1
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Groenewald M, Hittinger C, Bensch K, Opulente D, Shen XX, Li Y, Liu C, LaBella A, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe K, Rosa C, Boekhout T, Čadež N, éter G, Sampaio J, Lachance MA, Yurkov A, Daniel HM, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A. A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Stud Mycol 2023; 105:1-22. [PMID: 38895705 PMCID: PMC11182611 DOI: 10.3114/sim.2023.105.01] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2024] Open
Abstract
The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this subphylum are ecologically and metabolically diverse and include important opportunistic human pathogens, as well as species important in biotechnological applications. Many traits of biotechnological interest are found in closely related species and often restricted to single phylogenetic clades. However, the biotechnological potential of most yeast species remains unexplored. Although the subphylum Saccharomycotina has much higher rates of genome sequence evolution than its sister subphylum, Pezizomycotina, it contains only one class compared to the 16 classes in Pezizomycotina. The third subphylum of Ascomycota, the Taphrinomycotina, consists of six classes and has approximately 10 times fewer species than the Saccharomycotina. These data indicate that the current classification of all these yeasts into a single class and a single order is an underappreciation of their diversity. Our previous genome-scale phylogenetic analyses showed that the Saccharomycotina contains 12 major and robustly supported phylogenetic clades; seven of these are current families (Lipomycetaceae, Trigonopsidaceae, Alloascoideaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae, and Saccharomycetaceae), one comprises two current families (Dipodascaceae and Trichomonascaceae), one represents the genus Sporopachydermia, and three represent lineages that differ in their translation of the CUG codon (CUG-Ala, CUG-Ser1, and CUG-Ser2). Using these analyses in combination with relative evolutionary divergence and genome content analyses, we propose an updated classification for the Saccharomycotina, including seven classes and 12 orders that can be diagnosed by genome content. This updated classification is consistent with the high levels of genomic diversity within this subphylum and is necessary to make the higher rank classification of the Saccharomycotina more comparable to that of other fungi, as well as to communicate efficiently on lineages that are not yet formally named. Taxonomic novelties: New classes: Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Dipodascomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Lipomycetes M. Groenew., Hittinger, Opulente, A. Rokas, Pichiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Sporopachydermiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Trigonopsidomycetes M. Groenew., Hittinger, Opulente & A. Rokas. New orders: Alloascoideomycetes: Alloascoideales M. Groenew., Hittinger, Opulente & A. Rokas; Dipodascomycetes: Dipodascales M. Groenew., Hittinger, Opulente & A. Rokas; Lipomycetes: Lipomycetales M. Groenew., Hittinger, Opulente & A. Rokas; Pichiomycetes: Alaninales M. Groenew., Hittinger, Opulente & A. Rokas, Pichiales M. Groenew., Hittinger, Opulente & A. Rokas, Serinales M. Groenew., Hittinger, Opulente & A. Rokas; Saccharomycetes: Phaffomycetales M. Groenew., Hittinger, Opulente & A. Rokas, Saccharomycodales M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiomycetes: Sporopachydermiales M. Groenew., Hittinger, Opulente & A. Rokas; Trigonopsidomycetes: Trigonopsidales M. Groenew., Hittinger, Opulente & A. Rokas. New families: Alaninales: Pachysolenaceae M. Groenew., Hittinger, Opulente & A. Rokas; Pichiales: Pichiaceae M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiales: Sporopachydermiaceae M. Groenew., Hittinger, Opulente & A. Rokas. Citation: Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen X-X, Li Y, Liu C, LaBella AL, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe KH, Rosa CA, Boekhout T, Čadež N, Péter G, Sampaio JP, Lachance M-A, Yurkov AM, Daniel H-M, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A (2023). A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105: 1-22. doi: 10.3114/sim.2023.105.01 This study is dedicated to the memory of Cletus P. Kurtzman (1938-2017), a pioneer of yeast taxonomy.
