1
|
Liang Y, Wang H, Sun K, Sun J, Soong L. Lack of the IFN-γ signal leads to lethal Orientia tsutsugamushi infection in mice with skin eschar lesions. PLoS Pathog 2024; 20:e1012020. [PMID: 38743761 PMCID: PMC11125519 DOI: 10.1371/journal.ppat.1012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/24/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-β. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Thiriot J, Liang Y, Fisher J, Walker DH, Soong L. Host transcriptomic profiling of CD-1 outbred mice with severe clinical outcomes following infection with Orientia tsutsugamushi. PLoS Negl Trop Dis 2022; 16:e0010459. [PMID: 36417363 PMCID: PMC9683618 DOI: 10.1371/journal.pntd.0010459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.
Collapse
Affiliation(s)
- Joseph Thiriot
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Linsuwanon P, Wongwairot S, Auysawasdi N, Monkanna T, Richards AL, Leepitakrat S, Sunyakumthorn P, Im-Erbsin R, Poole-Smith K, McCardle P. Establishment of a Rhesus Macaque Model for Scrub Typhus Transmission: Pilot Study to Evaluate the Minimal Orientia tsutsugamushi Transmission Time by Leptotrombidium chiangraiensis Chiggers. Pathogens 2021; 10:pathogens10081028. [PMID: 34451491 PMCID: PMC8402083 DOI: 10.3390/pathogens10081028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, an intradermal inoculation of the rhesus macaque model of scrub typhus has been characterized at our institution. The current project was to establish a rhesus macaque model of scrub typhus using the naturally infected chigger challenge method that faithfully mimics the natural route of pathogen transmission to fully understand the host-pathogen-vector interactions influencing pathogen transmission. Unlike the needle-based inoculation route, Orientia tsutsugamushi-infected chiggers introduce both pathogen and chigger saliva into the host epidermis at the bite site. However, information on the interaction or influence of chigger saliva on pathogenesis and immunity of host has been limited, consequently hindering vaccine development and transmission-blocking studies. To characterize chigger inoculated O. tsutsugamushi in rhesus macaques, we determined the minimum chigger attachment time required to efficiently transmit O. tsutsugamushi to the immunocompetent hosts and preliminary assessed clinical parameters, course of bacterial infection, and host’s immunological response to identifying potential factors influencing pathogen infection. Chigger infestation on hosts resulted in: (i) Rapid transmission of O. tsutsugamushi within 1 h and (ii) antigen-specific type I and II T-cell responses were markedly increased during the acute phase of infection, suggesting that both systems play critical roles in response to the pathogen control during the primary infection. In summary, we demonstrate that O. tsutsugamushi infection in rhesus macaques via chigger challenge recapitulates the time of disease onset and bacteremia observed in scrub typhus patients. Levels of proinflammatory cytokines and chemokines were positively correlated with bacteremia.
Collapse
Affiliation(s)
- Piyada Linsuwanon
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
- Correspondence:
| | - Sirima Wongwairot
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| | - Nutthanun Auysawasdi
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| | - Taweesak Monkanna
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| | - Allen L. Richards
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA;
| | - Surachai Leepitakrat
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok 10330, Thailand; (P.S.); (R.I.-E.)
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok 10330, Thailand; (P.S.); (R.I.-E.)
| | - Katie Poole-Smith
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| | - Patrick McCardle
- Department of Entomology, USAMD-AFRIMS, Bangkok 10330, Thailand; (S.W.); (N.A.); (T.M.); (S.L.); (K.P.-S.); (P.M.)
