1
|
Wei Y, Wang B, Wu K, Wang C, Bai X, Wang J, Yang Z. Prevalence, Virulence Genes, Drug Resistance and Genetic Evolution of Trueperella pyogenes in Small Ruminants in Western China. Animals (Basel) 2024; 14:2964. [PMID: 39457894 PMCID: PMC11503795 DOI: 10.3390/ani14202964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Trueperella pyogenes is a significant opportunistic pathogen that causes substantial economic losses in animal agriculture due to its ability to infect various animal tissues and organs. Limited research has been conducted on the prevalence and biological characteristics of T. pyogenes isolated from sheep and goats. This study aimed to isolate T. pyogenes from clinical samples of sheep and goats in western China, examining genetic evolutionary relationships, antibiotic resistance, and virulence genes. Between 2021 and 2023, standard bacteriological methods were used to isolate and identify T. pyogenes from 316 samples (209 from goats and 107 from sheep) collected from 39 farms. Susceptibility to 14 antibiotics was tested using broth microdilution per CLSI guidelines, and PCR detected eight virulence genes. Whole-genome sequencing analyzed genetic relationships and gene carriage status in 39 isolates. The results indicated that 86 strains of T. pyogenes were isolated from 316 samples, yielding an isolation rate of 27.2% (goats n = 47, 22.5%; sheep n = 39, 36.4%). The virulence genes plo, cbpA, nanH, nanP, fimA, fimC, and fimE were present in 100%, 66.7%, 64.1%, 71.8%, 69.2%, 59.0%, and 82.1% of isolates, respectively, with none carrying the fimG gene. The dominant virulence genotype was plo/nanH/nanP/fimA/fimC/fimE. The isolates exhibited resistance to erythromycin (44.2%, 38/86), gentamicin (38.4%, 33/86), sulfamethoxazole/trimethoprim (37.2%, 32/86), tetracycline (32.6%, 28/86), and streptomycin (32.6%, 28/86), and low resistance to chloramphenicol (14.0%, 12/86), ciprofloxacin (7.0%, 6/86), penicillin (5.8%, 5/86), and clindamycin (4.7%, 4/86). All isolates were susceptible to cefotaxime, vancomycin, and linezolid. Among the 86 isolates, 37 (43.0%) displayed multidrug resistance (MDR) characteristics. The whole genome sequencing of 39 isolates identified eight types of resistance genes, including ant(2″)-Ia, ant(3″)-Ia, cmlA1, cmx, erm(X), lnu(A), sul1, and tet(W). Except for tet(W), erm(X), and sul1, the other resistance genes were reported for the first time in T. pyogenes isolated in China. The drug susceptibility test results and resistance gene detection for the isolated strains were consistent for tetracycline, erythromycin, gentamicin, and sulfisoxazole. Similar allelic profiles and genetic evolutionary relationships were found among isolates from different farms. This study highlights the antibiotic resistance status and virulence gene-carrying rate of Trueperella pyogenes, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Yuchen Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ke Wu
- College of Life Science, Sichuan University, Chengdu 610064, China
| | - Chenxiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Western Region), Northwest A&F University, Yangling 712100, China
- Engineering Research Center of Novel Animal Efficient Vaccines of the Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Western Region), Northwest A&F University, Yangling 712100, China
- Engineering Research Center of Novel Animal Efficient Vaccines of the Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Matzembacker B, Fantinel DDS, Rodrigues CM, da Silva SP, Marin MHDB, Rosa DS, da Costa MM, Silveira S, Girardini LK. Antimicrobial efficiency of bromhexine hydrochloride against endometritis-causing Escherichia coli and Trueperella pyogenes in bovines. Braz J Microbiol 2024; 55:2013-2024. [PMID: 38639845 PMCID: PMC11153440 DOI: 10.1007/s42770-024-01320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, the main agents associated with endometritis in cows in the state of Santa Catarina, Brazil, were identified and the resistance profile and virulence mechanisms of the bacterial isolates were evaluated. Isolates of Escherichia coli and Trueperella pyogenes were tested for their biofilm forming ability and the antimicrobial action of bromhexine hydrochloride in combination with other antimicrobials. A total of 37 uterine lavage samples were collected from cows with endometritis. Of the 55 bacteria isolated, 25.4% were identified as T. pyogenes and 16.3% as E. coli. The bacterial isolates showed greater resistance to sulfamethoxazole + trimethoprim (58.2%) and tetracycline (56.3%). Among the species, E. coli showed the highest resistance rates, with 100% of isolates showing resistance to amoxicillin, streptomycin, and gentamicin. The results of the minimum inhibitory concentration for the T. pyogenes isolates showed that 91.6% of the isolates were resistant to enrofloxacin and tetracycline, and 75% were resistant to ceftiofur and sulfamethoxazole + trimethoprim. All E. coli and T. pyogenes isolates showed biofilm forming ability. The plo, fimA, and nanH genes were identified in 100% of T. pyogenes isolates. In parallel, 100% of E. coli isolates had the fimH gene, and 11.1% had the csgD gene. Bromhexine hydrochloride showed antimicrobial activity against 100% of E. coli isolates and 66.6% of T. pyogenes isolates. Furthermore, when associated with antimicrobials, bromhexine hydrochloride has a synergistic and additive effect, proving to be an option in the treatment of endometritis in cows and an alternative for reducing the use of antimicrobials.
Collapse
Affiliation(s)
- Bruna Matzembacker
- Laboratório de diagnóstico de Doenças infectocontagiosas, Universidade do Oeste de Santa Catarina, Xanxerê, 89820-000, Santa Catarina, Brasil
| | | | | | - Samara Pereira da Silva
- Laboratório de diagnóstico de Doenças infectocontagiosas, Universidade do Oeste de Santa Catarina, Xanxerê, 89820-000, Santa Catarina, Brasil
| | - Matheus Henrique Dal Bó Marin
- Laboratório de diagnóstico de Doenças infectocontagiosas, Universidade do Oeste de Santa Catarina, Xanxerê, 89820-000, Santa Catarina, Brasil
| | - Danillo Sales Rosa
- Universidade Federal Rural de Pernambuco - UFRPE, Recife, 52171-030, Pernambuco, Brasil
| | - Mateus Matiuzzi da Costa
- Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, 56300-000, Pernambuco, Brasil.
