1
|
Cho ES, Hwang CY, Seo MJ. Optimized production of bacterioruberin from "Haloferax marinum" using one-factor-at-a-time and central composite design approaches. BIORESOUR BIOPROCESS 2024; 11:111. [PMID: 39699698 DOI: 10.1186/s40643-024-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C50 carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C50 carotenoids, primarily bacterioruberin, using "Haloferax marinum" MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.
Collapse
Affiliation(s)
- Eui-Sang Cho
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Lee H, Cho E, Hwang CY, Cao L, Kim M, Lee SG, Seo M. Bacterioruberin extract from Haloarchaea Haloferax marinum: Component identification, antioxidant activity and anti-atrophy effect in LPS-treated C2C12 myotubes. Microb Biotechnol 2024; 17:e70009. [PMID: 39264362 PMCID: PMC11391814 DOI: 10.1111/1751-7915.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Carotenoids are natural pigments utilized as colourants and antioxidants across food, pharmaceutical and cosmetic industries. They exist in carbon chain lengths of C30, C40, C45 and C50, with C40 variants being the most common. Bacterioruberin (BR) and its derivatives are part of the less common C50 carotenoid group, synthesized primarily by halophilic archaea. This study analysed the compositional characteristics of BR extract (BRE) isolated from 'Haloferax marinum' MBLA0078, a halophilic archaeon isolated from seawater near Yeoungheungdo Island in the Republic of Korea, and investigated its antioxidant activity and protective effect on lipopolysaccharide (LPS)-induced C2C12 myotube atrophy. The main components of BRE included all-trans-BR, monoanhydrobacterioruberin, 2-isopentenyl-3,4-dehydrorhodopin and all-trans-bisanhydrobacterioruberin. BRE exhibited higher antioxidant activity and DNA nicking protection activity than other well-known C40 carotenoids, such as β-carotene, lycopene and astaxanthin. In C2C12 myotubes, LPS treatment led to a reduction in myotube diameter and number, as well as the hypertranscription of the muscle-specific ubiquitin ligase MAFbx and MuRF1. BRE mitigated these changes by activating the Akt/mTOR pathway. Furthermore, BRE abolished the elevated cellular reactive oxygen species levels and the inflammation response induced by LPS. This study demonstrated that 'Hfx. marinum' is an excellent source of natural microbial C50 carotenoids with strong antioxidant capacity and may offer potential protective effects against muscle atrophy.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
| | - Eui‐Sang Cho
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| | - Chi Young Hwang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Lei Cao
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Mi‐Bo Kim
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Sang Gil Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Myung‐Ji Seo
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Research Center for bio Materials & Process DevelopmentIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
3
|
Bonnaud E, Oger PM, Ohayon A, Louis Y. Haloarchaea as Promising Chassis to Green Chemistry. Microorganisms 2024; 12:1738. [PMID: 39203580 PMCID: PMC11357113 DOI: 10.3390/microorganisms12081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Climate change and the scarcity of primary resources are driving the development of new, more renewable and environmentally friendly industrial processes. As part of this green chemistry approach, extremozymes (extreme microbial enzymes) can be used to replace all or part of the chemical synthesis stages of traditional industrial processes. At present, the production of these enzymes is limited by the cellular chassis available. The production of a large number of extremozymes requires extremophilic cellular chassis, which are not available. This is particularly true of halophilic extremozymes. The aim of this review is to present the current potential and challenges associated with the development of a haloarchaea-based cellular chassis. By overcoming the major obstacle of the limited number of genetic tools, it will be possible to propose a robust cellular chassis for the production of functional halophilic enzymes that can participate in the industrial transition of many sectors.
