1
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Tagg AS, Sperlea T, Labrenz M, Harrison JP, Ojeda JJ, Sapp M. Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth. Microorganisms 2022; 10:microorganisms10091775. [PMID: 36144377 PMCID: PMC9506493 DOI: 10.3390/microorganisms10091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces.
Collapse
Affiliation(s)
- Alexander S. Tagg
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Correspondence:
| | - Theodor Sperlea
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jesse P. Harrison
- CSC—IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Melanie Sapp
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Thompson SRL, Lee DK, Lachance MA, Smith DR. Mutational Effects of Mobile Introns on the Mitochondrial Genomes of Metschnikowia Yeasts. Front Genet 2021; 12:785218. [PMID: 34804133 PMCID: PMC8601654 DOI: 10.3389/fgene.2021.785218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
It has been argued that DNA repair by homologous recombination in the context of endonuclease-mediated cleavage can cause mutations. To better understand this phenomenon, we examined homologous recombination following endonuclease cleavage in a native genomic context: the movement of self-splicing introns in the mitochondrial genomes of Metschnikowia yeasts. Self-splicing mitochondrial introns are mobile elements, which can copy and paste themselves at specific insertion sites in mitochondrial DNA using a homing endonuclease in conjunction with homologous recombination. Here, we explore the mutational effects of self-splicing introns by comparing sequence variation within the intron-rich cox1 and cob genes from 71 strains (belonging to 40 species) from the yeast genus Metschnikowia. We observed a higher density of single nucleotide polymorphisms around self-splicing-intron insertion sites. Given what is currently known about the movement of organelle introns, it is likely that their mutational effects result from the high binding affinity of endonucleases and their interference with repair machinery during homologous recombination (or, alternatively, via gene conversion occurring during the intron insertion process). These findings suggest that there are fitness costs to harbouring self-splicing, mobile introns and will help us better understand the risks associated with modern biotechnologies that use endonuclease-mediated homologous recombination, such as CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Scout R L Thompson
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Lachance MA, Lee DK, Hsiang T. Delineating yeast species with genome average nucleotide identity: a calibration of ANI with haplontic, heterothallic Metschnikowia species. Antonie Van Leeuwenhoek 2020; 113:2097-2106. [PMID: 33048250 DOI: 10.1007/s10482-020-01480-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 11/24/2022]
Abstract
We determined pairwise average nucleotide identity (ANI) values for the genomes of 71 strains assigned to 36 Metschnikowia species, 28 of which were represented by multiple isolates selected to represent the range of genetic diversity of the species, and most of which were defined on the basis of reproductive isolation. Similar to what has been proposed for prokaryote species delineation, an ANI value of 95% emerged as a good guideline for the delineation of yeast species, although some overlap exists, whereby members of a reproductive community could have slightly lower values (e.g., 94.3% for M. kamakouana), and representatives of distinct sister species could give slightly higher values (e.g., 95.2% for the sister species M. drakensbergensis and M. proteae). Unlike what is observed in prokaryotes, a sizeable gap between intraspecific and interspecific ANI values was not encountered. Given the ease with which yeast draft genomes can now be obtained, ANI values are poised to become the new standard upon which yeast species may be delineated on genetic distance. As borderline cases exist, however, the delineation of yeast species will continue to require careful evaluation of all available data. We also explore the often-neglected distinction between phylogenetic relatedness and sequence identity through the analysis of a tree constructed from ANI' (100 - ANI) values.
Collapse
Affiliation(s)
- Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
5
|
Matos TTS, Teixeira JF, Macías LG, Santos ARO, Suh SO, Barrio E, Lachance MA, Rosa CA. Kluyveromyces osmophilus is not a synonym of Zygosaccharomyces mellis; reinstatement as Zygosaccharomyces osmophilus comb. nov. Int J Syst Evol Microbiol 2020; 70:3374-3378. [PMID: 32375978 DOI: 10.1099/ijsem.0.004182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kluyveromyces osmophilus, a single-strain species isolated from Mozambique sugar, has been treated a synonym of Zygosaccharomyces mellis. Analyses of D1/D2 LSU rRNA gene sequences confirmed that the species belongs to the genus Zygosaccharomyces but showed it to be distinct from strains of Z. mellis. During studies of yeasts associated with stingless bees in Brazil, nine additional isolates of the species were obtained from unripe and ripe honey and pollen of Scaptotrigona cfr. bipunctata, as well as ripe honey of Tetragonisca angustula. The D1/D2 sequences of the Brazilian isolates were identical to those of the type strain of K. osmophilus CBS 5499 (=ATCC 22027), indicating that they represent the same species. Phylogenomic analyses using 4038 orthologous genes support the reinstatement of K. osmophilus as a member of the genus Zygosaccharomyces. We, therefore, propose the name Zygosaccharomyces osmophilus comb. nov. (lectotype ATCC 22027; MycoBank no. MB 833739).