| | - Simone Silveira
- Laboratório de diagnóstico de Doenças infectocontagiosas, Universidade do Oeste de Santa Catarina, Xanxerê, 89820-000, Santa Catarina, Brasil
| | - Lilian Kolling Girardini
- Laboratório de diagnóstico de Doenças infectocontagiosas, Universidade do Oeste de Santa Catarina, Xanxerê, 89820-000, Santa Catarina, Brasil
| |
Collapse
|
3
|
Kim Y, Ji MJ, Park J, Choi KS. Case report: Omphalitis caused by Trueperella pyogenes infection in a Korean indigenous calf. Front Vet Sci 2024; 11:1362352. [PMID: 38872804 PMCID: PMC11169830 DOI: 10.3389/fvets.2024.1362352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Omphalitis, commonly caused by opportunistic bacteria has been significantly associated with morbidity and mortality in neonatal calves. Trueperella pyogenes is a commensal and opportunistic pathogen that can cause suppurative infection in farm animals. Our case involved a 10-day-old female Korean indigenous calf that presented with umbilical enlargement accompanied by a greenish-yellow purulent discharge and right forelimb lameness. The calf was diagnosed with failure of passive transfer at 24 h of age. Physical examination found hypothermia (38.1°C), tachycardia (110 beats/min), tachypnea (47 cycles/min), and open mouth breathing. Ultrasonography revealed hyperechoic pus in the 9th and 10th right intercostals, for which a liver abscess due to omphalophlebitis was suspected. After 3 days, the calf died. T. pyogenes was detected in the umbilical cord, lung, liver, kidney, intestine, mesenteric lymph node, urinary bladder, and bladder ligament. All genes related to the virulent factors (i.e., plo, cbpA, fimA, fimC, fimG, nanH, and nanP) were also identified, with plo and fimA being associated with pathogenicity. A final diagnosis of omphalitis was established based on the identification of virulent T. pyogenes and umbilical cord dilatation on ultrasonography. Antimicrobial susceptibility tests showed that the isolated T. pyogenes was susceptible to amoxicillin, ceftiofur, florfenicol, enrofloxacin, ofloxacin, and ciprofloxacin, suggesting the suitability of these antibiotics for treating T. pyogenes-induced omphalitis. Hence, accurate and rapid diagnosis of the involved bacteria and antimicrobial susceptibility patterns can help guide therapeutic decisions. Our case provides useful information that could aid large animal clinicians in the diagnosis and treatment of T. pyogenes-induced omphalitis.
Collapse
Affiliation(s)
- Youngjun Kim
- Department of Animal Hospital, Hanwoo (Korean Indigenous Cattle) Genetic Improvement Center, National Agricultural Cooperative Federation, Seosan, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Min-Jeong Ji
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
4
|
Zheng Y, Yu Q, Han L, Chen X. Molecular Characterization of Resistance and Virulence Factors of Trueperella pyogenes Isolated from Clinical Bovine Mastitis Cases in China. Infect Drug Resist 2024; 17:1979-1986. [PMID: 38800580 PMCID: PMC11122176 DOI: 10.2147/idr.s433578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose The present study was designed to investigate the resistance determinants and virulence factors of 45 Trueperella pyogenes isolates from clinical bovine mastitis in Hexi Corridor of Gansu, China. Methods Minimum inhibitory concentrations (MICs) was tested by E-test method. Gene of antimicrobial resistance, virulence integrase and integron gene cassettes were determined by PCR and DNA sequencing. Results The T. pyogenes isolates exhibited high resistance to streptomycin (88.9%) and tetracycline (64.4%), followed by erythromycin (15.6%) and gentamicin (13.3%). Resistance to streptomycin was most commonly encoded by aadA9 (88.9%); and to tetracycline, by tetW (64.4%). Importantly, all streptomycin-resistant isolates carried aadA9 alone or in combination with aadA1, aadA11 and strA-strB. Similarly, all tetracycline-resistant isolates harbored tetW alone or in combination with tetA33. Meanwhile, ermX was detected in 13.3% isolates, only one erythromycin-resistant isolate was not identified for this gene. Moreover, all T. pyogenes isolates carried class 1 integrons, and 17.8% of them contained gene cassettes, including arrays aadA1-aadB (4.4%), aad A24-dfrA1-ORF1 (2.2%) and aadA1 (2.2%). Furthermore, all tested isolates harbored virulent genes plo and fimA, followed by fimC (88.9%), fimE (86.6%) nanP (75.6%), nanH (40.0%), cbpA (35.6%) and fimG (6.7%). Conclusion To our knowledge, this is the first report of integron gene cassettes of T. pyogenes isolates from bovine mastitis cases in China. These findings are useful for developing the prevention and the virulence factors of T. pyogenes could be promising candidates for vaccine antigens for bovine mastitis caused by T. pyogenes in China.
