1
|
Lin Z, An S, Zhou C, Chen Y, Gao Z, Feng J, Lin H, Xun P, Yu W. Effects of Eucalyptus Essential Oil on Growth, Immunological Indicators, Disease Resistance, Intestinal Morphology and Gut Microbiota in Trachinotus ovatus. Microorganisms 2025; 13:537. [PMID: 40142432 PMCID: PMC11944555 DOI: 10.3390/microorganisms13030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Essential oils serve as potential additives that can enhance immune respons and disease resistance and regulate the gut microbiota of fish. Here, this research aims to identify the impacts of eucalyptus essential oil (EEO) on growth, liver antioxidative and immune parameters, resistance to Streptococcus iniae, intestinal morphology and gut microbiota in Trachinotus ovatus. All fish (initial weight: 26.87 ± 0.30 g) were randomly allocated to 12 floating cages (2.0 × 2.0 × 2.0 m3) with each cage containing 100 fish and fed for 30 days. Four diets were manufactured with the supplementation of varying levels of EEO (control and 5.0, 10.0, and 15.0 mL/kg) and were named CG, EEO1, EEO2 and EEO3, respectively. The results showed that EEO1 and EEO2 diets significantly increased WGR, thickness of the intestinal muscle layer, and the ratio of villus height to crypt depth (V/C), while decreasing the intestinal crypt depth of T. ovatus (p < 0.05). Significantly increased activities of SOD and CAT and significantly reduced MDA levels were present in the EEO1 and/or EEO2 groups (p < 0.05). Moreover, the mRNA levels of nrf2, HO-1, GSH-Px, SOD, C4 and GR genes were significantly upregulated and the expression of keap1 and HSP70 genes were significantly downregulated within the EEO1 and EEO2 groups (p < 0.05). After challenge with S. iniae B240703 for 24 h, the bacterial load for five organs in the EEO2 group was less than that in the CG group (p < 0.05). In addition, the fish fed EEO1 and/or EEO2 diets had significantly lower abundances of pathogenic bacteria (Proteobacteria, Planctomycetota, Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas and Blastopirellula) and a higher beneficial bacteria proportion (Firmicutes) than those fed the CG diets (p < 0.05). In conclusion, a moderate dietary m EO level (5.0~10.0 mL/kg) improved the growth and gut morphology, promoted liver immune response, enhanced resistance to S. iniae and modulated the gut microbiota of T. ovatus.
Collapse
Affiliation(s)
- Ziyang Lin
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (Z.L.); (Y.C.); (Z.G.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
| | - Shengzhe An
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
| | - Chuanpeng Zhou
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
| | - Yaqi Chen
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (Z.L.); (Y.C.); (Z.G.)
| | - Zhenchuang Gao
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (Z.L.); (Y.C.); (Z.G.)
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Pengwei Xun
- School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China; (Z.L.); (Y.C.); (Z.G.)
| | - Wei Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.A.); (J.F.); (H.L.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| |
Collapse
|
2
|
Prayoonmaneerat N, Charoensapsri W, Amparyup P, Imjongjirak C. Transcriptomic and microbiome analyses of copepod Apocyclops royi in response to an AHPND-causing strain of Vibrio parahaemolyticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105277. [PMID: 39349231 DOI: 10.1016/j.dci.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Copepods are small crustaceans that live in microorganism-rich aquatic environments and provide a key supply of live food for fish and shellfish larviculture. To better understand the host-pathogen interaction between the copepod and Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND), the comparative transcriptome and microbiome analyses were conducted in copepod Apocyclops royi-TH following VPAHPND infection. Transcriptome analysis identified a total of 836 differentially expressed genes, with 275 upregulated and 561 downregulated genes. Subsequent analysis showed that a total of 37 differentially expressed genes were associated with the innate immune system, including 16 upregulated genes related to Toll-like receptor signaling pathway, antimicrobial peptides, and stress response genes, and 21 downregulated genes associated with immunological modulators, signaling molecules, and apoptosis-related proteins. Analysis of the copepod microbiome following VPAHPND infection showed that the microbes changed significantly after bacterial infection, with a reduced alpha diversity accompanied by the increased level of Proteobacteria and decreased levels of Bdellovibrionota, Bacteroidota, and Verrucomicrobiota. The population of Vibrio genera were increased significantly, while several other genera, including Denitromonas, Nitrosomonas, Blastopirellula, Fusibacter, Alteromonas, KI89A_clade, and Ruegeria, were decreased significantly after infection. These findings suggest that VPAHPND infection has a significant impact on the immune defense and the composition of the copepod microbiota.