Collapse
Affiliation(s)
- Emma Bonnaud
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Philippe M. Oger
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Avigaël Ohayon
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
| | - Yoann Louis
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
4
|
Hong T, Pan R, Ke J, Luo Y, Hao Y, Chen L, Tu D, Dai Y, Chen T, Chen S. Expression, purification, and enzymatic characterization of an extracellular protease from Halococcus salifodinae. Braz J Microbiol 2023; 54:2689-2703. [PMID: 37661213 PMCID: PMC10689711 DOI: 10.1007/s42770-023-01114-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular proteases from halophilic archaea displays increased enzymatic activities in hypersaline environment. In this study, an extracellular protease-coding gene, hly34, from the haloarchaeal strain Halococcus salifodinae PRR34, was obtained through homologous search. The protease activity produced by this strain at 20% NaCl, 42 °C, and pH 7.0 was 32.5 ± 0.5 (U·mL-1). The codon-optimized hly34 which is specific for Escherichia coli can be expressed in E. coli instead of native hly34. It exhibits proteolytic activity under a wide range of low- or high-salt concentrations, slightly acidic or alkaline conditions, and slightly higher temperatures. The Hly34 presented the highest proteolytic activity at 50 °C, pH 9.0, and 0-1 M NaCl. It was found that the Hly34 showed a higher enzyme activity under low-salt conditions. Hly34 has good stability at different NaCl concentrations (1-4 M) and pH (6.0-10.0), as well as good tolerance to some metal ions. However, at 60 °C, the stability is reduced. It has a good tolerance to some metal ions. The proteolytic activity was completely inhibited by phenylmethanesulfonyl fluoride, suggesting that the Hly34 is a serine protease. This study further deepens our understanding of haloarchaeal extracellular protease, most of which found in halophilic archaea are classified as serine proteases. These proteases exhibit a certain level of alkaline resistance and moderate heat resistance, and they may emerge with higher activity under low-salt conditions than high-salt conditions. The protease Hly34 is capable of degrading a number of proteins, including substrate proteins, such as azocasein, whey protein and casein. It has promising applications in industrial production.
Collapse
Affiliation(s)
- Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongpei Dai
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Tingting Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China.
| |
Collapse
|
5
|
Ma X, Hu Y, Li XX, Tan S, Cheng M, Hou J, Cui HL. Halomicroarcula laminariae sp. nov. and Halomicroarcula marina sp. nov., extremely halophilic archaea isolated from salted brown alga Laminaria and coastal saline-alkali lands. Int J Syst Evol Microbiol 2023; 73. [PMID: 37204206 DOI: 10.1099/ijsem.0.005889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Four extremely halophilic archaeal strains, LYG-108T, LYG-24, DT1T and YSSS71, were isolated from salted Laminaria produced in Lianyungang and saline soil from the coastal beach at Jiangsu, PR China. The four strains were found to be related to the current species of Halomicroarcula (showing 88.1-98.5% and 89.3-93.6% similarities, respectively) as revealed by phylogenetic analysis based on 16S rRNA and rpoB' genes. These phylogenies were fully supported by the phylogenomic analysis, and the overall genome-related indexes (average nucleotide identity, DNA-DNA hybridization and average amino acid identity) among these four strains and the Halomicroarcula species were 77-84 %, 23-30 % and 71-83 %, respectively, clearly below the threshold values for species demarcation. Additionally, the phylogenomic and comparative genomic analyses revealed that Halomicroarcula salina YGH18T is related to the current species of Haloarcula rather than those of Halomicroarcula, Haloarcula salaria Namwong et al. 2011 is a later heterotypic synonym of Haloarcula argentinensis Ihara et al. 1997, and Haloarcula quadrata Oren et al. 1999 is a later heterotypic synonym of Haloarcula marismortui Oren et al. 1990. The major polar lipids of strains LYG-108T, LYG-24, DT1T and YSSS71 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate, sulphated mannosyl glucosyl diether and additional glycosyl-cardiolipins. All these results showed that strains LYG-108T (=CGMCC 1.13607T=JCM 32950T) and LYG-24 (=CGMCC 1.13605=JCM 32949) represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula laminariae sp. nov. is proposed; strains DT1T (=CGMCC 1.18928T=JCM 35414T) and YSSS71 (=CGMCC 1.18783=JCM 34915) also represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula marina sp. nov. is proposed.
Collapse
Affiliation(s)
- Xue Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shun Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|