| |
Collapse
|
4
|
Trent B, Liang Y, Xing Y, Esqueda M, Wei Y, Cho NH, Kim HI, Kim YS, Shelite TR, Cai J, Sun J, Bouyer DH, Liu J, Soong L. Polarized lung inflammation and Tie2/angiopoietin-mediated endothelial dysfunction during severe Orientia tsutsugamushi infection. PLoS Negl Trop Dis 2020; 14:e0007675. [PMID: 32119672 PMCID: PMC7067486 DOI: 10.1371/journal.pntd.0007675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/12/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Orientia tsutsugamushi infection can cause acute lung injury and high mortality in humans; however, the underlying mechanisms are unclear. Here, we tested a hypothesis that dysregulated pulmonary inflammation and Tie2-mediated endothelial malfunction contribute to lung damage. Using a murine model of lethal O. tsutsugamushi infection, we demonstrated pathological characteristics of vascular activation and tissue damage: 1) a significant increase of ICAM-1 and angiopoietin-2 (Ang2) proteins in inflamed tissues and lung-derived endothelial cells (EC), 2) a progressive loss of endothelial quiescent and junction proteins (Ang1, VE-cadherin/CD144, occuludin), and 3) a profound impairment of Tie2 receptor at the transcriptional and functional levels. In vitro infection of primary human EC cultures and serum Ang2 proteins in scrub typhus patients support our animal studies, implying endothelial dysfunction in severe scrub typhus. Flow cytometric analyses of lung-recovered cells further revealed that pulmonary macrophages (MΦ) were polarized toward an M1-like phenotype (CD80+CD64+CD11b+Ly6G-) during the onset of disease and prior to host death, which correlated with the significant loss of CD31+CD45- ECs and M2-like (CD206+CD64+CD11b+Ly6G-) cells. In vitro studies indicated extensive bacterial replication in M2-type, but not M1-type, MΦs, implying the protective and pathogenic roles of M1-skewed responses. This is the first detailed investigation of lung cellular immune responses during acute O. tsutsugamushi infection. It uncovers specific biomarkers for vascular dysfunction and M1-skewed inflammatory responses, highlighting future therapeutic research for the control of this neglected tropical disease.
Collapse
Affiliation(s)
- Brandon Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yan Xing
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marisol Esqueda
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Wei
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Thomas R. Shelite
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiyang Cai
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H. Bouyer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lynn Soong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
5
|
Ponnusamy L, Willcox AC, Roe RM, Davidson SA, Linsuwanon P, Schuster AL, Richards AL, Meshnick SR, Apperson CS. Bacterial microbiome of the chigger mite Leptotrombidium imphalum varies by life stage and infection with the scrub typhus pathogen Orientia tsutsugamushi. PLoS One 2018; 13:e0208327. [PMID: 30521561 PMCID: PMC6283546 DOI: 10.1371/journal.pone.0208327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/15/2018] [Indexed: 02/01/2023] Open
Abstract
Scrub typhus is a mites-borne rickettsiosis caused by the obligate intracellular Gram-negative bacterium Orientia tsutsugamushi. The disease is potentially life threatening and is prevalent in tropical Asia, islands of the western Pacific Ocean and northern Australia where an estimated one million cases occur annually. Orientia tsutsugamushi is transmitted by the bite of larval mites in the genus Leptotrombidium. In the present study, the composition of the microbiome in larvae, deutonymphs and adult males and females from laboratory colonies of L. imphalum that were infected as well as uninfected with O. tsutsugamushi were investigated by high-throughput sequencing of the bacterial 16S rRNA gene. Notably, the bacterial microbiomes of infected adult females were dominated by sequences of O. tsutsugamushi and an unidentified species of Amoebophilaceae, which together comprised 98.2% of bacterial sequences. To improve the taxonomic resolution of the Amoebophilaceae OTU a nearly full length sequence of the 16S rRNA gene was amplified, cloned, and Sanger sequenced. Infected female mites had 89 to 92% nucleotide identity with the Amoebophilaceae family, indicating that the bacterium was likely to be a species of a novel genus. The species composition of bacterial communities varied between mite life stages regardless of their infection status. Uninfected adults exhibited greater species diversity than adults infected with O. tsutsugamushi. In the infected colony, the rate of filial infection with Orientia was less than 100%. Larval and male mites that were PCR-negative for Orientia contained low numbers of sequences of Amoebophilaceae (0.01 and 0.06%, respectively) in their taxonomic profiles, suggesting that a mutualistic relationship exists between the novel species of Amoebophilaceae and O. tsutsugamushi. Our study findings provide the basis for further research to determine the influence of the novel Amoebophilaceae species on the bacterial microbiome and on vector susceptibility to and transovarial transmission of O. tsutsugamushi.