Collapse
Affiliation(s)
- Ya Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Xinyi Chen
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
5
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Ducatelle R, Geldhof P, Deforce D, Callens J, Opsomer G. An in-depth investigation of the microbiota and its virulence factors associated with severe udder cleft dermatitis lesions. J Dairy Sci 2024; 107:3219-3234. [PMID: 38135052 DOI: 10.3168/jds.2023-24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Udder cleft dermatitis (UCD) is a skin condition affecting the anterior parts of the udder in dairy cattle. In the present study, we aimed to shed light on the microbiota in severe UCD lesions versus healthy udder skin by putting forward a taxonomic and functional profile based on a virulence factor analysis. Through shotgun metagenomic sequencing, we found a high proportion of bacteria in addition to a low abundance of archaea. A distinct clustering of healthy udder skin versus UCD lesion samples was shown by applying principal component analysis and (sparse) partial least squares analysis on the metagenomic data. Proteobacteria, Bacillota, and Actinomycetota were among the most abundant phyla in healthy udder skin samples. In UCD samples, Bacteroidota was the most abundant phylum. At genus level, Bifidobacterium spp. had the highest relative abundance in healthy skin samples, whereas Porphyromonas spp. and Corynebacterium spp. had the highest relative abundance in UCD samples. In the differential abundance analysis, Porphyromonas spp. and Bacteroides spp. were significantly differentially abundant in UCD samples, whereas Bifidobacterium spp., Staphylococcus sp. AntiMn-1, and Staphylococcus equorum were more commonly found in healthy samples. Moreover, the abundance of several treponeme phylotypes was significantly higher in lesion samples. The streptococcal cysteine protease speB was among the most abundant virulence factors present in severe UCD lesions, while a plethora of virulence factors such as the antitoxin relB were downregulated, possibly contributing to creating the ideal wound climate for the dysbiotic community. Network analysis showed healthy lesion samples had a large network ofpositive, correlations between the abundances of beneficial species such as Aerococcus urinaeequi and Bifidobacterium angulatum, indicating that the healthy skin microbiome forms an active protective bacterial network, which is disrupted in case of UCD. In UCD samples, a smaller microbial network mainly consisting of positive correlations between the abundances of Bacteroides fragilis and anaerobic Bacteroidota was exposed. Moreover, a high correlation between the taxonomic data and virulence factors was revealed, concurrently with 2 separate networks of microbes and virulence factors. One network, matching with the taxonomic findings in the healthy udder skin samples, showcased a community of harmless or beneficial bacteria, such as Bifidobacterium spp. and Butyrivibrio proteoclasticus, associated with hcnB, hcnC, relB, glyoxalase, and cupin 2. The other network, corresponding to UCD samples, consisted of pathogenic or facultative pathogenic and mainly anaerobic bacteria such as Treponema spp., Mycoplasmopsis spp., and bovine gammaherpesvirus 4, that correlated with virulence factors SpvB, fhaB, and haemagglutination activity domain-associated factor. Our results point toward a dysbiotic community with a notable decrease in diversity and evenness, with a loss of normal skin inhabitants and innocuous or useful species making way for predominantly anaerobic, facultative pathogens. The shift in the abundance of virulence factors such as fhaB and SpvB could play a role in the manifestation of a local micro-environment favorable to the microbiome associated with udder skin lesions. Lastly, the presence of specific networks between microbial species, and between microbes and virulence factors was shown.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, 8820 Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Liu N, Shan Q, Wu X, Xu L, Li Y, Wang J, Wang X, Zhu Y. Phenotypic Characteristics, Antimicrobial Susceptibility and Virulence Genotype Features of Trueperella pyogenes Associated with Endometritis of Dairy Cows. Int J Mol Sci 2024; 25:3974. [PMID: 38612785 PMCID: PMC11012078 DOI: 10.3390/ijms25073974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Trueperella pyogenes can cause various infections in the organs and tissues of different livestock (including pigs, cows, goats, and sheep), including mastitis, endometritis, pneumonia, or abscesses. Moreover, diseases induced by T. pyogenes cause significant economic losses in animal husbandry. In recent large-scale investigations, T. pyogenes has been identified as one of the main pathogens causing endometritis in lactating cows. However, the main treatment for the above-mentioned diseases is still currently antibiotic therapy. Understanding the impact of endometritis associated with T. pyogenes on the fertility of cows can help optimize antibiotic treatment for uterine diseases, thereby strategically concentrating the use of antimicrobials on the most severe cases. Therefore, it is particularly important to continuously monitor the prevalence of T. pyogenes and test its drug resistance. This study compared the uterine microbiota of healthy cows and endometritis cows in different cattle farms, investigated the prevalence of T. pyogenes, evaluated the genetic characteristics and population structure of isolated strains, and determined the virulence genes and drug resistance characteristics of T. pyogenes. An amount of 186 dairy cows were involved in this study and 23 T. pyogenes strains were isolated and identified from the uterine lavage fluid of dairy cows with or without endometritis.
Collapse
Affiliation(s)
- Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150001, China; (N.L.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Xuan Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Le Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150001, China; (N.L.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (J.W.)
| |
Collapse
|
7
|
Beikzadeh B. Immunoinformatics design of novel multi-epitope vaccine against Trueperella Pyogenes using collagen adhesion protein, fimbriae, and pyolysin. Arch Microbiol 2024; 206:90. [PMID: 38315222 DOI: 10.1007/s00203-023-03814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen that causes infertility, mastitis, and metritis in animals. T. pyogenes is also a zoonotic disease and is considered an economic loss agent in the livestock industry. Therefore, vaccine development is necessary. Using an immunoinformatics approach, this study aimed to construct a multi-epitope vaccine against T. pyogenes. The collagen adhesion protein, fimbriae, and pyolysin (PLO) sequences were initially retrieved. The HTL, CTL, and B cell epitopes were predicted. The vaccine was designed by binding these epitopes with linkers. To increase vaccine immunogenicity, profilin was added to the N-terminal of the vaccine construct. The antigenic features and safety of the vaccine model were investigated. Docking, molecular dynamics simulation of the vaccine with immune receptors, and immunological simulation were used to evaluate the vaccine's efficacy. The vaccine's sequence was then optimized for cloning. The vaccine construct was designed based on 18 epitopes of T. pyogenes. The computational tools validated the vaccine as non-allergenic, non-toxic, hydrophilic, and stable at different temperatures with acceptable antigenic features. The vaccine model had good affinity and stability to bovine TLR2, 4, and 5 as well as stimulation of IgM, IgG, IL-2, IFN-γ, and Th1 responses. This vaccine also increased long-lived memory cells, dendritic cells, and macrophage population. In addition, codon optimization was done and cloned in the E. coli K12 expression vector (pET-28a). For the first time, this study introduced a novel multi-epitope vaccine candidate based on collagen adhesion protein, fimbriae, and PLO of T. pyogenes. It is expected this vaccine stimulates an effective immune response to prevent T. pyogenes infection.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
8
|
Çömlekcioğlu U, Jezierska S, Opsomer G, Pascottini OB. Uterine microbial ecology and disease in cattle: A review. Theriogenology 2024; 213:66-78. [PMID: 37804686 DOI: 10.1016/j.theriogenology.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Due to the critical contribution of the uterine-associated microbiota in reproductive health, physiology, and performance, culture-independent methods have been increasingly employed to unravel key aspects of microbial ecology in the uterus of cattle. Nowadays, we know that bacterial diversity is crucial to maintain uterine health, however, there is still no consensus on the exact composition of a healthy uterine microbiota (or eubiosis). Generally, loss of bacterial diversity (or dysbiosis) contributes to the development of uterine infections, associated with increased relative abundances of Bacteroides, Fusobacterium, Trueperella, and Porphyromonas. Uterine infections are highly prevalent and gravely influence the profitability of cattle operations, animal welfare, and public health. Thus, understanding the dynamics of uterine microbial ecology is essential to develop effective strategies focused on preventing and mitigating the adverse effects of uterine dysbiosis as well as assisting in the process of restoring the core, healthy uterine microbiota. The aim of this review is to summarize research conducted in the microbial ecology of bovine uteri. We discuss the origin of the uterine microflora of healthy cows and the factors influencing its composition. In addition, we review the biology of specific pathogens that are known to increase in abundance during the occurrence of uterine disease. Lastly, we provide an overview of the bacterial biofilm in the bovine endometrium, and we briefly summarize the rationale for the use of probiotics to prevent uterine disease in cattle.