Collapse
Affiliation(s)
- M. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - C.T. Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic
Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow
Institute for the Study of Evolution, University of Wisconsin-Madison,
Madison, WI 53726, USA;
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - D.A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic
Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow
Institute for the Study of Evolution, University of Wisconsin-Madison,
Madison, WI 53726, USA;
- Department of Biology, Villanova University, Villanova, PA
19085;
| | - X.-X. Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
310058, China;
| | - Y. Li
- Institute of Marine Science and Technology, Shandong University, Qingdao
266237, China;
| | - C. Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
310058, China;
| | - A.L. LaBella
- Department of Bioinformatics and Genomics, The University of North
Carolina at Charlotte, Charlotte NC 28223, USA;
| | - X. Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease
Control, Integrative Microbiology Research Center, South China Agricultural
University, Guangzhou 510642, China;
| | - S. Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University,
Bangkok 10900, Thailand;
| | - S. Jindamorakot
- Microbial Diversity and Utilization Research Team, National Center for
Genetic Engineering and Biotechnology, National Science and Technology
Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang,
Pathum Thani 12120, Thailand;
| | - P. Gonçalves
- Associate Laboratory i4HB–Institute for Health and Bioeconomy,
NOVA School of Science and Technology, Universidade NOVA de Lisboa,
Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life
Sciences, NOVA School of Science and Technology, Universidade NOVA de
Lisboa, Caparica, Portugal;
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - K.H. Wolfe
- Conway Institute and School of Medicine, University College Dublin,
Dublin 4, Ireland;
| | - C.A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de
Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil;
| | - T. Boekhout
- College of Sciences, King Saud University, Riyadh, Saudi
Arabia;
| | - N. Čadež
- Food Science and Technology Department, Biotechnical Faculty, University
of Ljubljana, Ljubljana, Slovenia;
| | - G. éter
- National Collection of Agricultural and Industrial Microorganisms,
Institute of Food Science and Technology, Hungarian University of
Agriculture and Life Sciences, H-1118, Budapest, Somlói út
14-16., Hungary;
| | - J.P. Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516
Caparica, Portugal;
| | - M.-A. Lachance
- Department of Biology, University of Western Ontario, London, ON N6A
5B7, Canada;
| | - A.M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell
Cultures, 38124 Braunschweig, Germany;
| | - H.-M. Daniel
- BCCM/MUCL, Earth and Life Institute, Mycology Laboratory,
Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium;
| | - M. Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI),
Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502,
Japan;
| | - K. Boundy-Mills
- Food Science and Technology, University of California Davis, Davis, CA,
95616, USA;
| | - D. Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera,
Instituto Andino Patagónico de Tecnologías Biológicas y
Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB,
Quintral 1250, San Carlos de Bariloche, 8400, Río Negro,
Argentina;
| | - K. Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI),
Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502,
Japan;
| | - T. Sugita
- Laboratory of Microbiology, Meiji Pharmaceutical University, Noshio,
Kiyose, Tokyo 204-8588, Japan;
| | - A. Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative,
Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Barros KO, Alvarenga FBM, Magni G, Souza GFL, Abegg MA, Palladino F, da Silva SS, Rodrigues RCLB, Sato TK, Hittinger CT, Rosa CA. The Brazilian Amazonian rainforest harbors a high diversity of yeasts associated with rotting wood, including many candidates for new yeast species. Yeast 2023; 40:84-101. [PMID: 36582015 DOI: 10.1002/yea.3837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.
Collapse
Affiliation(s)
- Katharina O Barros
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Flávia B M Alvarenga
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giulia Magni
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele F L Souza
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maxwel A Abegg
- Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Brazil
| | - Fernanda Palladino
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sílvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Rita C L B Rodrigues
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos A Rosa
- Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Bizarria R, de Castro Pietrobon T, Rodrigues A. Uncovering the Yeast Communities in Fungus-Growing Ant Colonies. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02099-1. [PMID: 35962280 DOI: 10.1007/s00248-022-02099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Yeast-insect interactions are compelling models to study the evolution, ecology, and diversification of yeasts. Fungus-growing (attine) ants are prominent insects in the Neotropics that evolved an ancient fungiculture of basidiomycete fungi over 55-65 million years, supplying an environment for a hidden yeast diversity. Here we assessed the yeast diversity in the attine ant environment by thoroughly sampling fungus gardens across four out of five ant fungiculture systems: Acromyrmex coronatus and Mycetomoellerius tucumanus standing for leaf-cutting and higher-attine fungicultures, respectively; Apterostigma sp., Mycetophylax sp., and Mycocepurus goeldii as ants from the lower-attine fungiculture. Among the fungus gardens of all fungus-growing ants examined, we found taxonomically unique and diverse microbial yeast communities across the different fungicultures. Ascomycete yeasts were the core taxa in fungus garden samples, with Saccharomycetales as the most frequent order. The genera Aureobasidium, Candida, Papiliotrema, Starmerella, and Sugiyamaella had the highest incidence in fungus gardens. Despite the expected similarity within the same fungiculture system, colonies of the same ant species differed in community structure. Among Saccharomycotina yeasts, few were distinguishable as killer yeasts, with a classical inhibition pattern for the killer phenotype, differing from earlier observations in this environment, which should be further investigated. Yeast mycobiome in fungus gardens is distinct between colonies of the same fungiculture and each ant colony harbors a distinguished and unique yeast community. Fungus gardens of attine ants are emergent environments to study the diversity and ecology of yeasts associated with insects.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil.