Collapse
Affiliation(s)
- Thelma T S Matos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Juliana F Teixeira
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Laura G Macías
- Departament de Genètica, Universitat de València, València, Spain.,Departamento de Biotecnología de Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Alimentos (IATA)-CSIC, Valencia, Spain
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Sung-Oui Suh
- Manufacturing Science and Technology Program, ATCC, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, València, Spain.,Departamento de Biotecnología de Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Alimentos (IATA)-CSIC, Valencia, Spain
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
6
|
Lee DK, Santos ARDO, Hsiang T, Rosa CA, Lachance MA. Catching speciation in the act-act 2: Metschnikowia lacustris sp. nov., a sister species to Metschnikowia dekortorum. Antonie Van Leeuwenhoek 2020; 113:753-762. [PMID: 32100143 DOI: 10.1007/s10482-020-01395-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
The isolation of a single yeast strain in the clade containing Metschnikowia dekortorum, in the Amazon biome of Brazil, incited us to re-examine the species boundaries within the clade. The strain (UFMG-CM-Y6306) was difficult to position relative to neighbouring species using standard barcode sequences (ITS-D1/D2 rRNA gene region). Mating took place freely with α strains of M. bowlesiae, M. dekortorum, and M. similis, but two-spored asci, indicative of a fertile meiotic progeny, were formed abundantly only with certain strains of M. dekortorum. Accordingly, we examined mating success among every phylotype in the clade and constructed a phylogeny based on a concatenation of 100 of the largest orthologous genes annotated in draft genomes. The analyses confirmed membership of the Amazonian isolate in M. dekortorum, but also indicated that the species should be subdivided into two. As a result, we retain three original members of M. dekortorum in the species, together with the new isolate, and reassign six isolates recovered from Mesoamerican lacustrine habitats to Metschnikowia lacustris sp. nov. The type is UWOPS 12-619.2T (isotype CBS 16250T). MycoBank: MB 833751.
Collapse
Affiliation(s)
- Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, C.P. 486, Belo Horizonte, MG, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
7
|
Santos ARDO, Lee DK, Ferreira AG, do Carmo MC, Rondelli VM, Barros KO, Hsiang T, Rosa CA, Lachance MA. The yeast community of Conotelus sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (Passiflora edulis) and description of Metschnikowia amazonensis sp. nov., a large-spored clade yeast. Yeast 2020; 37:253-260. [PMID: 32017239 DOI: 10.1002/yea.3453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/11/2022] Open
Abstract
Species of the nitidulid beetle Conotelus found in flowers of Convolvulaceae and other plants across the New World and in Hawaii consistently harbour a yeast community dominated by one or more large-spored Metschnikowia species. We investigated the yeasts found in beetles and flowers of cultivated passionfruit in Rondônia state, in the Amazon biome of Brazil, where a Conotelus species damages the flowers and hinders fruit production. A sample of 46 beetles and 49 flowers yielded 86 and 83 yeast isolates, respectively. Whereas the flower community was dominated by Kodamaea ohmeri and Kurtzmaniella quercitrusa, the major yeasts recovered from beetles were Wickerhamiella occidentalis, which is commonly isolated from this community, and a novel species of large-spored Metschnikowia in the arizonensis subclade, which we describe here as Metschnikowia amazonensis sp. nov. Phylogenetic analyses based on barcode sequences (ITS-D1/D2) and a multigene alignment of 11,917 positions (genes ura2, msh6, and pmt2) agreed to place the new species as a sister to Metschnikowia arizonensis, a rare species known only from one locality in Arizona. The two form sterile asci when mated, which is typical of related members of the clade. The α pheromone of the new species is unique but typical of the subclade. The type of M. amazonensis sp. nov. is UFMG-CM-Y6309T (ex-type CBS 16156T , mating type a), and the designated allotype (mating type α) is UFMG-CM-Y6307A (CBS 16155A ). MycoBank MB 833560.