Collapse
Affiliation(s)
- Natkanokporn Prayoonmaneerat
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Holt CC, Dhaliwal S, Na I, Mtawali M, Boscaro V, Keeling P. Spatial compartmentalisation of bacteria in phoronid microbiomes. Sci Rep 2023; 13:18612. [PMID: 37903823 PMCID: PMC10616082 DOI: 10.1038/s41598-023-45652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
The phylum Phoronida comprises filter-feeding invertebrates that live in a protective tube sometimes reinforced with particulate material from the surrounding environments. Animals with these characteristics make promising candidate hosts for symbiotic bacteria, given the constant interactions with various bacterial colonizers, yet phoronids are one of the very few animal phyla with no available microbiome data whatsoever. Here, by sequencing the V4 region of the 16S rRNA gene, we compare bacterial microbiomes in whole phoronids, including both tube and living tissues, with those associated exclusively to the isolated tube and/or the naked animal inside. We also compare these communities with those from the surrounding water. Phoronid microbiomes from specimens belonging to the same colony but collected a month apart were significantly different, and bacterial taxa previously reported in association with invertebrates and sediment were found to drive this difference. The microbiomes associated with the tubes are very similar in composition to those isolated from whole animals. However, just over half of bacteria found in whole specimens are also found both in tubes and naked specimens. In conclusion, phoronids harbour bacterial microbiomes that differ from those in the surrounding water, but the composition of those microbiomes is not stable and appears to change in the same colony over a relatively short time frame. Considering individual spatial/anatomical compartments, the phoronid tube contributes most to the whole-animal microbiome.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, Canada.
- Hakai Institute, Heriot Bay, Canada.
| | - Sahib Dhaliwal
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ina Na
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Mahara Mtawali
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Hamdan HZ, Ahmad FA, Zayyat RM, Salam DA. Spatio-temporal variation of the microbial community of the coast of Lebanon in response to petroleum hydrocarbon pollution. MARINE POLLUTION BULLETIN 2023; 192:115037. [PMID: 37201353 DOI: 10.1016/j.marpolbul.2023.115037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
In this study, the coast of Lebanon was analyzed for the dynamic changes in sediment microbial communities in response to a major petroleum oil spill and tar contamination that occurred in the summer of 2021. Spatio-temporal variations in the microbial structure along the shores of Lebanon were assessed in comparison to baseline microbial structure determined in 2017. Microbial community structure and diversity were determined using Illumina MiSeq technology and DADA2 pipeline. The results show a significant diversity of microbial populations along the Lebanese shore, and a significant change in the sediment microbial structure within four years. Namely, Woeseia, Blastopirellula, and Muriicola were identified in sediment samples collected in year 2017, while a higher microbial diversity was observed in 2021 with Woeseia, Halogranum, Bacillus, and Vibrio prevailing in beach sediments. In addition, the results demonstrate a significant correlation between certain hydrocarbon degraders, such as Marinobacter and Vibrio, and measured hydrocarbon concentrations.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Farah Ali Ahmad
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Ramez M Zayyat
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Blastopirellula sediminis sp. nov. a new member of Pirellulaceae isolated from the Andaman and Nicobar Islands. Antonie Van Leeuwenhoek 2023; 116:463-475. [PMID: 36867270 DOI: 10.1007/s10482-023-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Two cream-coloured strains (JC732T, JC733) of Gram-stain negative, mesophilic, catalase and oxidase positive, aerobic bacteria which divide by budding, form crateriform structures, and cell aggregates were isolated from marine habitats of Andaman and Nicobar Islands, India. Both strains had genome size of 7.1 Mb and G + C content of 58.9%. Both strains showed highest 16S rRNA gene-based similarity with Blastopirellula retiformator Enr8T (98.7%). Strains JC732T and JC733 shared 100% identity of 16S rRNA gene and genome sequences. The coherence of both strains with the genus Blastopirellula was supported by the 16S rRNA gene based and the phylogenomic trees. Further, the chemo-taxonomic characters and the genome relatedness indices [ANI (82.4%), AAI (80.4%) and dDDH (25.2%)] also support the delineation at the species level. Both strains have the capability to degrade chitin and genome analysis shows the ability to fix N2. Based on the phylogenetic, phylogenomic, comparative genomic, morphological, physiological, and biochemical characteristics, strain JC732T is described as a new species of the genus Blastopirellula for which the name Blastopirellula sediminis sp. nov. is proposed, with strain JC733 as an additional strain.