Collapse
Affiliation(s)
- Uğur Çömlekcioğlu
- Department of Biology, Osmaniye Korkut Ata University, 8000, Osmaniye, Turkiye; Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | | | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
9
|
Stuby J, Lardelli P, Thurnheer CM, Blum MR, Frei AN. Trueperella pyogenes endocarditis in a Swiss farmer: a case report and review of the literature. BMC Infect Dis 2023; 23:821. [PMID: 37996784 PMCID: PMC10668470 DOI: 10.1186/s12879-023-08810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Trueperella pyogenes (T. pyogenes) is a bacterium that colonizes the skin and mucosal surfaces of various domestic and wild animals. It rarely leads to infections in humans, with only a few descriptions available in the literature. CASE PRESENTATION A 71-year-old Swiss farmer with a history of recurring basal cell carcinoma and metastasized pancreatic neuroendocrine tumor presented with signs of sepsis after a three-day history of general weakness, malaise and fever. Clinical and echocardiographic findings, as well as persistent bacteremia were consistent with mitral valve endocarditis caused by T. pyogenes. The patient's condition gradually improved under antibiotic treatment with piperacillin/tazobactam (empiric therapy of sepsis), and later penicillin G based on resistance testing. He was discharged after 13 days and continued outpatient antibiotic therapy with ceftriaxone, resulting in a total antibiotic treatment duration of six weeks. This is the first literature review of T. pyogenes endocarditis in humans. Among nine cases of T. pyogenes endocarditis, three patients had documented contact with farm animals and five had an underlying condition that compromised the immune system. While antibiotic resistance of T. pyogenes is an emerging concern, susceptibility to beta-lactam antibiotics seems to persist. The mortality of T. pyogenes endocarditis described in the literature was high, with 66% of patients not surviving the disease. CONCLUSIONS T. pyogenes is a rare causative organism of infectious endocarditis in humans and descriptions are mainly restricted to case reports. In our review of the literature, we found that both an impaired immune system and contact with farm animals might be risk factors. Growth of T. pyogenes in blood cultures is unlikely to be missed during routine analysis, as it shows marked beta-hemolysis on blood agar culture plates, which generally leads to further characterization of the bacteria. Susceptibility to penicillin, ceftriaxone, and macrolides seems to be retained and the reported mortality in the few patients with T. pyogenes endocarditis is high.
Collapse
Affiliation(s)
- Johann Stuby
- Department of General Internal Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland.
| | - Patrizia Lardelli
- Department of Infectious Diseases, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Christine M Thurnheer
- Department of Infectious Diseases, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Manuel R Blum
- Department of General Internal Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Andrea N Frei
- Department of General Internal Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Karthik K, Anbazhagan S, Chitra MA, Sridhar R. Comparative phylogenomics of Trueperella pyogenes reveals host-based distinction of strains. Antonie Van Leeuwenhoek 2023; 116:343-351. [PMID: 36598708 DOI: 10.1007/s10482-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Trueperella pyogenes, an opportunistic pathogen causes various ailments in different animals. Different strains from different animals have distinct characters phenotypically and genotypically. Hence understanding the strains in a particular geographical location helps in framing the preventive measures. Comparative genomics of all the available T. pyogenes genome in the NCBI was conducted to understand the relatedness among strains. Whole genome phylogeny showed host associated clustering of strains recovered from swine lungs. Core genome phylogeny also showed host associated clustering mimicking whole genome phylogeny results. MLST analysis showed that there was higher diversity among cattle strains. Multidimensional scaling revealed five swine clusters, two cattle and buffalo clusters. Pangenome analysis also showed that T. pyogenes had an open genome with 57.09% accessory genome. Host specific genes were identified by pangenome analysis, and (R)-citramalate synthase was specific for swine strains of Asian origin. Host specifc genes identified by pangenome analysis can be exploited for developing a molecular assay to specifically identify the strains. The study shows that MLST having higher discriminatory power can be used as an epidemiological tool for strain discrimination of T. pyogenes.
Collapse
Affiliation(s)
- Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600051, India.
- Department of Veterinary Microbiology, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Udumalpet, Tamil Nadu, 642126, India.
| | - Subbaiyan Anbazhagan
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, 500078, India
| | - Murugesan Ananda Chitra
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600051, India
| | - Ramaswamy Sridhar
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600051, India
| |
Collapse
|
11
|
Tamai IA, Mohammadzadeh A, Mahmoodi P, Pakbin B, Salehi TZ. Antimicrobial susceptibility, virulence genes and genomic characterization of Trueperella pyogenes isolated from abscesses in dairy cattle. Res Vet Sci 2023; 154:29-36. [PMID: 36434850 DOI: 10.1016/j.rvsc.2022.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Trueperella pyogenes is an opportunistic animal pathogen mainly associated with various suppurative infections in wild and domestic animals. Limited studies have investigated the pathogenesis of diseases caused by this pathogen. The main objective of the current study was to investigate the prevalence, phenotypic properties, virulence genotypes, antimicrobial susceptibility and genetic characterization of T. pyogenes isolated from abscess lesions in different tissues of on-farm dairy cattle. The study was performed on 150 postpartum cattle with clinical abscess symptoms on 22 farms around Tehran, Iran. Classical and disk diffusion methods are used for phenotypic characterization and antibiotic susceptibility. Detection of virulence factor encoding genes and genomic characterization of the isolates also are carried out by conventional PCR and BOX-PCR assays, respectively. Sixty-eight T. pyogenes strains (45.3%) were isolated, 12 were identified as pure cultures and the other 56 strains were isolated from mixed cultures. Seven distinct biotypes were identified among the T. pyogenes isolates. The isolates were mostly resistance to trimethoprim-sulfamethoxazole (70.6%), erythromycin (36.7%), tetracycline (26.5%) and tylosin (23.5%) antibiotics. Also, the genes plo, nanH, nanP and fimA were detected in all isolates. Forty-two isolates (61.7%) carried all virulence factor genes detected in this study. Three isolates only carried plo, nanH, nanP and fimA genes were identified as the least frequent genotype. All sixty-eight isolates and the reference strain were categorized into seven main clusters (A-G). A strong association was observed between virulence factor encoding genes, pathogenicity and biochemical biotypes in some specific clonal relationships.
