1
|
Liu HH, Chen L, Shao HB, Gao S, Hong XY, Bing XL. Environmental Factors and the Symbiont Cardinium Influence the Bacterial Microbiome of Spider Mites Across the Landscape. MICROBIAL ECOLOGY 2023; 87:1. [PMID: 37991578 DOI: 10.1007/s00248-023-02314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Microbes play a key role in the biology, ecology, and evolution of arthropods. Despite accumulating data on microbial communities in arthropods that feed on plants using piercing-sucking mouthparts, we still lack a comprehensive understanding of the composition and assembly factors of the microbiota, particularly in field-collected spider mites. Here, we applied 16S rRNA amplicon sequencing to investigate the characters of the bacterial community in 140 samples representing 420 mite individuals, belonging to eight Tetranychus species (Acari: Tetranychidae) collected from 26 sites in China. The results showed that the bacterial composition of spider mites varied significantly among different species, locations, and plants. The environment showed a significant influence on the bacterial community of spider mites, with different relative contributions. Latitude and precipitation were found to be the main factors influencing the bacterial community composition. The dissimilarity of bacterial community and geographical distance between mite locations were significantly correlated. The assembly of spider mite bacterial communities seemed to be mainly influenced by stochastic processes. Furthermore, the symbiont Cardinium was found to be important in shaping the microbiota of many Tetranychus species. The relative abundance of Cardinium was > 50% in T. viennensis, T. urticae G, T. urticae R, and T. turkestani. Removing Cardinium reads from our analysis significantly changed Shannon diversity index and weighted beta diversity in these species. Altogether, this study provides novel insights into bacterial diversity patterns that contribute to our knowledge of the symbiotic relationships between arthropods and their bacterial communities.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui-Biao Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
2
|
Matthews AE, Boves TJ, Percy KL, Schelsky WM, Wijeratne AJ. Population Genomics of Pooled Samples: Unveiling Symbiont Infrapopulation Diversity and Host-Symbiont Coevolution. Life (Basel) 2023; 13:2054. [PMID: 37895435 PMCID: PMC10608719 DOI: 10.3390/life13102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Microscopic symbionts represent crucial links in biological communities. However, they present technical challenges in high-throughput sequencing (HTS) studies due to their small size and minimal high-quality DNA yields, hindering our understanding of host-symbiont coevolution at microevolutionary and macroevolutionary scales. One approach to overcome those barriers is to pool multiple individuals from the same infrapopulation (i.e., individual host) and sequence them together (Pool-Seq), but individual-level information is then compromised. To simultaneously address both issues (i.e., minimal DNA yields and loss of individual-level information), we implemented a strategic Pool-Seq approach to assess variation in sequencing performance and categorize genetic diversity (single nucleotide polymorphisms (SNPs)) at both the individual-level and infrapopulation-level for microscopic feather mites. To do so, we collected feathers harboring mites (Proctophyllodidae: Amerodectes protonotaria) from four individual Prothonotary Warblers (Parulidae: Protonotaria citrea). From each of the four hosts (i.e., four mite infrapopulations), we conducted whole-genome sequencing on three extraction pools consisting of different numbers of mites (1 mite, 5 mites, and 20 mites). We found that samples containing pools of multiple mites had more sequencing reads map to the feather mite reference genome than did the samples containing only a single mite. Mite infrapopulations were primarily genetically structured by their associated individual hosts (not pool size) and the majority of SNPs were shared by all pools within an infrapopulation. Together, these results suggest that the patterns observed are driven by evolutionary processes occurring at the infrapopulation level and are not technical signals due to pool size. In total, despite the challenges presented by microscopic symbionts in HTS studies, this work highlights the value of both individual-level and infrapopulation-level sequencing toward our understanding of host-symbiont coevolution at multiple evolutionary scales.
Collapse
Affiliation(s)
- Alix E. Matthews
- College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA; (T.J.B.); (A.J.W.)
| | - Than J. Boves
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA; (T.J.B.); (A.J.W.)
| | - Katie L. Percy
- Audubon Delta, National Audubon Society, Baton Rouge, LA 70808, USA;
- United States Department of Agriculture, Natural Resources Conservation Service, Addis, LA 70710, USA
| | - Wendy M. Schelsky
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA;
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana-Champaign, Champaign, IL 61820, USA
| | - Asela J. Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA; (T.J.B.); (A.J.W.)