Collapse
|
6
|
Anatilimnocola floriformis sp. nov., a novel member of the family Pirellulaceae from a boreal lake, and emended description of the genus Anatilimnocola. Antonie Van Leeuwenhoek 2022; 115:1253-1264. [DOI: 10.1007/s10482-022-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
7
|
Kallscheuer N, Jogler C, Peeters SH, Boedeker C, Jogler M, Heuer A, Jetten MSM, Rohde M, Wiegand S. Mucisphaera calidilacus gen. nov., sp. nov., a novel planctomycete of the class Phycisphaerae isolated in the shallow sea hydrothermal system of the Lipari Islands. Antonie van Leeuwenhoek 2022; 115:407-420. [PMID: 35050438 PMCID: PMC8882080 DOI: 10.1007/s10482-021-01707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30-33 °C), neutrophilic (pH optimum 7.0-8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G + C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (= DSM 100697T = CECT 30425T) as type strain.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
9
|
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:microorganisms9071494. [PMID: 34361930 PMCID: PMC8303584 DOI: 10.3390/microorganisms9071494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Patrick Rast
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute of Bio- and Geosciences, Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
| | - Anja Heuer
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Christian Boedeker
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Olga Jeske
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Timo Kohn
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Bremerhaven, MARUM, University of Bremen, 28359 Bremen, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christian Jogler
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-364-194-9301
| |
Collapse
|
10
|
"Candidatus Laterigemmans baculatus" gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 2021; 44:126188. [PMID: 33647766 DOI: 10.1016/j.syapm.2021.126188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/27/2023]
Abstract
Two axenic cultures of Planctomycetes were isolated from distinct geographical regions of the east coast of India. The two closely related strains (JC640 and CH01) showed <93.3% 16S rRNA gene sequence identity with members of the genus Roseimaritima followed by Rhodopirellula (<91%). Both strains displayed non-canonical cell morphology of Planctomycetes, such as rod shaped cells with division by lateral budding. Both strains showed crateriform structures on their surfaces and cells lack fimbriae. The genomes have a size of about 5.76 Mb and DNA G+C content of 63.6mol%. Phylogenetic analysis based on 16S rRNA gene sequence and 92 core genes based RAxML phylogenetic tree place both the strains in the family Pirellulaceae and indicated Roseimaritima sediminicola as their closest relative. The AAI and POCP values differentiate both strains from rest of the members of the family Pirellulaceae. The axenic cultures of both strains were able to grow up to 8-10 passages and subsequently the cells became non-viable with pleomorphic shapes. Supported by genomic, phylogenetic and morphological differences, we conclude that both strains belong to a novel genus. However, since the new isolates lost their viability on passaging, we propose the novel genus as "Candidatus Laterigemmans" gen. nov. and the novel species as "Candidatus Laterigemmans baculatus" sp. nov.
Collapse
|
11
|
Kallscheuer N, Rast P, Jogler M, Wiegand S, Kohn T, Boedeker C, Jeske O, Heuer A, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum Planctomycetes. Environ Microbiol 2021; 23:1379-1396. [PMID: 33331109 DOI: 10.1111/1462-2920.15341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.
Collapse
Affiliation(s)
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Germany
| | - Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frank Oliver Glöckner
- Alfred Wegener Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Kallscheuer N, Wiegand S, Kohn T, Boedeker C, Jeske O, Rast P, Müller RW, Brümmer F, Heuer A, Jetten MSM, Rohde M, Jogler M, Jogler C. Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes. Front Microbiol 2020; 11:602250. [PMID: 33414774 PMCID: PMC7783415 DOI: 10.3389/fmicb.2020.602250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.