Collapse
Affiliation(s)
- Iradj Ashrafi Tamai
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Thakur Z, Vaid RK, Anand T, Tripathi BN. Comparative Genome Analysis of 19 Trueperella pyogenes Strains Originating from Different Animal Species Reveal a Genetically Diverse Open Pan-Genome. Antibiotics (Basel) 2022; 12:antibiotics12010024. [PMID: 36671226 PMCID: PMC9854608 DOI: 10.3390/antibiotics12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Correspondence:
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Bhupendra Nath Tripathi
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Division of Animal Science, Krishi Bhavan, New Delhi 110001, India
| |
Collapse
|
13
|
Qi M, Jiang Q, Yang S, Zhang C, Liu J, Liu W, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. The endoplasmic reticulum stress-mediated unfolded protein response protects against infection of goat endometrial epithelial cells by Trueperella pyogenes via autophagy. Virulence 2022; 13:122-136. [PMID: 34967271 PMCID: PMC9794013 DOI: 10.1080/21505594.2021.2021630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trueperella pyogenes is an important bacterial pathogen of a wide range of domestic and wild animals. Autophagy plays a key role in eliminating T. pyogenes in a process that is dependent on mechanistic target of rapamycin (mTOR). The endoplasmic reticulum (ER) stress response also is critical for autophagy regulation. However, the relationship between ER stress and T. pyogenes is uncharacterized and the intracellular survival mechanisms of T. pyogenes have not been investigated adequately. In this study, we show that T. pyogenes invades goat endometrial epithelial cells (gEECs). Meanwhile, we observed that GRP78 was upregulated significantly, and that unfolded protein response (UPR) also were activated after infection. Additionally, treatment with activators and inhibitors of ER stress downregulated and upregulated, respectively, intracellular survival of T. pyogenes. Blocking the three arms of the UPR pathway separately enhanced T. pyogenes survival and inflammatory reaction to different levels. We also show that LC3-labeled autophagosomes formed around the invading T. pyogenes and that autolysosome-like vesicles were visible in gEECs using transmission electron microscopy. Moreover, tunicamycin did not inhibit the intracellular survival of T. pyogenes under conditions in which autophagy was blocked. Finally, severe challenge with T. pyogenes induced host cell apoptosis which also may indicate a role for ER stress in the infection response. In summary, we demonstrate here that ER stress and UPR are novel modulators of autophagy that inhibit T. pyogenes intracellular survival in gEECs, which has the potential to be developed as an effective therapeutic target in T. pyogenes infectious disease.
Collapse
Affiliation(s)
- Maozhen Qi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Qingran Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Siwei Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Chenxi Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Jianguo Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&f University, Yanglin, Shaanxi, China,CONTACT Yaping Jin
| |
Collapse
|
14
|
Zeng X, Li S, Ye Q, Cai S, Quan S, Liu L, Zhang S, Chen F, Cai C, Wang F, Qiao S, Zeng X. The Combined Use of Medium- and Short-Chain Fatty Acids Improves the Pregnancy Outcomes of Sows by Enhancing Ovarian Steroidogenesis and Endometrial Receptivity. Nutrients 2022; 14:nu14204405. [PMID: 36297089 PMCID: PMC9607977 DOI: 10.3390/nu14204405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xi’an 712100, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
- Correspondence:
| |
Collapse
|
15
|
Tamai IA, Mohammadzadeh A, Salehi TZ, Mahmoodi P, Pakbin B. Expression of virulence factor genes in co-infections with Trueperella pyogenes isolates and other bacterial pathogens; an in vivo study. Microb Pathog 2022; 164:105435. [DOI: 10.1016/j.micpath.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
16
|
Petkova T, Rusenova N. In vitro effect of tetracycline antibiotics on Trueperella pyogenes isolated from cows with metritis. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trueperella pyogenes is associated with endometritis and metritis in cows. Traditionally these diseases are treated with antibiotics while new approaches include application of the mucolytic N-acetylcysteine. Therefore the study aimed to evaluate the sensitivity of clinical Trueperella pyogenes isolates (n=2) to oxytetracycline, doxycycline, N-acetylcysteine and their combinations. The potential for biofilm formation with/without tested drugs was investigated by the method of crystal violet staining. Minimum inhibitory concentrations (MIC) of oxytetracycline for T. pyogenes 1 and 2 were 16 and 64 µg/mL, respectively. MIC of doxycycline for both isolates was 32 µg/mL and for N-acetylcysteine - 8 mg/mL. Both Trueperella pyogenes isolates did not form biofilm. The growth of T. pyogenes 1 cultured in the presence of either oxytetracycline or doxycycline (0.0078–128 µg/mL) under conditions for biofilm formation was significantly inhibited at concentrations ≥ 1 μg/mL and 8 μg/mL, respectively. The growth of T. pyogenes 2 was not affected by the antibiotics. N-acetylcysteine at ≥ 4 mg/mL resulted in significant inhibition of the growth of both isolates and its combinations with the antibiotics did not inhibit their growth. The effect of N-acetylcysteine should be validated in clinical settings but its combinations with tetracyclines were not able to improve the sensitivity of T. pyogenes, isolated from cows with clinical metritis.
Collapse
Affiliation(s)
- Ts. Petkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - N. Rusenova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
17
|
Djebala S, Evrard J, Gregoire F, Bayrou C, Gille L, Eppe J, Casalta H, Frisée V, Moula N, Sartelet A, Thiry D, Bossaert P. Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet Sci 2021; 8:vetsci8120295. [PMID: 34941822 PMCID: PMC8707031 DOI: 10.3390/vetsci8120295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to identify the species and antimicrobial susceptibility of bacteria involved in parietal fibrinous peritonitis (PFP). We studied 156 peritoneal fluid samples from cows presenting PFP after caesarean section. Bacteria were cultured in selective media and their antimicrobial susceptibility was tested by disk diffusion assay. Bacteria were isolated in the majority (129/156; 83%) of samples. The majority (82/129; 63%) of positive samples contained one dominant species, while two or more species were cultured in 47/129 (36%) samples. Trueperella pyogenes (T. Pyogenes) (107 strains) was the most identified species, followed by Escherichia coli (E. coli) (38 strains), Proteus mirabilis (P. mirabilis) (6 strains), and Clostridium perfringens (C. perfringens) (6 strains). Several other species were sporadically identified. Antimicrobial susceptibility was tested in 59/185 strains, predominantly E. coli (38 strains) and P. mirabilis (6 strains). Antibiotic resistance, including resistance to molecules of critical importance, was commonly observed; strains were classified as weakly drug resistant (22/59; 37%), multidrug resistant (24/59; 41%), extensively drug resistant (12/59; 20%), or pan-drug resistant (1/59; 2%). In conclusion, extensive antibiotic resistance in the isolated germs might contribute to treatment failure. Ideally, antimicrobial therapy of PFP should be based upon bacterial culture and susceptibility testing.