| |
Collapse
|
3
|
Razuvaeva AV, Ulyanova EG, Skolotneva ES, Andreeva IV. Species identification of spider mites (Tetranychidae: Tetranychinae): a review of methods. Vavilovskii Zhurnal Genet Selektsii 2023; 27:240-249. [PMID: 37293445 PMCID: PMC10244583 DOI: 10.18699/vjgb-23-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/25/2022] [Accepted: 01/07/2022] [Indexed: 06/10/2023] Open
Abstract
Spider mites (Acari: Tetranychidae) are dangerous pests of agricultural and ornamental crops, the most economically significant of them belonging to the genera Tetranychus, Eutetranychus, Oligonychus and Panonychus. The expansion of the distribution areas, the increased harmfulness and dangerous status of certain species in the family Tetranychidae and their invasion of new regions pose a serious threat to the phytosanitary status of agro- and biocenoses. Various approaches to acarofauna species diagnosis determine a rather diverse range of currently existing methods generally described in this review. Identification of spider mites by morphological traits, which is currently considered the main method, is complicated due to the complexity of preparing biomaterials for diagnosis and a limited number of diagnostic signs. In this regard, biochemical and molecular genetic methods such as allozyme analysis, DNA barcoding, restriction fragment length polymorphism (PCR-RFLP), selection of species-specific primers and real-time PCR are becoming important. In the review, close attention is paid to the successful use of these methods for species discrimination in the mites of the subfamily Tetranychinae. For some species, e. g., the two-spotted spider mite (Tetranychus urticae), a range of identification methods has been developed - from allozyme analysis to loop isothermal amplification (LAMP), while for many other species a much smaller variety of approaches is available. The greatest accuracy in the identification of spider mites can be achieved using a combination of several methods, e. g., examination of morphological features and one of the molecular approaches (DNA barcoding, PCR-RFLP, etc.). This review may be useful to specialists who are in search of an effective system for spider mite species identification as well as when developing new test systems relevant to specific plant crops or a specific region.
Collapse
Affiliation(s)
- A V Razuvaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E G Ulyanova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk Region, Russia
| | - E S Skolotneva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Andreeva
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk Region, Russia
| |
Collapse
|
4
|
Alves VS, Salazar-Garcés LF, Santiago LF, Fonseca PLC, Fernandes AMS, Silva RC, Souza LM, Cunha PPRS, Barbosa MFC, Aguiar ERGR, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Identification of Glycycometus malaysiensis (for the first time in Brazil), Blomia tropicalis and Dermatophagoides pteronyssinus through multiplex PCR. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:385-406. [PMID: 35286553 PMCID: PMC8919168 DOI: 10.1007/s10493-022-00694-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Blomia tropicalis and Dermatophagoides pteronyssinus play an important role in triggering allergy. Glycycometus malaysiensis causes IgE reaction in sensitive people, but is rarely reported in domestic dust, because it is morphologically similar to B. tropicalis making the identification of these species difficult. The identification of mites is mostly based on morphology, a time-consuming and ambiguous approach. Herein, we describe a multiplex polymerase chain reaction (mPCR) assay based on ribosomal DNA capable to identify mixed cultures of B. tropicalis, D. pteronyssinus and G. malaysiensis, and/or to identify these species from environmental dust. For this, the internal transcribed spacer 2 (ITS2) regions, flanked by partial sequences of the 5.8S and 28S genes, were PCR-amplified, cloned and sequenced. The sequences obtained were aligned with co-specific sequences available in the GenBank database for primer design and phylogenetic studies. Three pairs of primers were chosen to compose the mPCR assay, which was used to verify the frequency of different mites in house dust samples (n = 20) from homes of Salvador, Brazil. Blomia tropicalis was the most frequent, found in 95% of the samples, followed by G. malaysiensis (70%) and D. pteronyssinus (60%). Besides reporting for the first time the occurrence of G. malaysiensis in Brazil, our results confirm the good resolution of the ITS2 region for mite identification. Furthermore, the mPCR assay proved to be a fast and reliable tool for identifying these mites in mixed cultures and could be applied in future epidemiological studies, and for quality control of mite extract production for general use.