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
5
|
Sohail M, Barzkar N, Michaud P, Tamadoni Jahromi S, Babich O, Sukhikh S, Das R, Nahavandi R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022; 27:3783. [PMID: 35744909 PMCID: PMC9229053 DOI: 10.3390/molecules27123783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase. Cellulase is essentially required in lignocellulose-based biorefineries and is applied in many commercial processes. Likewise, xylanases are industrially important enzymes applied in papermaking and in the manufacture of prebiotics and pharmaceuticals. Owing to the widespread application of these enzymes, many prokaryotes and eukaryotes have been exploited to produce cellulase and xylanases in good yields, yet yeasts have rarely been explored for their plant-cell-wall-degrading activities. This review is focused on summarizing reports about cellulolytic and xylanolytic yeasts, their properties, and their biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Philippe Michaud
- Institute Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 3995, Iran
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Aas, Norway;
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
6
|
Chai CY, Gao WL, Yan ZL, Hui FL. Four new species of Trichomonascaceae (Saccharomycetales, Saccharomycetes) from Central China. MycoKeys 2022; 90:1-18. [PMID: 36760421 PMCID: PMC9849089 DOI: 10.3897/mycokeys.90.83829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Trichomonascaceae is the largest family of ascomycetous yeast in the order Saccharomycetales. In spite of the extensive body of research on Trichomonascaceae in China, there remain new species to be discovered. Here, we describe four new species isolated from several rotting wood samples from Henan Province, Central China. Phylogenetic analysis of a combined ITS and nrLSU dataset with morphological studies revealed four new species in the Trichomonascaceae: Diddensiellaluoyangensis, Sugiyamaellacylindrica, Su.robnettiae, and Zygoascusdetingensis. Clustering in the Diddensiella clade, D.luoyangensis' closest neighbour was D.transvaalensis. Meanwhile, Su.cylindrica clustered in the Sugiyamaella clade closest to Su.marilandica and Su.qingdaonensis. Also clustering in the Sugiyamaella clade, Su.robnettiae was most closely related to Su.chuxiongensis. Finally, Z.detingensis occupied a distinct and separated basal branch from the other species of the genus Zygoascus. These results indicate a high species diversity of Trichomonascaceae.
Collapse
Affiliation(s)
- Chun-Yue Chai
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, ChinaNanyang Normal UniversityNanyangChina,Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, ChinaResearch Center of Henan Provincial Agricultural Biomass Resource Engineering and TechnologyNanyangChina
| | - Wan-Li Gao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, ChinaNanyang Normal UniversityNanyangChina
| | - Zhen-Li Yan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co., Ltd., Nanyang 473000, ChinaState Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co., Ltd.NanyangChina
| | - Feng-Li Hui
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, ChinaNanyang Normal UniversityNanyangChina,Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, ChinaResearch Center of Henan Provincial Agricultural Biomass Resource Engineering and TechnologyNanyangChina
| |
Collapse
|
7
|
Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol Adv 2022; 59:107981. [DOI: 10.1016/j.biotechadv.2022.107981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
8
|
Yeast GH30 Xylanase from Sugiyamaella lignohabitans Is a Glucuronoxylanase with Auxiliary Xylobiohydrolase Activity. Molecules 2022; 27:molecules27030751. [PMID: 35164030 PMCID: PMC8840591 DOI: 10.3390/molecules27030751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Xylanases are the enzymes that catalyze the breakdown of the main hemicellulose present in plant cell walls. They have attracted attention due to their biotechnological potential for the preparation of industrially interesting products from lignocellulose. While many xylanases have been characterized from bacteria and filamentous fungi, information on yeast xylanases is scarce and no yeast xylanase belonging to glycoside hydrolase (GH) family 30 has been described so far. Here, we cloned, expressed and characterized GH30 xylanase SlXyn30A from the yeast Sugiyamaella lignohabitans. The enzyme is active on glucuronoxylan (8.4 U/mg) and rhodymenan (linear β-1,4-1,3-xylan) (3.1 U/mg) while its activity on arabinoxylan is very low (0.03 U/mg). From glucuronoxylan SlXyn30A releases a series of acidic xylooligosaccharides of general formula MeGlcA2Xyln. These products, which are typical for GH30-specific glucuronoxylanases, are subsequently shortened at the non-reducing end, from which xylobiose moieties are liberated. Xylobiohydrolase activity was also observed during the hydrolysis of various xylooligosaccharides. SlXyn30A thus expands the group of glucuronoxylanases/xylobiohydrolases which has been hitherto represented only by several fungal GH30-7 members.