Collapse
Affiliation(s)
- Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (LP); (CSA)
| | - Alexandra C. Willcox
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Silas A. Davidson
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyada Linsuwanon
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Anthony L. Schuster
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Allen L. Richards
- Naval Medical Research Center, Viral and Rickettsial Diseases Department, Silver Spring, Maryland, United States of America
| | - Steven R. Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles S. Apperson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (LP); (CSA)
| |
Collapse
|
6
|
Díaz FE, Abarca K, Kalergis AM. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection. Clin Microbiol Rev 2018; 31:e00076-17. [PMID: 29386235 PMCID: PMC5967693 DOI: 10.1128/cmr.00076-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Departamento en Enfermedades Infecciosas e Inmunología Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Metabolic characterization of serum from mice challenged with Orientia tsutsugamushi-infected mites. New Microbes New Infect 2018; 23:70-76. [PMID: 29692908 PMCID: PMC5913361 DOI: 10.1016/j.nmni.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 01/31/2023] Open
Abstract
Scrub typhus is an acute zoonosis caused by the obligate intracellular Gram-negative bacterium Orientia tsutsugamushi. To better understand the host response elicited by natural infection by chigger feeding, ICR mice were infected by Leptotrombidium chiangraiensis (Lc1) chiggers, and the metabolic profiles of their serum were examined over several time points after initiation of feeding. ICR mice were infected by either naive Lc1 chiggers (i.e. not infected by O. tsutsugamushi, NLc1) or O. tsutsugamushi–infected Lc1 chiggers (OLc1). Serum was collected from both groups of mice at 6 hours and 10 days after initiation of feeding. Metabolites were extracted from the serum and analysed by ultra performance liquid chromatography–tandem mass spectrometry. The resulting ion/chromatographic features were matched to a library of chemical standards for identification and quantification. Biochemicals that differed significantly between the experimental groups were identified using Welch's two-sample t tests; p ≤ 0.05 was considered statistically significant. A number of biochemicals linked to immune function were found to be significantly altered between mice infected by the NLc1 and OLc1 chiggers, including itaconate, kynurenine and histamine. Several metabolites linked to energy production were also found to be altered in the animals. In addition lipid and carbohydrate metabolism, bile acid and phospholipid homeostasis, and nucleotide metabolism were also found to be different in these two groups of mice. Markers of stress and food intake were also significantly altered. Global untargeted metabolomic characterization revealed significant differences in the biochemical profiles of mice infected by the NLc1 versus OLc1 chiggers. These findings provide an important platform for further investigation of the host responses associated with chigger-borne O. tsutsugamushi infections.
Collapse
|
8
|
Luce-Fedrow A, Lehman ML, Kelly DJ, Mullins K, Maina AN, Stewart RL, Ge H, John HS, Jiang J, Richards AL. A Review of Scrub Typhus (Orientia tsutsugamushi and Related Organisms): Then, Now, and Tomorrow. Trop Med Infect Dis 2018; 3:E8. [PMID: 30274407 PMCID: PMC6136631 DOI: 10.3390/tropicalmed3010008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Scrub typhus and the rickettsial diseases represent some of the oldest recognized vector-transmitted diseases, fraught with a rich historical aspect, particularly as applied to military/wartime situations. The vectors of Orientia tsutsugamushi were once thought to be confined to an area designated as the Tsutsugamushi Triangle. However, recent reports of scrub typhus caused by Orientia species other than O. tsutsugamushi well beyond the limits of the Tsutsugamushi Triangle have triggered concerns about the worldwide presence of scrub typhus. It is not known whether the vectors of O. tsutsugamushi will be the same for the new Orientia species, and this should be a consideration during outbreak/surveillance investigations. Additionally, concerns surrounding the antibiotic resistance of O. tsutsugamushi have led to considerations for the amendment of treatment protocols, and the need for enhanced public health awareness in both the civilian and medical professional communities. In this review, we discuss the history, outbreaks, antibiotic resistance, and burgeoning genomic advances associated with one of the world's oldest recognized vector-borne pathogens, O. tsutsugamushi.