Collapse
Affiliation(s)
| | - Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Marina Conceição do Carmo
- Departamento de Agronomia e Entomologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Vando Miossi Rondelli
- Departamento de Agronomia, Universidade Federal de Rondônia, Rolim de Moura, Rondônia, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
de Vega C, Albaladejo RG, Lachance MA. Metschnikowia maroccana f.a., sp. nov., a new yeast species associated with floral nectar from Morocco. Int J Syst Evol Microbiol 2018; 68:2028-2035. [PMID: 29688165 DOI: 10.1099/ijsem.0.002784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wild flowers, and in particular, nectar of flowers, have been shown to be a rich reservoir of yeast biodiversity. In a taxonomic study of yeasts recovered from floral nectar in Morocco, nine strains were found to represent a novel species. Morphological and physiological characteristics and sequence analyses of the D1/D2 region of the large subunit rRNA gene as well as the internal transcribed spacer region showed that the novel species belonged to the genus Metschnikowia. The name Metschnikowia maroccana f.a., sp. nov. (EBDCdVMor24-1T=CBS 15053T=NRRL Y-63972T) is proposed to accommodate this new species. Metschnikowia maroccana was isolated from floral nectar of Teucrium pseudochamaepitys, Teucrium polium and Gladiolus italicus. The ascosporic state of the novel species was not found. Metschnikowia maroccana was phylogenetically distinct from any currently recognized species and forms a well-supported subclade (bootstrap value 81 %) containing species associated with flowers and flower-visiting insects, including Metschnikowia gruessii, Metschnikowia lachancei and Metschnikowia vanudenii. The close genealogical relationship of M. maroccana with the M. gruessii clade is also consistent with the striking similarity of their 'aeroplane' cells morphologies and the lack of utilization of the α-glucoside trehalose. The ecology of these novel species and its probable endemicity are discussed.
Collapse
Affiliation(s)
- Clara de Vega
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Stefanini I. Yeast-insect associations: It takes guts. Yeast 2018; 35:315-330. [PMID: 29363168 PMCID: PMC5947625 DOI: 10.1002/yea.3309] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/02/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Insects interact with microorganisms in several situations, ranging from the accidental interaction to locate attractive food or the acquisition of essential nutrients missing in the main food source. Despite a wealth of studies recently focused on bacteria, the interactions between insects and yeasts have relevant implications for both of the parties involved. The insect intestine shows several structural and physiological differences among species, but it is generally a hostile environment for many microorganisms, selecting against the most sensitive and at the same time guaranteeing a less competitive environment to resistant ones. An intensive characterization of the interactions between yeasts and insects has highlighted their relevance not only for attraction to food but also for the insect's development and behaviour. Conversely, some yeasts have been shown to benefit from interactions with insects, in some cases by being carried among different environments. In addition, the insect intestine may provide a place to reside for prolonged periods and possibly mate or generate sexual forms able to mate once back in the external environments. YEA-May-17-0084.R3.
Collapse
Affiliation(s)
- Irene Stefanini
- Division of Biomedical SciencesUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
10
|
Santos ARO, Leon MP, Barros KO, Freitas LFD, Hughes AFS, Morais PB, Lachance MA, Rosa CA. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. Int J Syst Evol Microbiol 2018; 68:1333-1343. [DOI: 10.1099/ijsem.0.002675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ana Raquel O. Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina P. Leon
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O. Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Larissa F. D. Freitas
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Alice F. S. Hughes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Paula B. Morais
- Laboratorio de Microbiologia Ambiental e Biotecnologia, Universidade Federal do Tocantins, Palmas, TO 77020-220, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
11
|
Lachance MA, Hurtado E, Hsiang T. A stable phylogeny of the large-sporedMetschnikowiaclade. Yeast 2016; 33:261-75. [DOI: 10.1002/yea.3163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marc-André Lachance
- Department of Biology; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Emilia Hurtado
- Department of Biology; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Tom Hsiang
- School of Environmental Sciences; University of Guelph; Guelph Ontario Canada N1G 2W1
| |
Collapse
|