1
|
Loria SF, Ehrenthal VL, Esposito LA. Revisiting the scorpion central nervous system using microCT. Sci Rep 2024; 14:27961. [PMID: 39543179 DOI: 10.1038/s41598-024-76917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
The central nervous system (CNS) of Chelicerata has remained conserved since the Cambrian, yet few studies have examined its variability within chelicerate orders including Scorpiones. The scorpion CNS comprises the prosomal ganglion and opisthosomal ventral nerve cord. We visualize the scorpion CNS with microCT, explore morphological variation across taxa, compare the scorpion CNS to other arachnids, and create a terminology glossary and literature review to assist future studies. Six scorpion species were microCT scanned. Scan quality varied and most structures in the prosomal ganglion could only be observed in Paruroctonus becki (Vaejovidae). Major nerves and the first opisthosomal ganglion were visible in nearly all taxa. We present the most detailed 3D-rendering of the scorpion prosomal ganglion to date. Our results corroborate existing research and find the scorpion CNS to be conserved. Nearly all structures reported previously in the prosomal ganglion were located in similar positions in P. becki, and nerve morphology was conserved across examined families. Despite similarities, we report differences from the literature, observe taxonomic variation in prosomal ganglion shape, and confirm positional variation for the first opisthosomal ganglion. This study serves as a starting point for microCT analysis of the scorpion CNS, and future work should include more distantly related, size variable taxa to better elucidate these findings.
Collapse
Affiliation(s)
- Stephanie F Loria
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA.
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany.
| | - Valentin L Ehrenthal
- Museum of Nature Hamburg-Zoology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Lauren A Esposito
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
2
|
Propistsova EA, Makarova AA, Eskov KY, Polilov AA. Miniaturization does not change conserved spider anatomy, a case study on spider Rayforstia (Araneae: Anapidae). Sci Rep 2023; 13:17219. [PMID: 37821480 PMCID: PMC10567922 DOI: 10.1038/s41598-023-44230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Miniaturization is an evolutionary trend observed in many animals. Some arachnid groups, such as spiders and mites, demonstrate a strong tendency toward miniaturization. Some of the most miniaturized spiders belong to the family Anapidae. In this study, using light and confocal microscopy and 3D modelling, we provide the first detailed description of the anatomy of a spider of the genus Rayforstia, which is only 900 µm long. In comparison with larger spiders, Rayforstia has no branching of the midgut in the prosoma and an increased relative brain volume. In contrast to many miniature insects and mites, the spider shows no reduction of whole organ systems, no allometry of the digestive and reproductive systems, and also no reduction of the set of muscles. Thus, miniature spider shows a more conserved anatomy than insects of a similar size. These findings expand our knowledge of miniaturization in terrestrial arthropods.
Collapse
Affiliation(s)
- E A Propistsova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - A A Makarova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - K Y Eskov
- Borissiak Paleontological Institute of the Russian Academy of Sciences (PIN), Moscow, Russia
| | - A A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Propistsova EA, Makarova AA, Chetverikov PE, Polilov AA. Anatomy of the miniature four-legged mite Achaetocoptes quercifolii (Arachnida: Acariformes: Eriophyoidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 72:101235. [PMID: 36708648 DOI: 10.1016/j.asd.2023.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Miniaturization is one of the important trends in the evolution of terrestrial arthropods. In order to study adaptations to microscopic sizes, the anatomy of the smallest insects was previously studied, but not the anatomy of the smallest mites. Some of the smallest mites are Eriophyidae. In this study we describe for the first time the anatomy of the mite Achaetocoptes quercifolii, which is about 115 μm long. For this purpose, we used light, scanning, and transmission electron microscopy and performed 3D reconstructions. The anatomy of A. quercifolii is compared with the anatomy of larger representatives of Eriophyoidea. Despite the small size of the studied species, there is no considerable simplification of its anatomy compared to larger four-legged mites. A. quercifolii has a number of miniaturization effects similar to those found in microinsects: a strong increase in the relative volume of the reproductive system, an increase in the relative volume of the brain, reduction in the number and size of cells of the nervous system. As in some larger four-legged mites, A. quercifolii undergoes midgut lysis at the stage of egg production. On the other hand, in A. quercifolii a greater number of opisthosomal muscles are preserved than in larger gall-forming four-legged mites.