Collapse
Affiliation(s)
- Alison Luce-Fedrow
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Marcie L Lehman
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
| | - Daryl J Kelly
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Kristin Mullins
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Alice N Maina
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Richard L Stewart
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
| | - Hong Ge
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Heidi St John
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
9
|
Lurchachaiwong W, McCardle W, Chan TC, Schuster AL, Richards AL. Development of an Orientia tsutsugamushi Lc-1 Murine Intraperitoneal Challenge Model for Scrub Typhus: Determination of Murine Lethal Dose (MuLD50), Tissue Bacterial Loads, and Clinical Outcomes. Vector Borne Zoonotic Dis 2017; 15:539-44. [PMID: 26378973 DOI: 10.1089/vbz.2015.1773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Currently, no vaccine has been developed to protect humans from naturally acquired heterologous Orientia tsutsugamushi infections. To enhance the validity of vaccine candidates, we are developing a murine chigger challenge model with the O. tsutsugamushi Lc-1-infected Leptotrombidium chiangraiensis Line-1. To this end, an intraperitoneal (i.p.) murine challenge model using an O. tsutsugamushi Lc-1 isolate was developed for eventual validation of the chigger challenge model. We have determined that the murine lethal dose that kills 50% of the challenged mice (MuLD50) of a liver/spleen homogenate developed from O. tsutsugamushi Lc-1-infected ICR Swiss mice to be 10(-6.9). Employing different inoculum doses of this homogenate, the bacterial load using quantitative real-time PCR (qPCR) was determined to range from 60 to 1.6 × 10(5) genome equivalent copies (GEC)/μL of liver and 33.4 to 2.2 × 10(5) GEC/μL of spleen tissue. The clinical outcomes relative to homogenate dose levels followed a dose-dependent pattern. The successful development and characterization of the O. tsutsugamushi Lc-1 i.p. challenge model will assist in the development and validation of a mouse chigger challenge scrub typhus model.
Collapse
Affiliation(s)
- Woradee Lurchachaiwong
- 1 Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Wesley McCardle
- 1 Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Teik-Chye Chan
- 2 Viral and Rickettsial Diseases Department, Naval Medical Research Center , Silver Spring, Maryland
| | - Anthony L Schuster
- 1 Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences , Bangkok, Thailand
| | - Allen L Richards
- 2 Viral and Rickettsial Diseases Department, Naval Medical Research Center , Silver Spring, Maryland.,3 Preventive Medicine and Biometrics Department, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
10
|
Soong L, Mendell NL, Olano JP, Rockx-Brouwer D, Xu G, Goez-Rivillas Y, Drom C, Shelite TR, Valbuena G, Walker DH, Bouyer DH. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection. PLoS Negl Trop Dis 2016; 10:e0004884. [PMID: 27479584 PMCID: PMC4968841 DOI: 10.1371/journal.pntd.0004884] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11-12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14-19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicole L. Mendell
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Juan P. Olano
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guang Xu
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yenny Goez-Rivillas
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Claire Drom
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas R. Shelite
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gustavo Valbuena
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H. Bouyer
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
11
|