Collapse
Affiliation(s)
- Vítor S Alves
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
- Vaccine Development Laboratory, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Luis F Salazar-Garcés
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
- Faculty of Health and Social Welfare, State University of Milagro, Milagro, 091050, Ecuador
| | - Leonardo F Santiago
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Paula L C Fonseca
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 30270-901, Brazil
| | - Antônio M S Fernandes
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Raphael C Silva
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Lorena M Souza
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
- Salvador University, Salvador, 41720-200, Brazil
| | - Pedro P R S Cunha
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Marina F C Barbosa
- Luiz de Queiroz' Higher School of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Eric R G R Aguiar
- Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45652-900, Brazil
| | - Luis G C Pacheco
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Neuza M Alcantara-Neves
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil
| | - Carina S Pinheiro
- Laboratory of Allergy and Acarology, Institute of Health Sciences, Federal University of Bahia, Avenida Reitor Miguel Calmon, S/n, Vale do Canela, Salvador, Bahia, CEP: 40110-100, Brazil.
| |
Collapse
|
5
|
Rodrigues LR, Zélé F, Santos I, Magalhães S. No evidence for the evolution of mating behaviour in spider mites due to
Wolbachia
‐induced cytoplasmic incompatibility. Evolution 2022; 76:623-635. [DOI: 10.1111/evo.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Leonor R. Rodrigues
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
- Institute of Evolution Sciences (ISEM), University of Montpellier CNRS, IRD, EPHE Montpellier France
| | - Inês Santos
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| |
Collapse
|
6
|
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 2021; 97:6358523. [PMID: 34448854 DOI: 10.1093/femsec/fiab123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL 60612, USA
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, LL57 2 UW, UK.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| |
Collapse
|
7
|
Cruz MA, Magalhães S, Sucena É, Zélé F. Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 2021; 75:2085-2101. [PMID: 34156702 DOI: 10.1111/evo.14286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Élio Sucena
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Pina T, Sabater-Muñoz B, Cabedo-López M, Cruz-Miralles J, Jaques JA, Hurtado-Ruiz MA. Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:335-355. [PMID: 32529355 DOI: 10.1007/s10493-020-00508-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Tetranychidae spider mites are considered key citrus pests in some production areas, especially Tetranychus urticae Koch. Over the past decades, pesticide overuse seems to have promoted T. urticae population selection in citrus orchards. However, the microbiota has also been pointed out as a plausible explanation for population structure or plant host specialisation observed in several arthropod species. In this work, we have determined the incidence of Cardinium, Rickettsia, Spiroplasma and Wolbachia as representatives of major distorter bacteria genera in Aplonobia histricina (Berlese), Eutetranychus banksi (McGregor), Eutetranychus orientalis (Klein), Panonychus citri (McGregor), Tetranychus evansi Baker and Pritchard, Tetranychus turkestani Ugarov and Nikolskii, and T. urticae populations from Spanish citrus orchards. Only Wolbachia was detected by PCR. The multilocus alignment approach and phylogenetic inference indicated that all detected Wolbachia belong to supergroup B. The deep analysis of each 16S rDNA, ftsZ and wsp gene sequences allowed identifying several phylogenetically different Wolbachia sequences. It probably indicates the presence of several different races or strains, all of them belonging to supergroup B. The wsp sequence typing analysis unveiled the presence of the two already identified alleles (61 and 370) and allowed to contribute with five new alleles, supporting the presence of different but related B-races in the studied mite populations. The results are discussed and related to T. urticae population structure, previously observed in Spanish citrus orchards.
Collapse
Affiliation(s)
- Tatiana Pina
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
- Departament de Didàctica de les Ciències Experimentals i Socials, Universitat de València, Avda. Tarongers, 46022, Valencia, Spain
| | - Beatriz Sabater-Muñoz
- Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
- Integrative and Systems Biology Group, Dpt. Molecular Mechanisms of Stress in Plants, Institute for Plant Molecular and Cell Biology (IBMCP), Spanish National Research Council (CSIC) - Polytechnic University of Valencia (UPV), Ingeniero Fausto Elio, 46022, Valencia, Spain
| | - Marc Cabedo-López
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Joaquín Cruz-Miralles
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Josep A Jaques
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain
| | - Mónica A Hurtado-Ruiz
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
9
|
Godinho DP, Cruz MA, Charlery de la Masselière M, Teodoro‐Paulo J, Eira C, Fragata I, Rodrigues LR, Zélé F, Magalhães S. Creating outbred and inbred populations in haplodiploids to measure adaptive responses in the laboratory. Ecol Evol 2020; 10:7291-7305. [PMID: 32760529 PMCID: PMC7391545 DOI: 10.1002/ece3.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Laboratory studies are often criticized for not being representative of processes occurring in natural populations. One reason for this is the fact that laboratory populations generally do not capture enough of the genetic variation of natural populations. This can be mitigated by mixing the genetic background of several field populations when creating laboratory populations. From these outbred populations, it is possible to generate inbred lines, thereby freezing and partitioning part of their variability, allowing each genotype to be characterized independently. Many studies addressing adaptation of organisms to their environment, such as those involving quantitative genetics or experimental evolution, rely on inbred or outbred populations, but the methodology underlying the generation of such biological resources is usually not explicitly documented. Here, we developed different procedures to circumvent common pitfalls of laboratory studies, and illustrate their application using two haplodiploid species, the spider mites Tetranychus urticae and Tetranychus evansi. First, we present a method that increases the chance of capturing high amounts of variability when creating outbred populations, by performing controlled crosses between individuals from different field-collected populations. Second, we depict the creation of inbred lines derived from such outbred populations, by performing several generations of sib-mating. Third, we outline an experimental evolution protocol that allows the maintenance of a constant population size at the beginning of each generation, thereby preventing bottlenecks and diminishing extinction risks. Finally, we discuss the advantages of these procedures and emphasize that sharing such biological resources and combining them with available genetic tools will allow consistent and comparable studies that greatly contribute to our understanding of ecological and evolutionary processes.