Collapse
|
9
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
10
|
Ravn JL, Engqvist MKM, Larsbrink J, Geijer C. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:150. [PMID: 34215291 PMCID: PMC8254220 DOI: 10.1186/s13068-021-01995-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ascomycetous yeasts from the kingdom fungi inhabit every biome in nature. While filamentous fungi have been studied extensively regarding their enzymatic degradation of the complex polymers comprising lignocellulose, yeasts have been largely overlooked. As yeasts are key organisms used in industry, understanding their enzymatic strategies for biomass conversion is an important factor in developing new and more efficient cell factories. The aim of this study was to identify polysaccharide-degrading yeasts by mining CAZymes in 332 yeast genomes from the phylum Ascomycota. Selected CAZyme-rich yeasts were then characterized in more detail through growth and enzymatic activity assays. RESULTS The CAZyme analysis revealed a large spread in the number of CAZyme-encoding genes in the ascomycetous yeast genomes. We identified a total of 217 predicted CAZyme families, including several CAZymes likely involved in degradation of plant polysaccharides. Growth characterization of 40 CAZyme-rich yeasts revealed no cellulolytic yeasts, but several species from the Trichomonascaceae and CUG-Ser1 clades were able to grow on xylan, mixed-linkage β-glucan and xyloglucan. Blastobotrys mokoenaii, Sugiyamaella lignohabitans, Spencermartinsiella europaea and several Scheffersomyces species displayed superior growth on xylan and well as high enzymatic activities. These species possess genes for several putative xylanolytic enzymes, including ones from the well-studied xylanase-containing glycoside hydrolase families GH10 and GH30, which appear to be attached to the cell surface. B. mokoenaii was the only species containing a GH11 xylanase, which was shown to be secreted. Surprisingly, no known xylanases were predicted in the xylanolytic species Wickerhamomyces canadensis, suggesting that this yeast possesses novel xylanases. In addition, by examining non-sequenced yeasts closely related to the xylanolytic yeasts, we were able to identify novel species with high xylanolytic capacities. CONCLUSIONS Our approach of combining high-throughput bioinformatic CAZyme-prediction with growth and enzyme characterization proved to be a powerful pipeline for discovery of novel xylan-degrading yeasts and enzymes. The identified yeasts display diverse profiles in terms of growth, enzymatic activities and xylan substrate preferences, pointing towards different strategies for degradation and utilization of xylan. Together, the results provide novel insights into how yeast degrade xylan, which can be used to improve cell factory design and industrial bioconversion processes.
Collapse
Affiliation(s)
- Jonas L Ravn
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Martin K M Engqvist
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Cecilia Geijer
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
11
|
Abstract
In this study, we elucidate the reaction kinetics for the simultaneous hydrodeoxygenation of xylitol to 1,2-dideoxypentitol and 1,2,5-pentanetriol over a ReOx-Pd/CeO2 (2.0 weight% Re, 0.30 weight% Pd) catalyst. The reaction was determined to be a zero-order reaction with respect to xylitol. The activation energy was elucidated through an Arrhenius relationship as well as non-Arrhenius kinetics. The Arrhenius relationship was investigated at 150–170 °C and a constant H2 pressure of 10 bar resulting in an activation energy of 48.7 ± 10.5 kJ/mol. The investigation of non-Arrhenius kinetics was conducted at 120–170 °C and a sub-Arrhenius relation was elucidated with activation energy being dependent on temperature, and ranging from 10.2–51.8 kJ/mol in the temperature range investigated. Internal and external mass transfer were investigated through evaluating the Weisz–Prater criterion and the effect of varying stirring rate on the reaction rate, respectively. There were no internal or external mass transfer limitations present in the reaction.
Collapse
|
12
|
Shi CF, Zhang KH, Chai CY, Yan ZL, Hui FL. Diversity of the genus Sugiyamaella and description of two new species from rotting wood in China. MycoKeys 2021; 77:27-39. [PMID: 33519267 PMCID: PMC7815693 DOI: 10.3897/mycokeys.77.60077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/12/2022] Open
Abstract
Species of the genus Sugiyamaella (Trichomonascaceae, Saccharomycetales), found in rotting wood in China, were investigated using morphology and the molecular phylogeny of a combined ITS and nrLSU dataset. Nine taxa were collected in China: two were new species (viz. Sugiyamaellachuxiongsp. nov. and S.yunanensissp. nov.) and seven were known species, S.americana, S.ayubii, S.novakii, S.paludigena, S.valenteae, S.valdiviana and S.xiaguanensis. The two new species are illustrated and their morphology and phylogenetic relationships with other Sugiyamaella species are discussed. Our results indicate a potentially great diversity of Sugiyamaella spp. inhabiting rotting wood in China just waiting to be discovered.
Collapse
Affiliation(s)
- Cheng-Feng Shi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Kai-Hong Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Chun-Yue Chai
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Zhen-Li Yan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co., Ltd., Nanyang 473000, China Henan Tianguan Enterprise Group Co., Ltd. Nanyang China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| |
Collapse
|
13
|
Monteiro Moreira GA, Martins do Vale HM. Soil Yeast Communities in Revegetated Post-Mining and Adjacent Native Areas in Central Brazil. Microorganisms 2020; 8:microorganisms8081116. [PMID: 32722305 PMCID: PMC7464199 DOI: 10.3390/microorganisms8081116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022] Open
Abstract
Yeasts represent an important component of the soil microbiome. In central Brazil, mining activities are among the main anthropogenic factors that influence the dynamics of the soil microbiota. Few studies have been dedicated to analysis of tropical soil yeast communities, and even fewer have focused on Brazilian hotspots influenced by mining activity. The aim of the current study was to describe soil yeast communities in a post-mining site with revegetated and native areas, along Neotropical Savanna and Atlantic Forest biomes. Yeast communities were described using a culture-based method and estimator-based species accumulation curves, and their associations with environmental characteristics were assessed using multivariate analysis. The results indicate a greater species richness for yeast communities in the revegetated area. We identified 37 species describing 86% of the estimated richness according to Chao2. Ascomycetous yeasts dominated over basidiomycetous species. Candida maltosa was the most frequent species in two phytocenoses. Red-pigmented yeasts were frequent only in the summer. The main soil attributes affecting yeast communities were texture and micronutrients. In conclusion, each phytocenosis showed a particular assemblage of species as a result of local environmental phenomena. The species richness in a Revegetated area points to a possible ecological role of yeast species in environmental recovery. This study provided the first comprehensive inventory of soil yeasts in major phytocenoses in Minas Gerais, Brazil.