Collapse
Affiliation(s)
- Salem Djebala
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
- Correspondence: ; Tel.: +32-493-333-591
| | - Julien Evrard
- Gestion et Prévention de Santé, Regional Association of Health and Animal Identification, Allée des Artisans 2, 5590 Ciney, Belgium; (J.E.); (F.G.)
| | - Fabien Gregoire
- Gestion et Prévention de Santé, Regional Association of Health and Animal Identification, Allée des Artisans 2, 5590 Ciney, Belgium; (J.E.); (F.G.)
| | - Calixte Bayrou
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Linde Gille
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Justine Eppe
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Hélène Casalta
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Vincent Frisée
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Nassim Moula
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal & Health (FARAH), University of Liège, 4000 Liège, Belgium;
- GIGA—Animal Facilities—ULiège—B 34, 4000 Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue Cureghem 6, 4000 Liège, Belgium;
| | - Philippe Bossaert
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| |
Collapse
|
18
|
Ashrafi Tamai I, Mohammadzadeh A, Zahraei Salehi T, Mahmoodi P, Pakbin B. Investigation of antimicrobial susceptibility and virulence factor genes in Trueperella pyogenes isolated from clinical mastitis cases of dairy cows. Food Sci Nutr 2021; 9:4529-4538. [PMID: 34401100 PMCID: PMC8358342 DOI: 10.1002/fsn3.2431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 06/12/2021] [Indexed: 11/29/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen causing important diseases including mastitis and metritis in domestic animals such as dairy cows leading to prominent economic losses in food production industry. The aim of this study was to investigate bacterial species, antimicrobial susceptibility, and presence of virulence factor genes and genotyping of T. pyogenes isolates associated with summer mastitis cases from 22 different farms around Tehran, Iran. Fifty-five percent of dairy cows with clinical mastitis symptoms was infected by T. pyogenesis indicated that this pathogen is the most important contributor to clinical mastitis in dairy cows in the present study. A significant correlation was illustrated between presence of virulence factor genes of isolated pathogen, biochemical patterns, and the utter infected types. Multidrug resistance susceptibility observed between isolates indicated the important need for prudent use of antimicrobials in treatment of mastitis caused by T. pyogenes and increased concerning of consumer health associated with recent problems of antimicrobial resistance. The categorization of isolates was implemented into seven different clonal related types by COX-PCR at 80% of similarity cutoff with significance relationship to clonal types, CAMP test result and sampling time and biochemical profile. Regarding to the results obtained at the present study, T. pyogenes can be considered as an important typically cause of purulent and acute form of clinical bovine mastitis and loss of dairy productivity. Further studies with more sample size and high-throughput omic methods in various sampling time and areas are suggested for study of this pathogen precisely.
Collapse
Affiliation(s)
- Iradj Ashrafi Tamai
- Department of PathobiologyFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| | | | - Taghi Zahraei Salehi
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pezhman Mahmoodi
- Department of PathobiologyFaculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| | - Babak Pakbin
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
19
|
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Kizerwetter-Świda M, Moroz A, Olech W, Spinu M, Binek M, Rzewuska M. Trueperella pyogenes Isolates from Livestock and European Bison ( Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics (Basel) 2021; 10:380. [PMID: 33916765 PMCID: PMC8065510 DOI: 10.3390/antibiotics10040380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Determinants of tetracycline resistance in Trueperella pyogenes are still poorly known. In this study, resistance to tetracycline was investigated in 114 T. pyogenes isolates from livestock and European bison. Tetracycline minimum inhibitory concentration (MIC) was evaluated by a microdilution method, and tetracycline resistance genes were detected by PCR. To determine variants of tetW and their linkage with mobile elements, sequencing analysis was performed. Among the studied isolates, 43.0% were tetracycline resistant (MIC ≥ 8 µg/mL). The highest MIC90 of tetracycline (32 µg/mL) was noted in bovine and European bison isolates. The most prevalent determinant of tetracycline resistance was tetW (in 40.4% of isolates), while tetA(33) was detected only in 8.8% of isolates. Four variants of tetW (tetW-1, tetW-2, tetW-3, tetW-4) were recognized. The tetW-3 variant was the most frequent and was linked to the ATE-1 transposon. The tetW-2 variant, found in a swine isolate, was not previously reported in T. pyogenes. This is the first report on determinants of tetracycline resistance in T. pyogenes isolates from European bison. These findings highlight that wild animals, including wild ruminants not treated with antimicrobials, can be a reservoir of tetracycline-resistant bacteria carrying resistance determinants, which may be easily spread among pathogenic and environmental microorganisms.
Collapse
Affiliation(s)
- Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-786 Warsaw, Poland;
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Law and Ethics, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| |
Collapse
|
20
|
Infectious Agents Identified by Real-Time PCR, Serology and Bacteriology in Blood and Peritoneal Exudate Samples of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet Sci 2020; 7:vetsci7030134. [PMID: 32933113 PMCID: PMC7558678 DOI: 10.3390/vetsci7030134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to identify the pathogens potentially involved in parietal fibrinous peritonitis (PFP). PFP is a complication of laparotomy in cattle, characterized by an accumulation of exudate inside a fibrinous capsule. We have studied 72 cases of PFP in Belgian blue cows, confirmed by a standard diagnostic protocol. Blood was collected to evaluate the presence of antibodies for Mycoplasma bovis(M. bovis), Coxiella burnetii(C. burnetii) and Bovine Herpesvirus 4(BoHV4) by enzyme-linked immunosorbent assays. Peritoneal exudate was obtained from the PFP cavity to perform bacteriological culture, and to identify the DNA of M. bovis, C. burnetii and BoHV4 using real time polymerase chain reaction (qPCR). Bacteriological culture was positive in most peritoneal samples (59/72); Trueperella pyogenes (T. pyogenes) (51/72) and Escherichia coli (E. coli) (20/72) were the most frequently identified. For BoHV4, the majority of cows showed positive serology and qPCR (56/72 and 49/72, respectively). Contrariwise, M. bovis (17/72 and 6/72, respectively) and C. burnetii (15/72 and 6/72, respectively) were less frequently detected (p < 0.0001). Our study proves that PFP can no longer be qualified as a sterile inflammation. Moreover, we herein describe the first identification of BoHV4 and C. burnetii in cows affected by PFP.