Collapse
Affiliation(s)
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Ralph-Walter Müller
- Faculty for Energy-, Process- and Bioengineering, University of Stuttgart, Stuttgart, Germany
| | - Franz Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Waqqas M, Salbreiter M, Kallscheuer N, Jogler M, Wiegand S, Heuer A, Rast P, Peeters SH, Boedeker C, Jetten MSM, Rohde M, Jogler C. Rosistilla oblonga gen. nov., sp. nov. and Rosistilla carotiformis sp. nov., isolated from biotic or abiotic surfaces in Northern Germany, Mallorca, Spain and California, USA. Antonie Van Leeuwenhoek 2020; 113:1939-1952. [PMID: 32623658 PMCID: PMC7716947 DOI: 10.1007/s10482-020-01441-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes are ubiquitous bacteria with fascinating cell biological features. Strains available as axenic cultures in most cases have been isolated from aquatic environments and serve as a basis to study planctomycetal cell biology and interactions in further detail. As a contribution to the current collection of axenic cultures, here we characterise three closely related strains, Poly24T, CA51T and Mal33, which were isolated from the Baltic Sea, the Pacific Ocean and the Mediterranean Sea, respectively. The strains display cell biological features typical for related Planctomycetes, such as division by polar budding, presence of crateriform structures and formation of rosettes. Optimal growth was observed at temperatures of 30-33 °C and at pH 7.5, which led to maximal growth rates of 0.065-0.079 h-1, corresponding to generation times of 9-11 h. The genomes of the novel isolates have a size of 7.3-7.5 Mb and a G + C content of 57.7-58.2%. Phylogenetic analyses place the strains in the family Pirellulaceae and suggest that Roseimaritima ulvae and Roseimaritima sediminicola are the current closest relatives. Analysis of five different phylogenetic markers, however, supports the delineation of the strains from members of the genus Roseimaritima and other characterised genera in the family. Supported by morphological and physiological differences, we conclude that the strains belong to the novel genus Rosistilla gen. nov. and constitute two novel species, for which we propose the names Rosistilla carotiformis sp. nov. and Rosistilla oblonga sp. nov. (the type species). The two novel species are represented by the type strains Poly24T (= DSM 102938T = VKM B-3434T = LMG 31347T = CECT 9848T) and CA51T (= DSM 104080T = LMG 29702T), respectively.
Collapse
Affiliation(s)
- Muhammad Waqqas
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Markus Salbreiter
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Description of Polystyrenella longa gen. nov., sp. nov., isolated from polystyrene particles incubated in the Baltic Sea. Antonie Van Leeuwenhoek 2020; 113:1851-1862. [PMID: 32239304 PMCID: PMC7716846 DOI: 10.1007/s10482-020-01406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 11/28/2022]
Abstract
Planctomycetes occur in almost all aquatic ecosystems on earth. They have a remarkable cell biology, and members of the orders Planctomycetales and Pirellulales feature cell division by polar budding, perform a lifestyle switch from sessile to motile cells and have an enlarged periplasmic space. Here, we characterise a novel planctomycetal strain, Pla110T, isolated from the surface of polystyrene particles incubated in the Baltic Sea. After phylogenetic analysis, the strain could be placed in the family Planctomycetaceae. Strain Pla110T performs cell division by budding, has crateriform structures and grows in aggregates or rosettes. The strain is a chemoheterotroph, grows under mesophilic and neutrophilic conditions, and exhibited a doubling time of 21 h. Based on our phylogenetic and morphological characterisation, strain Pla110T (DSM 103387T = LMG 29693T) is concluded to represent a novel species belonging to a novel genus, for which we propose the name Polystyrenella longa gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
15
|
Wiegand S, Jogler M, Boedeker C, Heuer A, Peeters SH, Kallscheuer N, Jetten MSM, Kaster AK, Rohde M, Jogler C. Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana. Antonie Van Leeuwenhoek 2020; 113:1979-1997. [PMID: 33151460 PMCID: PMC7717034 DOI: 10.1007/s10482-020-01486-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24-30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT = DSM 103020T = LMG 29466T) and Bythopirellula polymerisocia (type strain Pla144T = DSM 104841T = VKM B-3442T), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T = DSM 29370T = LMG 31346T = CECT 9840T = VKM B-3426T), Botrimarina colliarenosi sp. nov. (type strain Pla108T = DSM 103355T = LMG 29803T), Botrimarina hoheduenensis sp. nov. (type strain Pla111T = DSM 103485T = STH00945T, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T = DSM 100745T = LMG 31350T = CECT 9852T = VKM B-3431T), Pirellulimonas nuda sp. nov. (type strain Pla175T = DSM 109594T = CECT 9871T = VKM B-3448T) and Pseudobythopirellula maris sp. nov. (type strain Mal64T = DSM 100832T = LMG 29020T).