Ha NY, Sharma P, Kim G, Kim Y, Min CK, Choi MS, Kim IS, Cho NH. Immunization with an autotransporter protein of Orientia tsutsugamushi provides protective immunity against scrub typhus. PLoS Negl Trop Dis 2015; 9:e0003585. [PMID: 25768004 PMCID: PMC4359152 DOI: 10.1371/journal.pntd.0003585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Recently, the rapid increase of scrub typhus incidence in several countries within the endemic region has become a serious public health issue. Despite the wide range of preventative approaches that have been attempted in the past 70 years, all have failed to develop an effective prophylactic vaccine. Currently, the selection of the proper antigens is one of the critical barriers to generating cross-protective immunity against antigenically-variable strains of O. tsutsugamushi. METHODOLOGY/PRINCIPAL FINDINGS We examined the potential role of ScaA protein, an autotransporter protein of O. tsutsugamushi, in bacterial pathogenesis and evaluated the protective attributes of ScaA immunization in lethal O. tsutsugamushi infection in mice. Our findings demonstrate that ScaA functions as a bacterial adhesion factor, and anti-ScaA antibody significantly neutralizes bacterial infection of host cells. In addition, immunization with ScaA not only provides protective immunity against lethal challenges with the homologous strain, but also confers significant protection against heterologous strains when combined with TSA56, a major outer membrane protein of O. tsutsugamushi. CONCLUSIONS/SIGNIFICANCE Immunization of ScaA proteins provides protective immunity in mice when challenged with the homologous strain and significantly enhanced protective immunity against infection with heterologous strains. To our knowledge, this is the most promising result of scrub typhus vaccination trials against infection of heterologous strains in mouse models thus far.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gwanghun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Shelite TR, Saito TB, Mendell NL, Gong B, Xu G, Soong L, Valbuena G, Bouyer DH, Walker DH. Hematogenously disseminated Orientia tsutsugamushi-infected murine model of scrub typhus [corrected]. PLoS Negl Trop Dis 2014; 8:e2966. [PMID: 25010338 PMCID: PMC4091938 DOI: 10.1371/journal.pntd.0002966] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Orientia tsutsugamushi, the etiologic agent of scrub typhus, is a mite-borne rickettsia transmitted by the parasitic larval stage of trombiculid mites. Approximately one-third of the world's population is at risk of infection with Orientia tsutsugamushi, emphasizing its importance in global health. In order to study scrub typhus, Orientia tsutsugamushi Karp strain has been used extensively in mouse studies with various inoculation strategies and little success in inducing disease progression similar to that of human scrub typhus. The objective of this project was to develop a disease model with pathology and target cells similar to those of severe human scrub typhus. This study reports an intravenous infection model of scrub typhus in C57BL/6 mice. This mouse strain was susceptible to intravenous challenge, and lethal infection occurred after intravenous inoculation of 1.25×106 focus (FFU) forming units. Signs of illness in lethally infected mice appeared on day 6 with death occurring ∼6 days later. Immunohistochemical staining for Orientia antigens demonstrated extensive endothelial infection, most notably in the lungs and brain. Histopathological analysis revealed cerebral perivascular, lymphohistiocytic infiltrates, focal hemorrhages, meningoencephalitis, and interstitial pneumonia. Disseminated infection of endothelial cells with Orientia in C57BL/6 mice resulted in pathology resembling that of human scrub typhus. The use of this model will allow detailed characterization of the mechanisms of immunity to and pathogenesis of O. tsutsugamushi infection. Scrub typhus is a disease found in Southeast Asia that infects over 1 million people each year. This disease is caused by the intracellular pathogen Orientia tsutsugamushi transmitted by the bite of chigger mites. Scrub typhus is characterized by pulmonary disease and in severe cases, multiorgan system failure. The current research model utilizes an intraperitoneal route of inoculation of mice to study the host response to Orientia infection. Infection via this route results in severe peritonitis that does not occur in human scrub typhus. The development of animal models that accurately portray human disease is an important step toward understanding and managing disease. In this manuscript we describe a new mouse model that results in scrub typhus-like pathology following intravenous inoculation of mice. This model presents dose-dependent mortality with scrub typhus-like pathology that parallels human disease. Utilization of this model will provide a valuable research tool for characterizing the immune response and pathogenesis induced by O. tsutsugamushi allowing development of better treatment and an effective vaccine.