Collapse
|
21
|
Ahmed MFE, Alssahen M, Lämmler C, Eisenberg T, Plötz M, Abdulmawjood A. Studies on Trueperella pyogenes isolated from an okapi (Okapia johnstoni) and a royal python (Python regius). BMC Vet Res 2020; 16:292. [PMID: 32795301 PMCID: PMC7427953 DOI: 10.1186/s12917-020-02508-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
Background The present study was designed to characterize phenotypically and genotypically two Trueperella pyogenes strains isolated from an okapi (Okapia johnstoni) and a royal python (Python regius). Case presentation The species identity could be confirmed by phenotypic properties, by MALDI-TOF MS analysis and by detection of T. pyogenes chaperonin-encoding gene cpn60 with a previously developed loop-mediated isothermal amplification (LAMP) assay. Furthermore, sequencing of the 16S ribosomal RNA (rRNA) gene, the 16S-23S rDNA intergenic spacer region (ISR), the target genes rpoB encoding the β-subunit of bacterial RNA polymerase, tuf encoding elongation factor tu and plo encoding the putative virulence factor pyolysin allowed the identification of both T. pyogenes isolates at species level. Conclusions Both strains could be clearly identified as T. pyogenes. The T. pyogenes strain isolated in high number from the vaginal discharge of an okapi seems to be of importance for the infectious process; the T. pyogenes strain from the royal python could be isolated from an apparently non-infectious process. However, both strains represent the first isolation of T. pyogenes from these animal species.
Collapse
Affiliation(s)
- Marwa F E Ahmed
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Elgomhoria Street 60, 35516, Mansoura, Egypt
| | - Mazen Alssahen
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Gießen, Frankfurterstraße 85-91, D-35392, Gießen, Germany
| | - Christoph Lämmler
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Gießen, Frankfurterstraße 85-91, D-35392, Gießen, Germany
| | - Tobias Eisenberg
- Landesbetrieb Hessisches Landeslabor (LHL), Schubertstraße 60, D-35392, Gießen, Germany
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173, Hannover, Germany
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173, Hannover, Germany.
| |
Collapse
|
22
|
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Sałamaszyńska-Guz A, Rzewuska M. New Determinants of Aminoglycoside Resistance and Their Association with the Class 1 Integron Gene Cassettes in Trueperella pyogenes. Int J Mol Sci 2020; 21:E4230. [PMID: 32545831 PMCID: PMC7352783 DOI: 10.3390/ijms21124230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Trueperella pyogenes is an important opportunistic animal pathogen. Different antimicrobials, including aminoglycosides, are used to treat T. pyogenes infections. The aim of the present study was to evaluate aminoglycoside susceptibility and to detect aminoglycoside resistance determinants in 86 T. pyogenes isolates of different origin. Minimum inhibitory concentration of gentamicin, streptomycin, and kanamycin was determined using a standard broth microdilution method. Genetic elements associated with aminoglycoside resistance were investigated by PCR and DNA sequencing. All studied isolates were susceptible to gentamicin, but 32.6% and 11.6% of them were classified as resistant to streptomycin and kanamycin, respectively. A total of 30 (34.9%) isolates contained class 1 integrons. Class 1 integron gene cassettes carrying aminoglycoside resistance genes, aadA11 and aadA9, were found in seven and two isolates, respectively. Additionally, the aadA9 gene found in six isolates was not associated with mobile genetic elements. Moreover, other, not carried by gene cassettes, aminoglycoside resistance genes, strA-strB and aph(3')-IIIa, were also detected. Most importantly, this is the first description of all reported genes in T. pyogenes. Nevertheless, the relevance of the resistance phenotype to genotype was not perfectly matched in 14 isolates. Therefore, further investigations are needed to fully explain aminoglycoside resistance mechanisms in T. pyogenes.
Collapse
Affiliation(s)
| | | | | | | | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (E.K.); (I.S.); (D.C.-C.); (A.S.-G.)
| |
Collapse
|
23
|
Deliwala S, Beere T, Samji V, Mcdonald PJ, Bachuwa G. When Zoonotic Organisms Cross Over-Trueperella pyogenes Endocarditis Presenting as a Septic Embolic Stroke. Cureus 2020; 12:e7740. [PMID: 32455060 PMCID: PMC7241225 DOI: 10.7759/cureus.7740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infective endocarditis (IE) remains a significant cause of morbidity and mortality worldwide, with numerous pathogens as culprits. We present a case of IE that evolved to a septic embolic stroke caused by an extremely rare bacteria Trueperella (T.) pyogenes that primarily infects non-humans. In contrast to most cases occurring outside the United States (US), this is the second case of T. pyogenes-associated endocarditis and the first to present as a stroke in the US. T. pyogenes has undergone numerous taxonomic revisions over the years since first being reported and characterized as Bacillus pyogenes in the 1800s. T. pyogenes is a zoonotic infection, and despite advancements in chemotaxonomic detection methods, Trueperella is often misidentified and under-diagnosed. Although epidemiological data is scarce, T. pyogenes infections have the propensity to cause endocarditis, and we aim to summarize all isolated reports of T. pyogenes infections that have been reported in the literature thus far.
Collapse
Affiliation(s)
- Smit Deliwala
- Internal Medicine, Hurley Medical Center, Michigan State University, Flint, USA
| | - Thulasi Beere
- Internal Medicine, Hurley Medical Center, Michigan State University, Flint, USA
| | - Varun Samji
- Internal Medicine, Hurley Medical Center, Michigan State University, Flint, USA
| | - Philip J Mcdonald
- Internal Medicine, Hurley Medical Center, Michigan State University, Flint, USA
| | - Ghassan Bachuwa
- Internal Medicine, Hurley Medical Center, Michigan State University, Flint, USA
| |
Collapse
|
24
|
Fujimoto H, Shimoji N, Sunagawa T, Kubozono K, Nakajima C, Chuma T. Differences in phenotypic and genetic characteristics of Trueperella pyogenes detected in slaughtered cattle and pigs with septicemia. J Vet Med Sci 2020; 82:626-631. [PMID: 32213728 PMCID: PMC7273585 DOI: 10.1292/jvms.19-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We investigated the hemolytic properties, biochemical properties, and possession of virulence factor genes of Trueperella pyogenes isolated from cattle and pigs with
septicemia. The porcine strains showed significantly stronger hemolyticity than the bovine strains. In addition, T. pyogenes from cattle and pigs also differed in
biochemical properties. Virulence factor genes (nanP, cbpA, fimC, and fimE) were more prevalent in bovine strains, whereas other virulence
factor genes (nanH and fimG) were more prevalent in porcine strains. T. pyogenes isolated from pig and cattle with septis cases in Japanese
meat inspection showed variability in biochemical and genetic properties. Differences were observed between porcine and bovine strain in term of the hemolytic strength and possession of
genes for factors promoting adhesions which are considered pathogenic.
