1
|
Xie F, Andrews B, Asenjo JA, Goodfellow M, Pathom-Aree W. Atacama desert actinomycetes: taxonomic analysis, drought tolerance and plant growth promoting potential. World J Microbiol Biotechnol 2024; 40:283. [PMID: 39060806 DOI: 10.1007/s11274-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
This study was designed to recover representative culturable actinomycetes from the Atacama Desert, and to detect their ability to promote plant growth under drought conditions. Environmental samples were taken from three Atacama Desert habitats, namely, from the Aguas Calientes, Lomas Bayas and Yungay core regions. With one exception higher actinomycete counts were obtained when isolation media were inoculated with mineral particles than with corresponding aliquots of serial dilution. Comparative 16S rRNA gene sequencing showed that representative isolates belonged to thirteen genera including putative novel Blastococcus, Kocuria, Micromonospora, Pseudonocardia, Rhodococcus and Streptomyces species. Representative isolates produced indole-3-acetic acid, siderophore and solubilized phosphate as well as displaying an ability to grow under drought conditions. In conclusion, the current findings open up exciting prospects for the promising potential of actinomycetes from the Atacama Desert to be used as bioinoculants to promote plant growth in arid and semi-arid biomes.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Barbara Andrews
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beaucheff 851, Santiago, Chile
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Komaki H. Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms 2023; 11:microorganisms11040831. [PMID: 37110257 PMCID: PMC10145440 DOI: 10.3390/microorganisms11040831] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The genus Streptomyces is a representative group of actinomycetes and one of the largest taxa in bacteria, including approximately 700 species with validly published names. Since the classification was mainly based on phenotypic characteristics in old days, many members needed to be reclassified according to recent molecular-based taxonomies. Recent developments of molecular-based analysis methods and availability of whole genome sequences of type strains enables researchers to reclassify these phylogenetically complex members on a large scale. This review introduces reclassifications of the genus Streptomyces reported in the past decade. Appropriately 34 Streptomyces species were transferred to the other genera, such as Kitasatospora, Streptacidiphilus, Actinoalloteichus and recently proposed new genera. As a result of reclassifications of 14 subspecies, the genus Streptomyces includes only four subspecies at present in practice. A total of 63 species were reclassified as later heterotypic synonyms of previously recognized species in 24 published reports. As strong relationships between species and the secondary metabolite-biosynthetic gene clusters become clarified, appropriate classifications of this genus will not only contribute to systematics, but also provide significant information when searching for useful bioactive substances.
Collapse
Affiliation(s)
- Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba 292-0818, Japan
| |
Collapse
|
3
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Jemmy Christy H, Vasudevan S, Sudha S, Kandeel M, Subramanian K, Pugazhvendan SR, Ronald Ross P, Velmurugan. Targeting Streptomyces-Derived Streptenol Derivatives against Gynecological Cancer Target PIK3CA: An In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6600403. [PMID: 35860806 PMCID: PMC9293527 DOI: 10.1155/2022/6600403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023]
Abstract
Streptomyces is amongst the most amenable genera for biotechnological applications, and it is extensively used as a scaffold for drug development. One of the most effective therapeutic applications in the treatment of cancer is targeted therapy. Small molecule therapy is one of them, and it has gotten a lot of attention recently. Streptomyces derived compounds namely streptenols A, C, and F-I and streptazolin were subjected for ADMET property assessment. Our computational studies based on molecular docking effectively displayed the synergistic effect of streptomyces-derived compounds on the gynecological cancer target PIK3CA. These compounds were observed with the highest docking scores as well as promising intermolecular interaction stability throughout the molecular dynamic simulation. Molecular docking and molecular dynamic modeling techniques were utilized to investigate the binding mode stability of drugs using a pharmacophore scaffold, as well as physicochemical and pharmacokinetic aspects linked to alpelisib. With a root mean square fluctuation of the protein backbone of less than 0.7 nm, they demonstrated a steady binding mode in the target binding pocket. They have also prompted hydrogen bonding throughout the simulations, implying that the chemicals have firmly occupied the active site. A comprehensive study showed that streptenol D, streptenol E, streptenol C, streptenol G, streptenol F, and streptenol B can be considered as lead compounds for PIK3CA-based inhibitor design. To warrant the treatment efficacy against cancer, comprehensive computational research based on proposed chemicals must be assessed through in vitro studies.