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
16
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek 2020; 113:1863-1875. [PMID: 32239303 PMCID: PMC7717058 DOI: 10.1007/s10482-020-01407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
17
|
Salbreiter M, Waqqas M, Jogler M, Kallscheuer N, Wiegand S, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rast P, Rohde M, Jogler C. Three Planctomycetes isolated from biotic surfaces in the Mediterranean Sea and the Pacific Ocean constitute the novel species Symmachiella dynata gen. nov., sp. nov. and Symmachiella macrocystis sp. nov. Antonie Van Leeuwenhoek 2020; 113:1965-1977. [PMID: 32833165 PMCID: PMC7716862 DOI: 10.1007/s10482-020-01464-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family Planctomycetaceae. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species Symmachiella dynata gen nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name Symmachiella macrocystis sp. nov.
Collapse
Affiliation(s)
- Markus Salbreiter
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Muhammad Waqqas
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | | | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein- Leopoldshafen, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany.
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1953-1963. [PMID: 32797359 PMCID: PMC7717043 DOI: 10.1007/s10482-020-01456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.
Collapse
|
19
|
Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie van Leeuwenhoek 2020; 113:1927-1937. [PMID: 32583190 PMCID: PMC7717036 DOI: 10.1007/s10482-020-01439-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
Collapse
|
20
|
Schubert T, Kallscheuer N, Wiegand S, Boedeker C, Peeters SH, Jogler M, Heuer A, Jetten MSM, Rohde M, Jogler C. Calycomorphotria hydatis gen. nov., sp. nov., a novel species in the family Planctomycetaceae with conspicuous subcellular structures. Antonie van Leeuwenhoek 2020; 113:1877-1887. [PMID: 32399715 PMCID: PMC7716856 DOI: 10.1007/s10482-020-01419-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
A novel strain belonging to the family Planctomycetaceae, designated V22T, was isolated from sediment of a seawater fish tank in Braunschweig, Germany. The isolate forms pink colonies on solid medium and displays common characteristics of planctomycetal strains, such as division by budding, formation of rosettes, a condensed nucleoid and presence of crateriform structures and fimbriae. Unusual invaginations of the cytoplasmic membrane and filamentous putative cytoskeletal elements were observed in thin sections analysed by transmission electron microscopy. Strain V22T is an aerobic heterotroph showing optimal growth at 30 °C and pH 8.5. During laboratory cultivations, strain V22T reached generation times of 10 h (maximal growth rate of 0.069 h-1). Its genome has a size of 5.2 Mb and a G + C content of 54.9%. Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Calycomorphotria hydatis gen. nov., sp. nov. for the novel taxon, represented by the type strain V22T (DSM 29767T = LMG 29080T).
Collapse
Affiliation(s)
- Torsten Schubert
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | | | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany. .,Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie Van Leeuwenhoek 2020; 113:1839-1849. [PMID: 32219667 PMCID: PMC7716919 DOI: 10.1007/s10482-020-01403-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 11/02/2022]
Abstract
A novel planctomycetal strain, designated Q31aT, was isolated from a jellyfish at the shore of the island Helgoland in the North Sea. The strain forms lucid white colonies on solid medium and displays typical characteristics of planctomycetal strains, such as division by budding, formation of rosettes, presence of crateriform structures, extracellular matrix or fibre and a holdfast structure. Q31aT is mesophilic (temperature optimum 27 °C), neutrophilic (pH optimum 7.5), aerobic and heterotrophic. A maximal growth rate of 0.017 h- 1 (generation time of 41 h) was observed. Q31aT has a genome size of 8.44 Mb and a G + C content of 55.3%. Phylogenetically, the strain represents a novel genus and species in the recently introduced family Pirellulaceae, order Pirellulales, class Planctomycetia. We propose the name Aureliella helgolandensis gen. nov., sp. nov. for the novel species, represented by Q31aT (= DSM 103537T = LMG 29700T) as the type strain.
Collapse
|
22
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2019; 71. [PMID: 33787483 DOI: 10.1099/ijsem.0.004688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|