Collapse
Affiliation(s)
- Geisianny Augusta Monteiro Moreira
- Microbial Biology Graduate Program, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil;
| | - Helson Mario Martins do Vale
- Laboratory of Mycology, Department of Phytopathology, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil
- Correspondence: ; Tel.: +55-6131073060
| |
Collapse
|
14
|
Morais CG, Sena LMF, Lopes MR, Santos ARO, Barros KO, Alves CR, Uetanabaro APT, Lachance MA, Rosa CA. Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal Biol 2020; 124:639-647. [PMID: 32540187 DOI: 10.1016/j.funbio.2020.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L-1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L-1), Scheffersomyces sp. (7.94 g L-1) and Spathaspora boniae (7.16 g L-1). Sc. stipitis showed the highest ethanol yield (0.42 g g-1) and the highest productivity (0.39 g L-1h-1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g-1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg-1) and Saitozyma podzolica (0.384 U mg-1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties.
Collapse
Affiliation(s)
- Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Letícia M F Sena
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila R Alves
- Programa de Pós-Graduação em Botânica, Laboratório de Micologia, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas e Agroindústria, Universidade Estadual Santa Cruz, Ilhéus, BA 45662-900, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
15
|
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 2019; 51:217-228. [PMID: 31741310 DOI: 10.1007/s42770-019-00162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.
Collapse
Affiliation(s)
- Kelly Jaqueline Alves
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mylenne Calciolari Pinheiro da Silva
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| | - Simone Raposo Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Centenario Avenue, 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Júlia Ronzella Ottoni
- University Center Dinâmica das Cataratas, Castelo Branco Street, 349, Foz do Iguaçu, Paraná, 85852-010, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Valeria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato Avenue, 999, Paulínia, São Paulo, 13140-000, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
16
|
Ouephanit C, Boonvitthya N, Bozonnet S, Chulalaksananukul W. High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression. Molecules 2019; 24:molecules24193515. [PMID: 31569777 PMCID: PMC6804294 DOI: 10.3390/molecules24193515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France.
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
17
|
Crous P, Carnegie A, Wingfield M, Sharma R, Mughini G, Noordeloos M, Santini A, Shouche Y, Bezerra J, Dima B, Guarnaccia V, Imrefi I, Jurjević Ž, Knapp D, Kovács G, Magistà D, Perrone G, Rämä T, Rebriev Y, Shivas R, Singh S, Souza-Motta C, Thangavel R, Adhapure N, Alexandrova A, Alfenas A, Alfenas R, Alvarado P, Alves A, Andrade D, Andrade J, Barbosa R, Barili A, Barnes C, Baseia I, Bellanger JM, Berlanas C, Bessette A, Bessette A, Biketova A, Bomfim F, Brandrud T, Bransgrove K, Brito A, Cano-Lira J, Cantillo T, Cavalcanti A, Cheewangkoon R, Chikowski R, Conforto C, Cordeiro T, Craine J, Cruz R, Damm U, de Oliveira R, de Souza J, de Souza H, Dearnaley J, Dimitrov R, Dovana F, Erhard A, Esteve-Raventós F, Félix C, Ferisin G, Fernandes R, Ferreira R, Ferro L, Figueiredo C, Frank J, Freire K, García D, Gené J, Gêsiorska A, Gibertoni T, Gondra R, Gouliamova D, Gramaje D, Guard F, Gusmão L, Haitook S, Hirooka Y, Houbraken J, Hubka V, Inamdar A, Iturriaga T, Iturrieta-González I, Jadan M, Jiang N, Justo A, Kachalkin A, Kapitonov V, Karadelev M, Karakehian J, Kasuya T, Kautmanová I, Kruse J, Kušan I, Kuznetsova T, Landell M, Larsson KH, Lee H, Lima D, Lira C, Machado A, Madrid H, Magalhães O, Majerova H, Malysheva E, Mapperson R, Marbach P, Martín M, Martín-Sanz A, Matočec N, McTaggart A, Mello J, Melo R, Mešić A, Michereff S, Miller A, Minoshima A, Molinero-Ruiz L, Morozova O, Mosoh D, Nabe M, Naik R, Nara K, Nascimento S, Neves R, Olariaga I, Oliveira R, Oliveira T, Ono T, Ordoñez M, Ottoni ADM, Paiva L, Pancorbo F, Pant B, Pawłowska J, Peterson S, Raudabaugh D, Rodríguez-Andrade E, Rubio E, Rusevska K, Santiago A, Santos A, Santos C, Sazanova N, Shah S, Sharma J, Silva B, Siquier J, Sonawane M, Stchigel A, Svetasheva T, Tamakeaw N, Telleria M, Tiago P, Tian C, Tkalčec Z, Tomashevskaya M, Truong H, Vecherskii M, Visagie C, Vizzini A, Yilmaz N, Zmitrovich I, Zvyagina E, Boekhout T, Kehlet T, Læssøe T, Groenewald J. Fungal Planet description sheets: 868-950. PERSOONIA 2019; 42:291-473. [PMID: 31551622 PMCID: PMC6712538 DOI: 10.3767/persoonia.2019.42.11] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A.J. Carnegie
- Forest Health & Biosecurity, NSW Department of Primary Industries, Forestry, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Australia
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - R. Sharma
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - G. Mughini
- Research Center for Forestry and Wood - C.R.E.A., Via Valle della Quistione 27, 00166 Rome, Italy
| | - M.E. Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - A. Santini
- Institute for Sustainable Plant Protection - C.N.R., Via Madonna del Piano 10, 50019 Sesto fiorentino (FI), Italy
| | - Y.S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - J.D.P. Bezerra
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - B. Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - V. Guarnaccia
- DiSAFA, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy
| | - I. Imrefi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - D.G. Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - G.M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - D. Magistà
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - G. Perrone
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - T. Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø - The Arctic University of Norway
| | - Y.A. Rebriev
- South Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - S.M. Singh