Collapse
Affiliation(s)
- H. Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Swetha Vasudevan
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - S. Sudha
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - S. R. Pugazhvendan
- Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
- Department of Zoology, Annamalai University, Annamalai Nagar, Cuddalore, Tamil Nadu, India
| | - P. Ronald Ross
- Department of Zoology, Annamalai University, Annamalai Nagar, Cuddalore, Tamil Nadu, India
| | - Velmurugan
- Department of Biology, School of Natural Science, Madda Walabu University, Oromiya Region, Ethiopia
| |
Collapse
|
5
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
6
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Kusuma AB, Nouioui I, Klenk HP, Goodfellow M. Streptomyces harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. Int J Syst Evol Microbiol 2020; 70:4874-4882. [PMID: 32821037 PMCID: PMC7656270 DOI: 10.1099/ijsem.0.004346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023] Open
Abstract
A polyphasic study was undertaken to establish the position of a Streptomyces strain, isolate PRKS01-65T, recovered from sand dune soil collected at Parangkusumo, Yogyakarta Province, Java, Indonesia. A combination of chemotaxonomic, cultural and morphological properties confirmed its position in the genus of Streptomyces. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Streptomyces leeuwenhoekii C34T (99.9 % similarity) and loosely associated with the type strains of Streptomyces chiangmaiensis (98.7 % similarity) and Streptomyces glomeratus (98.9 % similarity). Multilocus sequence analyses based on five conserved housekeeping gene alleles confirmed the close relationship between the isolate and S. leeuwenhoekii C34T, although both strains belonged to a well-supported clade that encompassed the type strains of S. glomeratus, Streptomyces griseomycini, Streptomyces griseostramineus, Streptomyces labedae, Streptomyces lomondensis and Streptomyces spinoverrucosus. A comparison of the draft genome sequence generated for the isolate with corresponding whole genome sequences of its closest phylogenomic neighbours showed that it formed a well-separated lineage with S. leeuwenhoekii C34T. These strains can also be distinguished using a combination of phenotypic properties and by average nucleotide identity and digital DNA-DNA hybridization similarities of 94.3 and 56 %, values consistent with their classification in different species. Based on this wealth of data it is proposed that isolate PRKS01-65T (=NCIMB 15211T=CCMM B1302T=ICEBB-03T) be classified as Streptomyces harenosi sp. nov. The genome of the isolate contains several biosynthetic gene clusters with the potential to produce new natural products.
Collapse
Affiliation(s)
- Ali Budhi Kusuma
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, 84371, Indonesia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
8
|
Distribution of Viable Bacteria in the Dust-Generating Natural Source Area of the Gobi Region, Mongolia. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gobi Desert is a major source of dust events, whose frequency of occurrence and damage caused have recently significantly increased. In the present study, we investigated the types of live bacteria present in the surface soil of the Gobi Desert in Mongolia, and determined their genetic identification as well as their geographical distribution. During the survey, four different topographies (dry lake bed, wadi, well, and desert steppe) were selected, and land characteristics were monitored for moisture and temperature. The surface soil was aerobically cultured to isolate bacterial colonies, and their 16s rDNA regions were sequenced. The sequence data were identified through NCBI-BLAST analysis and generated phylogenetic trees. The results revealed two phyla and seven families of isolates from the sample points. Each isolate was characterized by their corresponding sample site. The characteristics of land use and soil surface bacteria were compared. Most of the bacteria originated from the soil, however, animal-derived bacteria were also confirmed in areas used by animals. Our findings confirmed the existence of live bacteria in the dust-generating area, suggesting that their presence could affect animal and human health. Therefore, it is necessary to further investigate dust microbes based on the One Health concept.