Collapse
Affiliation(s)
- Hideki Fujimoto
- Shibushi Meat Inspection Center, Kagoshima Prefecture, Anraku 5972-10, Shibushi, Kagoshima 899-7104, Japan
| | - Natsuki Shimoji
- Shibushi Meat Inspection Center, Kagoshima Prefecture, Anraku 5972-10, Shibushi, Kagoshima 899-7104, Japan
| | - Tatsumi Sunagawa
- Shibushi Meat Inspection Center, Kagoshima Prefecture, Anraku 5972-10, Shibushi, Kagoshima 899-7104, Japan
| | - Kaoru Kubozono
- Shibushi Meat Inspection Center, Kagoshima Prefecture, Anraku 5972-10, Shibushi, Kagoshima 899-7104, Japan
| | - Chikage Nakajima
- Shibushi Meat Inspection Center, Kagoshima Prefecture, Anraku 5972-10, Shibushi, Kagoshima 899-7104, Japan
| | - Takehisa Chuma
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima-shi, Kagoshima 890-0065, Japan
| |
Collapse
|
25
|
Evaluation of the Potency of Two Pyolysin-Derived Recombinant Proteins as Vaccine Candidates of Trueperella Pyogenes in a Mouse Model: Pyolysin Oligomerization and Structural Change Affect the Efficacy of Pyolysin-Based Vaccines. Vaccines (Basel) 2020; 8:vaccines8010079. [PMID: 32050696 PMCID: PMC7157609 DOI: 10.3390/vaccines8010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen in livestock and wild animals. However, only one commercial T. pyogenes vaccine is currently available, and its immunoprotective effect is not ideal. Pyolysin (PLO) is one of the important virulence factors expressed by T. pyogenes and one of the targets for the development of new T. pyogenes vaccines. In this study, we constructed two recombinant antigens, tPLOA1 (contains amino acids 1–110 and domain 4 of the PLO molecule) and tPLOA2 (contains amino acids 190–296 and domain 4 of the PLO molecule). Vaccines were prepared by mixing the two recombinant antigens with incomplete Freund’s adjuvant or sheep red blood cell membrane and provided partial immune protection to immunized mice against the lethal challenge of T. pyogenes. Analysis of the PLO-specific IgG levels of immunized mice indicated that the antibody-inducing potency and immunoprotective efficacy of PLO-based vaccines are affected by the oligomerization and structural changes of PLO after binding to a cholesterol-containing membrane. In addition, the titer of anti-hemolysis antibodies is not a suitable indicator of the immunoprotective effect of these vaccines in PLO-based vaccine-immunized animals. The results provide new insights into the development of T. pyogenes vaccines.
Collapse
|
26
|
Rezanejad M, Karimi S, Momtaz H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiol 2019; 19:305. [PMID: 31881834 PMCID: PMC6935153 DOI: 10.1186/s12866-019-1630-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Trueperella pyogenes is one of the most clinically imperative bacteria responsible for severe cases of mastitis and metritis, particularly in postpartum dairy cows. The bacterium has emergence of antibiotic resistance and virulence characters. The existing research was done to apprise the phenotypic and genotypic evaluation of antibiotic resistance and characterization of virulence factors in the T. pyogenes bacteria of bovine mastitis and metritis in postpartum cows. Methods Two-hundred and twenty-six bovine mastitic milk and 172 uterine swabs were collected and transferred to laboratory. Samples were cultured and T. pyogenes isolates were subjected to disk diffusion and DNA extraction. Distribution of virulence and antibiotic resistance genes was studied by PCR. Results Thirty-two out of 226 (14.15%) mastitic milk and forty-one out of 172 (23.83%) uterine swab samples were positive for T. pyogenes. Isolates of mastitic milk harbored the highest prevalence of resistance toward gentamicin (100%), penicillin (100%), ampicillin (90.62%), amoxicillin (87.50%) and trimethoprim-sulfamethoxazole (87.50%), while those of metritis harbored the highest prevalence of resistance toward ampicillin (100%), amoxicillin (100%), gentamicin (97.56%), penicillin (97.56%) and cefalexin (97.56%). AacC, aadA1, aadA2 and tetW were the most generally perceived antibiotic resistance genes. All bacteria harbored plo (100%) and fimA (100%) virulence factors. NanP, nanH, fimC and fimE were also the most generally perceived virulence factors. Conclusions All bacteria harbored plo and fimA virulence factors which showed that they can use as specific genetic markers with their important roles in pathogenicity of T. pyogenes bacteria. Phenotypic pattern of antibiotic resistance was confirmed by genotypic characterization of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mobin Rezanejad
- Graduated of Veterinary Medicine, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Sepideh Karimi
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hassan Momtaz
- Department of Microbiology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
27
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
28
|
Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int J Mol Sci 2019; 20:ijms20112737. [PMID: 31167367 PMCID: PMC6600626 DOI: 10.3390/ijms20112737] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteria from the species Trueperella pyogenes are a part of the biota of skin and mucous membranes of the upper respiratory, gastrointestinal, or urogenital tracts of animals, but also, opportunistic pathogens. T. pyogenes causes a variety of purulent infections, such as metritis, mastitis, pneumonia, and abscesses, which, in livestock breeding, generate significant economic losses. Although this species has been known for a long time, many questions concerning the mechanisms of infection pathogenesis, as well as reservoirs and routes of transmission of bacteria, remain poorly understood. Pyolysin is a major known virulence factor of T. pyogenes that belongs to the family of cholesterol-dependent cytolysins. Its cytolytic activity is associated with transmembrane pore formation. Other putative virulence factors, including neuraminidases, extracellular matrix-binding proteins, fimbriae, and biofilm formation ability, contribute to the adhesion and colonization of the host tissues. However, data about the pathogen–host interactions that may be involved in the development of T. pyogenes infection are still limited. The aim of this review is to present the current knowledge about the pathogenic potential and virulence of T. pyogenes.
Collapse
|