Collapse
Affiliation(s)
| | | | | | - Alexey A Polilov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Mani K, Nganso BT, Rodin P, Otmy A, Rafaeli A, Soroker V. Effects of Niemann-Pick type C2 (NPC2) gene transcripts silencing on behavior of Varroa destructor and molecular changes in the putative olfactory gene networks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103817. [PMID: 35926690 DOI: 10.1016/j.ibmb.2022.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
To understand the role of two Niemann-Pick type C2 (NPC2) transcripts, Vd40090 (NP1) and Vd74517 (NP5), in the chemosensing pathway of Varroa destructor, we evaluated the impact of NP5 silencing on mites behavior and compared the effect of silencing of either transcripts on the interaction between chemosensory transcripts. In contrast to silencing NP1, which reduced feeding and reproduction by the mite (Nganso et al., 2021), silencing of NP5 reduced significantly the host reaching ability, but it did not affect the feeding on nurse bee. However, silencing of either transcript changed dramatically the co-expression patterns among the putative chemosensory genes, binding proteins and receptors. The results suggest the role of gustatory receptors in the detection of long-range chemical cues in the chemosensory cascade of the Varroa mite.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Beatrice T Nganso
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Penina Rodin
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Assaf Otmy
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Ada Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Victoria Soroker
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
5
|
Li G, Liu XY, Smagghe G, Niu JZ, Wang JJ. Molting process revealed by the detailed expression profiles of RXR1/RXR2 and mining the associated genes in a spider mite, Panonychus citri. INSECT SCIENCE 2022; 29:430-442. [PMID: 34015180 DOI: 10.1111/1744-7917.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Spider mites have one ecdysone receptor (EcR) and multiple retinoid X receptors (RXRs). However, the function of these RXRs in spider mite development is unknown. Here, we screened the expression dynamics of two PcRXR isoforms at 4 h intervals in the deutonymphal stage of Panonychus citri. The results showed that PcEcR had an expression pattern similar to that of PcRXR2. For PcRXR1, its expression remained at a certain high level, when there was a decrease of both PcEcR and PcRXR2. In situ hybridization showed that PcRXR2 was detected in the central nervous mass, while the ecdysteroid biosynthesis gene PcSpo was mainly expressed at the edge of the central nervous mass. RNAi-based silencing of PcRXR1 or PcRXR2 showed the same phenotype as in mites with that of silencing PcEcR. Furthermore, RNA-seq was used to mine the genes associated with the expression dynamics of PcRXR1 or PcRXR2, which revealed that the heterodimer of EcR-RXR2 in spider mites might be linked with the cell autophagy and tissue remodeling during apolysis, and RXR1 might be linked with new epicuticle and exocuticle secretion during ecdysis. Taken together, these results increase our understanding of the regulation mechanism of ecdysteroid signal pathway in spider mite development.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences; Southwest University, Chongqing, China
| |
Collapse
|
6
|
Bolton SJ. Proteonematalycus wagneri Kethley reveals where the opisthosoma begins in acariform mites. PLoS One 2022; 17:e0264358. [PMID: 35213630 PMCID: PMC8880937 DOI: 10.1371/journal.pone.0264358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
It is generally thought that the anterior border of the opisthosoma of acariform mites is delineated by the disjugal furrow, but there is no evidence to support this other than the superficial appearance of tagmosis in some oribatids. It is proposed herein that the disjugal furrow is an apomorphic feature that does not correspond with any segmental borders. Although the disjugal furrow is absent from Proteonematalycus wagneri Kethley, the visible body segments of this species indicate that this furrow, when present, intersects the metapodosoma. Therefore, the disjugal furrow does not delineate the anterior border of the opisthosoma. Instead, this border is between segments D and E (segments VI and VII for all arachnids). This hypothesis can be accommodated by a new model in which the proterosoma warps upwards relative to the main body axis. This model, which is applicable to all Acariformes, if not all arachnids, explains the following phenomena: 1) the location of the gnathosomal neuromeres within the idiosoma; 2) the relatively posterior position of the paired eyes; 3) the shape of the synganglion; 4) the uneven distribution of legs in most species of acariform mites with elongate bodies.