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
- Banaras Hindu University (BHU), Uttar Pradesh, India
| | - C.M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - N.N. Adhapure
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - A.V. Alexandrova
- Lomonosov Moscow State University (MSU), Faculty of Biology, 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
| | - A.C. Alfenas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - R.F. Alfenas
- Departamento de Engenharia Florestal, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - P. Alvarado
- ALVALAB, Avda. de Bruselas 2-3B, 33011 Oviedo, Spain
| | - A.L. Alves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D.A. Andrade
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - J.P. Andrade
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - R.N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Barili
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - C.W. Barnes
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - I.G. Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil
| | - J.-M. Bellanger
- CEFE – CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE – IRD – INSERM, Campus CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - C. Berlanas
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | | | - A.Yu. Biketova
- Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - F.S. Bomfim
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T.E. Brandrud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - K. Bransgrove
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - A.C.Q. Brito
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.F. Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - A.D. Cavalcanti
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - R.S. Chikowski
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Conforto
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - T.R.L. Cordeiro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.D. Craine
- 5320 N. Peachtree Road, Dunwoody, GA 30338, USA
| | - R. Cruz
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - R.J.V. de Oliveira
- Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC)/CEPEC, Itabuna, Bahia, Brazil
| | | | - H.G. de Souza
- Recôncavo da Bahia Federal University, Bahia, Brazil
| | - J.D.W. Dearnaley
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - R.A. Dimitrov
- National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov blvd, Sofia 1504, Bulgaria
| | - F. Dovana
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - A. Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - F. Esteve-Raventós
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - C.R. Félix
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - G. Ferisin
- Via A. Vespucci 7, 1537, 33052 Cervignano del Friuli (UD), Italy
| | - R.A. Fernandes
- Departamento de Fitopatologia, Universidade Federal de Brasilia, Brasilia, Brazil
| | - R.J. Ferreira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.O. Ferro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - J.L. Frank
- Department of Biology, Southern Oregon University, Ashland OR 97520, USA
| | - K.T.L.S. Freire
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D. García
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - J. Gené
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - A. Gêsiorska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T.B. Gibertoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.A.G. Gondra
- University Utrecht, P.O. Box 80125, 3508 TC Utrecht, The Netherlands
| | - D.E. Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev, Sofia 1113, Bulgaria
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | - L.F.P. Gusmão
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - S. Haitook
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeòská 1083, 142 20 Prague 4, Czech Republic
| | - A. Inamdar
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - T. Iturriaga
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
- Plant Pathology Herbarium, 334 Plant Science Building, Cornell University, Ithaca, NY 14853 USA
| | - I. Iturrieta-González
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - M. Jadan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - A. Justo
- Department of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA
| | - A.V. Kachalkin
- Lomonosov Moscow State University, Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - V.I. Kapitonov
- Tobolsk Complex Scientific Station of the Ural Branch of the Russian Academy of Sciences, 626152 Tobolsk, Russia
| | - M. Karadelev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - J. Karakehian
- Farlow Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - T. Kasuya
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - I. Kautmanová
- Slovak National Museum-Natural History Museum, vjanaskeho nab. 2, P.O. Box 13, 81006 Bratislava, Slovakia
| | - J. Kruse
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - I. Kušan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T.A. Kuznetsova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - M.F. Landell
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - K.-H. Larsson
- Natural History Museum, P.O. Box 1172 Blindern 0318, University of Oslo, Norway
| | - H.B. Lee
- Environmental Microbiology Lab, Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Korea
| | - D.X. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.R.S. Lira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.R. Machado
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Madrid
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - O.M.C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Majerova
- Faculty of Chemical and Food Technology, Biochemistry and Microbiology Department, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - E.F. Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - R.R. Mapperson
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | | | - M.P. Martín
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - A. Martín-Sanz