Collapse
|
9
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Streptomyces cahuitamycinicus sp. nov., isolated from desert soil and reclassification of Streptomyces galilaeus as a later heterotypic synonym of Streptomyces bobili. Int J Syst Evol Microbiol 2020; 70:2750-2759. [PMID: 32176603 DOI: 10.1099/ijsem.0.004103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterial strain, designated 13K301T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of strain 13K301T was revealed by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain 13K301T belongs to the genus Streptomyces and had highest sequence similarity to 'Streptomyces qaidamensis' S10T (99.2 %), Streptomyces flavovariabilis NRRL B-16367T (98.9 %) and Streptomyces phaeoluteigriseus DSM 41896T (98.8 %), but the strain formed a distinct clade in the phylogenetic tree. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain 13K301T and closely related type strains were significantly lower than the recommended threshold values. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were determined as the predominant polar lipids. The major menaquinones were identified as MK-9(H8) and MK-9(H6). On the basis of these genotypic and phenotypic data, it is proposed that strain 13K301T should be classified as representative of a novel species of the genus Streptomyces, for which the name Streptomyces cahuitamycinicus sp. nov. is proposed. The type strain is 13K301T (=DSM 106873T=KCTC 49110T). In addition, the whole genome-based comparisons as well as the multilocus sequence analysis revealed that the type strains of Streptomyces galilaeus and Streptomyces bobili belong to a single species. It is, therefore, proposed that S. galilaeus be recognised as a heterotypic synonym of S. bobili for which an emended description is given.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
10
|
Cortés-Albayay C, Dorador C, Schumann P, Andrews B, Asenjo J, Nouioui I. Streptomyces huasconensis sp. nov., an haloalkalitolerant actinobacterium isolated from a high altitude saline wetland at the Chilean Altiplano. Int J Syst Evol Microbiol 2019; 69:2315-2322. [DOI: 10.1099/ijsem.0.003468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Carlos Cortés-Albayay
- 1School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne NE1 7RU, UK
- 2Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Cristina Dorador
- 3Laboratory of Microbial Complexity and Functional Ecology, Departamento de Biotecnología, Facultad de Ciencias del Mary Recursos Biológicos and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Chile
| | - Peter Schumann
- 4Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Germany
| | - Barbara Andrews
- 2Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Juan Asenjo
- 2Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- 1School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
11
|
Cortés-Albayay C, Dorador C, Schumann P, Schniete JK, Herron P, Andrews B, Asenjo J, Nouioui I. Streptomyces altiplanensis sp. nov., an alkalitolerant species isolated from Chilean Altiplano soil, and emended description of Streptomyces chryseus (Krasil'nikov et al. 1965) Pridham 1970. Int J Syst Evol Microbiol 2019; 69:2498-2505. [PMID: 31204968 DOI: 10.1099/ijsem.0.003525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic approach was used for evaluating the taxonomic status of strain HST21T isolated from Salar de Huasco in the Atacama Desert. The results of 16S rRNA gene and multilocus sequence phylogenetic analyses assigned strain HST21T to the genus Streptomyceswith Streptomyces albidochromogenes DSM 41800Tand Streptomyces flavidovirens DSM 40150T as its nearest neighbours. Digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values between the genome sequences of strain HST21T and S. albidochromogenes DSM 41800T (35.6 and 88.2 %) and S. flavidovirens DSM 40105T (47.2 and 88.8 %) were below the thresholds of 70 and 95-96 % for prokaryotic conspecific assignation. Phenotypic, chemotaxonomic and genetic results distinguished strain HST21T from its closest neighbours. Strain HST21T is characterized by the presence of ll-diaminopimelic acid in its peptidoglycan layer; glucose and ribose as whole cell sugars; diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, glycophospholipids, unknown lipids and phospholipids as polar lipids; and anteiso-C15 : 0 (21.6 %) and anteiso-C17 : 0 (20.5 %) as major fatty acids (>15 %). Based on these results, strain HST21T merits recognition as a novel species, for which the name Streptomyces altiplanensis sp. nov. is proposed. The type strain is HST21T=DSM 107267T=CECT 9647T. While analysing the phylogenies of strain HST21T, Streptomyces chryseus DSM 40420T and Streptomyces helvaticus DSM 40431T were found to have 100 % 16S rRNA gene sequence similarity with digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values of 95.3 and 99.4 %, respectively. Therefore, S. helvaticus is considered as a later heterotypic synonym of S. chryseus and, consequently, we emend the description of S. chryseus.
Collapse
Affiliation(s)
- Carlos Cortés-Albayay
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne NE1 7RU, UK
- Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Cristina Dorador
- Laboratory of Microbial Complexity and Functional Ecology, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos & Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Chile
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Germany
| | - Jana K Schniete
- Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Barbara Andrews
- Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Juan Asenjo
- Centre for Biotechnology and Bioengineering, University of Chile, Beauchef 851, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
12
|
Different Secondary Metabolite Profiles of Phylogenetically almost Identical Streptomyces griseus Strains Originating from Geographically Remote Locations. Microorganisms 2019; 7:microorganisms7060166. [PMID: 31174336 PMCID: PMC6616549 DOI: 10.3390/microorganisms7060166] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
As Streptomyces have shown an outstanding capacity for drug production, different campaigns in geographically distant locations currently aim to isolate new antibiotic producers. However, many of these newly isolated Streptomyces strains are classified as identical to already described species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology are possible, we compared two Streptomyces strains with identical 16S rRNA gene sequences but geographically distant origins. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp. SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM 40236T isolated from Russian garden soil. Compared traits included phylogenetic relatedness based on 16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and secondary metabolite profiles. Both Streptomyces strains shared several common features, such as morphology and core secondary metabolite production. They revealed differences in pigmentation and in the production of accessory secondary metabolites which appear to be strain-specific. In conclusion, despite identical 16S rRNA classification Streptomyces strains can present different secondary metabolite profiles and may well be valuable for consideration in processes for drug discovery.