Collapse
Affiliation(s)
- Samuel J. Bolton
- Florida State Collection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
7
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
8
|
Sombke A, Klann AE, Lipke E, Wolf H. Primary processing neuropils associated with the malleoli of camel spiders (Arachnida, Solifugae): a re-evaluation of axonal pathways. ZOOLOGICAL LETTERS 2019; 5:26. [PMID: 31388441 PMCID: PMC6679463 DOI: 10.1186/s40851-019-0137-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Arachnids possess highly specialized and unorthodox sense organs, such as the unique pectines of Scorpiones and the malleoli of Solifugae. While the external morphology, numbers, and shapes of sensory organs are widely used in taxonomic studies, little is known about the internal anatomy of these organs and their associated processing neuropils in the central nervous system. Camel spiders (Solifugae) possess pedipalps and first walking legs heavily endowed with sensory structures, as well as conspicuous malleoli located ventrally on the proximal fourth walking legs. Malleoli are fan-shaped organs that contain tens of thousands of presumptive chemoreceptor neurons, but mechanoreceptive structures are absent. RESULTS Here, we examine the organization of the synganglion based on microCT analysis, 3D reconstruction of serial paraffin sections, and backfill preparations to trace the malleolar pathway. The projection area of malleolar afferents is intriguingly located in the most anterior ventral nerve cord, located in between the pedipalpal neuromere hemispheres. However, malleolar axon bundles are separated by a thin soma layer that points to an anteriad projection of the fourth walking leg neuromere. A conspicuous projection neuron tract that may receive additional input from pedipalpal sensory organs connects the malleolar neuropil with the mushroom bodies in the protocerebrum. CONCLUSION Arthropod chemosensory appendages or organs and primary processing neuropils are typically located in the same segment, which also holds true in Solifugae, although the malleolar neuropil is partially shifted towards the pedipalpal neuromere. A comparison of the malleoli in Solifugae and the pectines in Scorpiones, and of their primary processing neuropils, reveals certain similarities, while striking differences are also evident. Similarities include the ventral arrangement of peg-shaped sensory structures on the respective segmental appendage, exposing dense arrays of chemoreceptive sensilla, and projections to a primary processing neuropil with glomerular subdivision. Differences are, e.g., the lack of mechanoreceptive afferents and an associated processing neuropil.
Collapse
Affiliation(s)
- Andy Sombke
- University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria
| | - Anja E. Klann
- Department of Forensic Molecular Genetics, University Medicine Greifswald, Institute of Legal Medicine, 17489 Greifswald, Germany
| | - Elisabeth Lipke
- German Air Force Center of Aerospace Medicine, 82256 Fürstenfeldbruck, Germany
| | - Harald Wolf
- Wallenberg Research Centre, Stellenbosch Institute for Advanced Study, 10 Marais Street, Stellenbosch, 7600 South Africa
- Present address: Institut für Neurobiologie, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
9
|
Dunlop JA. Miniaturisation in Chelicerata. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 48:20-34. [PMID: 30367936 DOI: 10.1016/j.asd.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Arachnids and their relatives (Chelicerata) range in body length from tens of centimetres in horseshoe crabs down to little more than 80-200 μm in several groups of mites. Spiders (Araneae) show the widest range within a given Bauplan - the largest species being ca. 270 times longer than the smallest - making them excellent models to investigate scaling effects. The two mite clades (Parasitiformes and Acariformes) are the main specialists in being small. Miniaturisation, and its consequences, is reviewed for both fossil and extant chelicerates. Morphological changes potentially related to miniaturisation, or adapting to the ecological niches that small size allows, include reduction in the length and number of legs, loss of prosomal arteries (and eventually also the heart), replacement of book lungs by tracheae, or even loss of all respiratory organs. There may also be evolutionary novelties, such as the acquisition of structures by which some mites attach themselves to larger hosts. The observed character distributions suggest a fairly fundamental division between larger pulmonate (lung-bearing) arachnids and smaller, non-pulmonate, groups which could reflect a phylogenetic dichotomy. However, it is worth noting that lineages of tiny spiders were originally fully pulmonate, but have acquired some typically non-pulmonate features, while camel spiders (Soli-fugae) can be large but have a Bauplan suggestive of smaller, non-pulmonate, ancestors.