- Pioneer Hi-Bred International, Inc., Campus Dupont – Pioneer, Ctra. Sevilla-Cazalla km 4.6, 41309 La Rinconada, Spain
| | - N. Matočec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4069, Australia
| | - J.F. Mello
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.F.R. Melo
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Mešić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - S.J. Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Ceará, Brazil
| | - A.N. Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A. Minoshima
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - L. Molinero-Ruiz
- Department of Crop Protection, Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - D. Mosoh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - M. Nabe
- 2-2-1, Sakuragaoka-nakamachi, Nishi-ku, Kobe, Hyogo 651-2226, Japan
| | - R. Naik
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
| | - K. Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - S.S. Nascimento
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.P. Neves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - I. Olariaga
- Biology, Geology and Inorganic Chemistry department, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - R.L. Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, RN, Brazil
| | - T.G.L. Oliveira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T. Ono
- Ogasawara Subtropical Branch of Tokyo Metropolitan Agriculture and Forestry Research Center, Komagari, Chichijima, Ogasawara, Tokyo, Japan
| | - M.E. Ordoñez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - A. de M. Ottoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.M. Paiva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - F. Pancorbo
- Pintores de El Paular 25, 28740 Rascafría, Madrid, Spain
| | - B. Pant
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Pawłowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - S.W. Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - D.B. Raudabaugh
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - E. Rodríguez-Andrade
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - E. Rubio
- C/ José Cueto 3 – 5ºB, 33401 Avilés, Asturias, Spain
| | - K. Rusevska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - A.L.C.M.A. Santiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.C.S. Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Santos
- Departamento de Ciencias Químicas y Recursos Naturales, BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - N.A. Sazanova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, Russia
| | - S. Shah
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Sharma
- Department of Plant and Soil Science, Texas Tech. University, USA
| | - B.D.B. Silva
- Universidade Federal da Bahia, Instituto de Biologia, Departamento de Botânica, 40170115 Ondina, Salvador, BA, Brazil
| | - J.L. Siquier
- Carrer Major, 19, E-07300 Inca (Islas Baleares), Spain
| | - M.S. Sonawane
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - A.M. Stchigel
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Svetasheva
- Biology and Technologies of Living Systems Department, Tula State Lev Tolstoy Pedagogical University, 125 Lenin av., 300026 Tula, Russia
| | - N. Tamakeaw
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - M.T. Telleria
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P.V. Tiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Z. Tkalčec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M.A. Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - H.H. Truong
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - M.V. Vecherskii
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Biosystematics Division, Agricultural Research Council – Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - I.V. Zmitrovich
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - T. Kehlet
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - T. Læssøe
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
18
|
Jacques N, Casaregola S. Large biodiversity of yeasts in French Guiana and the description of Suhomyces coccinellae f.a. sp. nov. and Suhomyces faveliae f.a. sp. nov. Int J Syst Evol Microbiol 2019; 69:1634-1649. [PMID: 31033433 DOI: 10.1099/ijsem.0.003369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent of the diversity of yeasts in tropical rain forest and different environments from French Guiana was investigated. A total of 365 samples were collected from various substrates, such as plants, fruits and insects, at 13 locations, yielding 276 pure yeast isolates. Sequence analysis of the D1/D2 domains of the large subunit rRNA gene indicated that 210 isolates out of 276 belonged to 82 described species (67 Saccharomycotina, 14 Basidiomycota and 1 Pezizomycotina). In addition to these, a total of 54 Saccharomycotina isolates could not be assigned to a known species. These belonged to 14 genera and should be studied further from a taxonomic point of view. In addition, among the 43 Basidiomycotina isolates found, 12 could not be assigned to a known species. This report shows an unexpected biodiversity and indicates that oversea territories, such as French Guiana, constitute a largely unexplored reservoir for yeast diversity. Two Saccharomycotina strains, CLIB 1706 and CLIB 1725, isolated from an insect and from a fern respectively, were characterized further and were shown to belong to the Suhomyces clade on the basis of the rDNA sequence comparison. CLIB 1706TrDNA sequences showed nine substitutions and three indels out of 556 bp (D1/D2 domains) and 32 substitutions and 12 indels out of 380 bp [internal transcribed spacer (ITS)] with that of the most closely related species Suhomyces guaymorum CBS 9823T. CLIB 1725T rDNA sequences presented 18 substitutions and one indel out of 549 bp (D1/D2 domains) and 48 substitutions and 11 indels out of 398 bp (ITS) with that of its closest relative Suhomyces vadensis CBS 9454T. Two novel species of the genus Suhomyces were described to accommodate these two strains: Suhomyces coccinellae f.a. sp. nov. (CLIB 1706T=CBS 14298T) and Suhomyces faveliae f.a. sp. nov. (CLIB 1725T=CBS 14299T).