Collapse
Affiliation(s)
- Thomas R. Shelite
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tais B. Saito
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicole L. Mendell
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guang Xu
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gustavo Valbuena
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H. Bouyer
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lurchachaiwong W, Chan TC, Richards AL, McCardle W, Schuster AL. Establishment of Orientia tsutsugamushi Lc-1 (Rickettsiales: Rickettsiaceae) infection in ICR outbred mice (Rodentia: Muridae) by needle challenge. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:658-660. [PMID: 24897859 DOI: 10.1603/me13025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Orientia tsutsugamushi is a pathogen transmitted by Leptotrombidium that causes scrub typhus. To develop an infection mouse model, a mite-derived isolate of O. tsutsugamushi was established from a laboratory-maintained colony of Leptotrombidium chiangraiensis (O. tsutsugamushi Lc-1). This Lc-1 isolate was initially presented to ICR (CD-1) mice by feeding an infected Lc chigger on the ear of a mouse. Once the Lc-1 was adapted to the ICR mice, quantitative real-time polymerase chain reaction was used to investigate O. tsutsugamushi genomic equivalent copies in tissues and sera. Furthermore, times to onset of the signs of infection are reported in this study. This study provides information useful for future research on this host-pathogen interaction and the associated vaccine efficacy trials.
Collapse
|
14
|
Sunyakumthorn P, Paris DH, Chan TC, Jones M, Luce-Fedrow A, Chattopadhyay S, Jiang J, Anantatat T, Turner GDH, Day NPJ, Richards AL. An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi. PLoS One 2013; 8:e54570. [PMID: 23342173 PMCID: PMC3546997 DOI: 10.1371/journal.pone.0054570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/12/2012] [Indexed: 01/23/2023] Open
Abstract
Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant organ dissemination after low-dose intradermal injection with O. tsutsugamushi.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valbuena G, Walker DH. Approaches to vaccines against Orientia tsutsugamushi. Front Cell Infect Microbiol 2013; 2:170. [PMID: 23316486 PMCID: PMC3539663 DOI: 10.3389/fcimb.2012.00170] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/14/2012] [Indexed: 12/02/2022] Open
Abstract
Scrub typhus is a severe mite-borne infection caused by Orientia tsutsugamushi, an obligately intracellular bacterium closely related to Rickettsia. The disease explains a substantial proportion of acute undifferentiated febrile cases that require hospitalization in rural areas of Asia, the North of Australia, and many islands of the Pacific Ocean. Delayed antibiotic treatment is common due to the lack of effective commercially available diagnostic tests and the lack of specificity of the early clinical presentation. The systemic infection of endothelial cells that line the vasculature with Orientia can lead to many complications and fatalities. In survivors, immunity does not last long, and is poorly cross-reactive among numerous strains. In addition, chronic infections are established in an unknown number of patients. All those characteristics justify the pursuit of a prophylactic vaccine against O. tsutsugamushi; however, despite continuous efforts to develop such a vaccine since World War II, the objective has not been attained. In this review, we discuss the history of vaccine development against Orientia to provide a clear picture of the challenges that we continue to face from the perspective of animal models and the immunological challenges posed by an intracellular bacterium that normally triggers a short-lived immune response. We finish with a proposal for development of an effective and safe vaccine for scrub typhus through a new approach with a strong focus on T cell-mediated immunity, empirical testing of the immunogenicity of proteins encoded by conserved genes, and assessment of protection in relevant animal models that truly mimic human scrub typhus.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA.
| | | |
Collapse
|