Collapse
Affiliation(s)
- Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, Berlin D-10115, Germany
| |
Collapse
|
10
|
Hartmann K, Laumann M, Bergmann P, Heethoff M, Schmelzle S. Development of the synganglion and morphology of the adult nervous system in the miteArchegozetes longisetosusAoki (Chelicerata, Actinotrichida, Oribatida). J Morphol 2016; 277:537-48. [DOI: 10.1002/jmor.20517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Konstantin Hartmann
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin; Philippstraße 13 Haus 6 Berlin 10115 Germany
| | - Michael Laumann
- Electron Microscopy Center, University of Konstanz, Universitaetsstrasse 10; Konstanz 78457 Germany
| | - Paavo Bergmann
- Evolutionary Biology of Invertebrates, University of Tuebingen, Auf Der Morgenstelle 28E; Tuebingen 72076 Germany
| | - Michael Heethoff
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| | - Sebastian Schmelzle
- Ecological Networks, Technical University Darmstadt, Schnittspahnstraße 3; Darmstadt 64287 Germany
| |
Collapse
|
11
|
Chetverikov PE. Distal oviduct and genital chamber of eriophyoids (Acariformes, Eriophyoidea): refined terminology and remarks on CLSM technique for studying musculature of mites. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 64:407-28. [PMID: 25052761 DOI: 10.1007/s10493-014-9840-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 05/15/2023]
Abstract
The general morphology of cuticle-lined internal genitalia and oviduct is analyzed in intact females of the phytophagous mites, Loboquintus subsquamatus and Trisetacus cf bagdasariani (Acari: Eriophyoidea) using tetramethylrhodamine B isothiocyanate-phalloidin, three anaesthetics (magnesium sulphate, lidocaine and CO2-enriched water) and confocal laser scanning microscopy (CLSM). This is the first protocol adopted for CLSM studying musculature of mites. Revision of the previous terminology of eriophyoid internal genitalia from Nuzzaci and Alberti (Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 101-150, 1996) resulted in the refinement of the terms "distal oviduct", "genital chamber" and "spermatheca". Relative position of the elements of cuticle-lined internal genitalia is discussed and a generalized 3D model and animation (available on-line as supplementary material) of eriophyoid genital apparatus are provided. The wall of eriophyoid oviduct contains strong longitudinal muscles attached to the cuticle genital chamber with folded walls. When the egg is being extruded by contraction of the oviduct muscles, it forms lobes corresponding to the internal topography of the oviduct and genital chamber; these lobes invaginate inward from the gonopore, resulting in the "flower-shaped" figures rarely observed in slide-mounted mites. Gnathosomal muscles (cheliceral muscles and extrinsic muscles of palps) and opisthosomal muscles D1 of Loboquintus mites are attached to the three posterior depressions near the rear prodorsal shield margin. Prospects of CLSM approach for studying different aspects of mite morphology are briefly discussed.
Collapse
Affiliation(s)
- Philipp E Chetverikov
- Department of Invertebrate Zoology, Saint-Petersburg State University, Universitetskaya nab., 7/9, 199034, St. Petersburg, Russia,
| |
Collapse
|
12
|
Gelperin A. Comparative chemosensory cognition. Front Behav Neurosci 2014; 8:190. [PMID: 24904341 PMCID: PMC4033254 DOI: 10.3389/fnbeh.2014.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alan Gelperin
- Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| |
Collapse
|
13
|
Roh HS, Park KC, Park CG. Repellent effect of santalol from sandalwood oil against Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:379-385. [PMID: 22606807 DOI: 10.1603/ec11262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Thirty-four essential oils were screened for their repellent activities against the twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), at 0.1% concentration level using choice and no-choice laboratory bioassays. Of these, 20 essential oils showed significant repellencies against T. urticae in the choice tests. In subsequent no-choice tests using these 20 essential oils, only sandalwood oil showed significant repellency against T. urticae. Total number of eggs oviposited by T. urticae was significantly lower than controls in the choice tests when the kidney bean leaves were treated with 1 of 14 essential oils. The significant repellency of sandalwood oil against T. urticae lasted at least for 5 h at the 0.1% concentration level. Our GC-MS analysis indicated that the major components of the sandalwood oil were alpha-santalol (45.8%), beta-santalol (20.6%), beta-sinensal (9.4%), and epi-beta-santalol (3.3%). Santanol, a mixture of the two main components in the sandalwood oil, appears to be responsible for the repellency of sandalwood oil against T. urticae.
Collapse
Affiliation(s)
- Hyun Sik Roh
- Division of Applied Life Science (BK21 Program)/Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | |
Collapse
|
14
|
Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 2012; 13:1-17. [PMID: 22214384 PMCID: PMC3320525 DOI: 10.1186/1471-2202-13-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023] Open
Abstract
Background Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede) Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. Results Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. Conclusion A split of the afferents from the (first) pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed.
Collapse
Affiliation(s)
- Andy Sombke
- Ernst Moritz Arndt University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts. PLoS One 2011; 6:e21742. [PMID: 21765908 PMCID: PMC3135591 DOI: 10.1371/journal.pone.0021742] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.
Collapse
|
16
|
van Wijk M, de Bruijn PJA, Sabelis MW. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects. J Chem Ecol 2010; 36:1211-25. [PMID: 20872172 PMCID: PMC2980619 DOI: 10.1007/s10886-010-9858-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 08/12/2010] [Accepted: 09/03/2010] [Indexed: 11/25/2022]
Abstract
Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other’s perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites’ responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole.
Collapse
Affiliation(s)
- Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Section Population Biology, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
van Wijk M, Wadman WJ, Sabelis MW. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis. EXPERIMENTAL & APPLIED ACAROLOGY 2006; 40:217-29. [PMID: 17245560 DOI: 10.1007/s10493-006-9038-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/16/2006] [Indexed: 05/13/2023]
Abstract
The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.
Collapse
Affiliation(s)
- Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, Section Population Biology, University of Amsterdam, Kruislaan 320, 1098, SM, Amsterdam, The Netherlands.
| | | | | |
Collapse
|