6.0-8.0. It contained meso-diaminopimelic acid in the cell wall. The whole-cell sugars consisted of glucose, rhamnose and ribose. Polar lipids present were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, an unidentified glycolipid and two unidentified phospholipids. MK-9(H4) was the predominant menaquinone. The fatty acid profile contained major amounts (>5 %) of C17 : 1ω8c, C16 : 1ω7c, iso-C15 : 0, iso-C16 : 0 and iso-C16 : 1H. The 16S rRNA gene sequence of BMG 804T showed 99.4 % as highest sequence similarity with Blastococcussaxobsidens. DNA-DNA hybridization between strain BMG 804T and B.saxobsidens DSM 44509T was 48.6±6.6 %. The G+C content of the DNA was 73.7 mol%. On the basis of the phenotypic and genotypic characteristics, including DNA-DNA hybridization results, BMG 804T (=DSM 46835T=CECT 8876T) is proposed as the type strain of a novel species Blastococcuscapsensis sp. nov. Emended descriptions of the genus Blastococcus and the species Blastococcus aggregatus, B. saxobsidens, Blastococcus jejuensis and Blastococcus endophyticus are also proposed.
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Moussa Louati
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Maria Del Carmen Montero-Calasanz
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Hezbri K, Ghodhbane-Gtari F, Montero-Calasanz MDC, Nouioui I, Rohde M, Spröer C, Schumann P, Klenk HP, Gtari M. Geodermatophilus pulveris sp. nov., a gamma-radiation-resistant actinobacterium isolated from the Sahara desert. Int J Syst Evol Microbiol 2016; 66:3828-3834. [PMID: 27381197 DOI: 10.1099/ijsem.0.001272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A black-pigmented, aerobic actinobacterium, tolerant to ionizing radiation, designated BMG 825T, was isolated from desert limestone dust in Tunisia. The strain grew within the temperature range 10-40 °C, at pH 5.5-11.0 and in the presence of 2 % NaCl. The DNA G+C content was 75.7 mol%, and its cell-wall peptidoglycan contained meso-diaminopimelic acid. Sugars of whole-cell hydrolysates were galactose, glucose, and trace amounts of ribose and mannose. The predominant menaquinone was MK-9(H4), and the major fatty acids were iso-C16 : 0 and C16 : 1ω7c. The polar lipid profile comprised phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and an unspecified glycolipid. 16S rRNA gene sequence analysis revealed that the strain fell into the genus Geodermatophilus, showing the highest similarity with Geodermatophilus poikilotrophus DSM 44209T (99.1 %). DNA-DNA hybridization results, phylogenetic distinctiveness and phenotypic properties supported the classification of this strain as a representative of a novel species of the genus Geodermatophilus, for which the name Geodermatophilus pulveris sp. nov. is proposed. The type strain is BMG 825T (=CECT 9003T=DSM 46839T).
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Maria Del Carmen Montero-Calasanz
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.,School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Manfred Rohde
- Central Facility for Microscopy HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
11
|
Hezbri K, Ghodhbane-Gtari F, Montero-Calasanz MDC, Sghaier H, Rohde M, Schumann P, Klenk HP, Gtari M. Geodermatophilus sabuli sp. nov., a γ-radiation-resistant actinobacterium isolated from desert limestone. Int J Syst Evol Microbiol 2016; 65:3365-3372. [PMID: 26297235 DOI: 10.1099/ijsem.0.000422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel γ-radiation-resistant and Gram-staining-positive actinobacterium designated BMG 8133T was isolated from a limestone collected in the Sahara desert of Tunisia. The strain produced dry, pale-pink colonies with an optimum growth at 35–40 °C and pH 6.5–8.0. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main polar lipids were phosphatidylcholine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and one unspecified glycolipid. MK-9(H4) was the dominant menaquinone. Galactose and glucose were detected as diagnostic sugars. The major cellular fatty acids were branched-chain saturated acids iso-C16 : 0 and iso-C15 : 0. The DNA G+C content of the novel strain was 74.5 %. The 16S rRNA gene sequence showed highest sequence identity with Geodermatophilus ruber (98.3 %). Based on phenotypic results and 16S rRNA gene sequence analysis, strain BMG 8133T is proposed to represent a novel species, Geodermatophilus sabuli sp. nov. The type strain is BMG 8133T ( = DSM 46844T = CECT 8820T).
Collapse
Affiliation(s)
- Karima Hezbri
- Laboratorie Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Laboratorie Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | | | - Haïtham Sghaier
- Centre National des Sciences et Technologies Nucléaires, Pôle Technologique - 2020 Sidi Thabet BP 72, Tunisia
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.,School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Maher Gtari
- Laboratorie Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
12
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000464] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. Note that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
13
|
Hezbri K, Ghodhbane-Gtari F, del Carmen Montero-Calasanz M, Sghaier H, Rohde M, Schumann P, Klenk HP, Gtari M. Description of Geodermatophilus bullaregiensis sp. nov. Antonie Van Leeuwenhoek 2015; 108:415-25. [DOI: 10.1007/s10482-015-0494-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
|