Collapse
Affiliation(s)
- Noémie Jacques
- CIRM-Levures, INRA, Micalis Institute, Jouy-en-Josas, France.,†Present address: Bioger, INRA, Thiverval-Grignon, France
| | | |
Collapse
|
19
|
Huang LN, Xi ZW, Li Y, Hui FL. Sugiyamaella xiaguanensis f.a., sp. nov., a yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2018; 68:3307-3310. [PMID: 30156533 DOI: 10.1099/ijsem.0.002988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains representing a novel yeast species, Sugiyamaella xiaguanensis f.a., sp. nov. (type strain NYNU 161041T=CICC 33167T=CBS 14696T), were isolated from rotting wood samples collected in Henan and Yunnan Provinces, PR China. The novel species is able to assimilate cellobiose, salicin and d-xylose, which was typical of the species of the genus Sugiyamaella. Analysis of the D1/D2 domains of the large subunit rRNA gene and internal transcribed spacer regions of these strains showed that this species was related to Sugiyamaella lignohabitans and Sugiyamaella marionensis, its closest relatives. Su. xiaguanensis sp. nov. differed by 1.4 % nucleotide substitutions from Su. lignohabitans, and by 1.9 % nucleotide substitutions from Su. marionensis in the D1/D2 sequences. The ITS sequences of Su. xiaguanensis sp. nov. displayed more than 6.5 % nucleotide substitutions from the latter two species, showing that it is a genetically separate species.
Collapse
Affiliation(s)
- Lin-Na Huang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Zhi-Wen Xi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ying Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
20
|
Lopes MR, Lara CA, Moura ME, Uetanabaro APT, Morais PB, Vital MJ, Rosa CA. Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal Biol 2018; 122:668-676. [DOI: 10.1016/j.funbio.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/25/2022]
|
21
|
Cadete R, Melo-Cheab M, Dussán K, Rodrigues R, da Silva S, Gomes F, Rosa C. Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate byScheffersomyces parashehatae,Scheffersomyces illinoinensisandSpathaspora arborariaeisolated from Brazilian ecosystems. J Appl Microbiol 2017; 123:1203-1213. [DOI: 10.1111/jam.13559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- R.M. Cadete
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - M.A. Melo-Cheab
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - K.J. Dussán
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
- Departamento de Bioquímica e Química Tecnológica; Instituto de Química; Universidade Estadual Paulista; Araraquara SP Brazil
| | - R.C.L.B. Rodrigues
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - S.S. da Silva
- Departamento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena SP Brazil
| | - F.C.O. Gomes
- Departamento de Química; Centro Federal de Educação Tecnológica de Minas Gerais; Belo Horizonte MG Brazil
| | - C.A. Rosa
- Departamento de Microbiologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
22
|
Ribeiro LR, Santos ARO, Groenewald M, Smith MTH, Lara CA, Góes-Neto A, Jacques N, Grondin C, Casaregola S, Lachance MA, Rosa CA. Description of Hyphopichia buzzinii f.a., sp. nov. and Hyphopichia homilentoma comb. nov., the teleomorph of Candida homilentoma. Antonie van Leeuwenhoek 2017; 110:985-994. [DOI: 10.1007/s10482-017-0870-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
23
|
Batista TM, Moreira RG, Hilário HO, Morais CG, Franco GR, Rosa LH, Rosa CA. Draft genome sequence of Sugiyamaella xylanicola UFMG-CM-Y1884 T, a xylan-degrading yeast species isolated from rotting wood samples in Brazil. GENOMICS DATA 2017; 11:120-121. [PMID: 28180086 PMCID: PMC5279996 DOI: 10.1016/j.gdata.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
We present the draft genome sequence of the type strain of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T), a xylan-degrading species capable of fermenting d-xylose to ethanol. The assembled genome has a size of ~ 13.7 Mb and a GC content of 33.8% and contains 5971 protein-coding genes. We identified 15 genes with significant similarity to the d-xylose reductase gene from several other fungal species. The draft genome assembled from whole-genome shotgun sequencing of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884T (= UFMG-CA-32.1T = CBS 12683T) has been deposited at DDBJ/ENA/GenBank under the accession number MQSX00000000 under version MQSX01000000.
Collapse
Affiliation(s)
- Thiago M Batista
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Rennan G Moreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Heron O Hilário
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Camila G Morais
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil
| |
Collapse
|