Collapse
|
13
|
Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315-1332. [PMID: 29721711 DOI: 10.1007/s10482-018-1088-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
An "in house" taxonomic approach to drug discovery led to the isolation of diverse actinobacteria from hyper-arid, extreme hyper-arid and very high altitude Atacama Desert soils. A high proportion of the isolates were assigned to novel taxa, with many showing activity in standard antimicrobial plug assays. The application of more advanced taxonomic and screening strategies showed that strains classified as novel species of Lentzea and Streptomyces synthesised new specialised metabolites thereby underpinning the premise that the extreme abiotic conditions in the Atacama Desert favour the development of a unique actinobacterial diversity which is the basis of novel chemistry. Complementary metagenomic analyses showed that the soils encompassed an astonishing degree of actinobacterial 'dark matter', while rank-abundance analyses showed them to be highly diverse habitats mainly composed of rare taxa that have not been recovered using culture-dependent methods. The implications of these pioneering studies on future bioprospecting campaigns are discussed.
Collapse
|
14
|
Carro L, Razmilic V, Nouioui I, Richardson L, Pan C, Golinska P, Asenjo JA, Bull AT, Klenk HP, Goodfellow M. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1375-1387. [PMID: 29480426 DOI: 10.1007/s10482-018-1049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/16/2018] [Indexed: 02/01/2023]
Abstract
Innovative procedures were used to selectively isolate small numbers of Micromonospora strains from extreme hyper-arid and high altitude Atacama Desert soils. Micromonosporae were recognised on isolation plates by their ability to produce filamentous microcolonies that were strongly attached to the agar. Most of the isolates formed characteristic orange colonies that lacked aerial hyphae and turned black on spore formation, whereas those from the high altitude soil were dry, blue-green and covered by white aerial hyphae. The isolates were assigned to seven multi- and eleven single-membered groups based on BOX-PCR profiles. Representatives of the groups were assigned to either multi-membered clades that also contained marker strains or formed distinct phyletic lines in the Micromonospora 16S rRNA gene tree; many of the isolates were considered to be putatively novel species of Micromonospora. Most of the isolates from the high altitude soils showed activity against wild type strains of Bacillus subtilis and Pseudomonas fluorescens while those from the rhizosphere of Parastrephia quadrangulares and from the Lomas Bayas hyper-arid soil showed resistance to UV radiation.
Collapse
Affiliation(s)
- Lorena Carro
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Valeria Razmilic
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Beauchef 850, Santiago, Chile
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lee Richardson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Che Pan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Beauchef 850, Santiago, Chile
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim BY, Del Carmen Montero-Calasanz M, Andrews BA, Bull AT. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek 2017; 110:1133-1148. [PMID: 28589342 PMCID: PMC5559561 DOI: 10.1007/s10482-017-0886-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from hyper-arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Streptomyces species. Multi-locus sequence analysis based on five housekeeping gene alleles showed that the strains form a homogeneous taxon that is closely related to the type strains of Streptomyces ghanaensis and Streptomyces viridosporus. Representative isolates were shown to have chemotaxonomic and morphological properties consistent with their classification in the genus Streptomyces. The isolates have many phenotypic features in common, some of which distinguish them from S. ghanaensis NRRL B-12104T, their near phylogenetic neighbour. On the basis of these genotypic and phenotypic data it is proposed that the isolates be recognised as a new species within the genus Streptomyces, named Streptomyces asenjonii sp. nov. The type strain of the species is KNN35.1bT (NCIMB 15082T = NRRL B-65050T). Some of the isolates, including the type strain, showed antibacterial activity in standard plug assays. In addition, MLSA, average nucleotide identity and phenotypic data show that the type strains of S. ghanaensis and S. viridosporus belong to the same species. Consequently, it is proposed that the former be recognised as a heterotypic synonym of the latter and an emended description is given for S. viridosporus.
Collapse
Affiliation(s)
- Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK.
| | - Kanungnid Busarakam
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Hamidah Idris
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - David P Labeda
- National Centre for Agricultural Utilization Research, USDA ARS, Peoria, IL, 61614, USA
| | - Imen Nouioui
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Roselyn Brown
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Byung-Yong Kim
- Chunlab Inc., Seoul Natural University, Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | | | - Barbara A Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef, 851, Santiago, Chile
| | - Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
16
|
Oren A, Garrity GM. List of novel names and novel combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:2075-2078. [DOI: 10.1099/ijsem.0.002122] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
17
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2017; 67:2081-2086. [PMID: 28777068 DOI: 10.1099/ijsem.0.002071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|