Collapse
Affiliation(s)
- Diogo P. Godinho
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Miguel A. Cruz
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Maud Charlery de la Masselière
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Jéssica Teodoro‐Paulo
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Cátia Eira
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Inês Fragata
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes – cE3cFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
10
|
Zélé F, Altıntaş M, Santos I, Cakmak I, Magalhães S. Population-specific effect of Wolbachia on the cost of fungal infection in spider mites. Ecol Evol 2020; 10:3868-3880. [PMID: 32489617 PMCID: PMC7244807 DOI: 10.1002/ece3.6015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023] Open
Abstract
Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Mustafa Altıntaş
- Department of Plant ProtectionFaculty of AgricultureAdnan Menderes UniversityAydinTurkey
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Ibrahim Cakmak
- Department of Plant ProtectionFaculty of AgricultureAdnan Menderes UniversityAydinTurkey
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de LisboaLisboaPortugal
| |
Collapse
|
11
|
Zélé F, Santos I, Matos M, Weill M, Vavre F, Magalhães S. Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity (Edinb) 2020; 124:603-617. [PMID: 32047292 PMCID: PMC7080723 DOI: 10.1038/s41437-020-0297-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/30/2023] Open
Abstract
Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal.
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| | - Margarida Matos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| | - Mylène Weill
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095, CEDEX 5, Montpellier, France
| | - Fabrice Vavre
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université Lyon 1, Université de Lyon, F-69622, Villeurbanne, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| |
Collapse
|
12
|
Gómez-Martínez MA, Pina T, Aguilar-Fenollosa E, Jaques JA, Hurtado MA. Tracking mite trophic interactions by multiplex PCR. PEST MANAGEMENT SCIENCE 2020; 76:597-608. [PMID: 31304671 DOI: 10.1002/ps.5555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A thorough knowledge of trophic webs in agroecosystems is essential to achieve successful biological pest control. Phytoseiid mites are the most efficient natural enemies of tetranychid mites, which include several important pests worldwide. Nevertheless, phytoseiids may feed on other food sources including other microarthropods, plants and even other phytoseiids (intraguild predation), which can interfere with biological control services. Molecular gut content analysis is a valuable tool for characterizing trophic interactions, mainly when working on microarthropods such as mites. We have designed new primers for Phytoseiidae, Tetranychidae and Thysanoptera identification and they have been multiplexed in a polymerase chain reaction (PCR) together with universal plant primers. Additionally, we have estimated prey DNA detectability success over time (DS50 ) considering the most probable events in Spanish citrus orchards: the phytoseiid Euseius stipulatus as a predator, the phytoseiid Phytoseiulus persimilis as intraguild prey, and the thrips Frankliniella occidentalis and Anaphothrips obscurus as alternative prey to Tetranychus urticae. RESULTS The designed multiplex PCR allows the identification of phytoseiids (both predator and intraguild prey) and detects alternative food sources mentioned above in the gut of the phytoseiid predator. DS50 for E. stipulatus as the predator were 1.3, 2.3 and 18.7 h post feeding for F. occidentalis, A. obscurus and P. persimilis as prey, respectively. CONCLUSION Tracking of the trophic relationships within the citrus acarofauna, and the unveiling of the role of alternative food sources will pave the way for enhancing T. urticae biological control. This multiplex PCR approach could be applicable for these purposes in similar agroecosystems. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Tatiana Pina
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Castelló de la Plana, Spain
- Departament de Didàctica de les Ciències Experimentals i Socials, Universitat de València, Valencia, Spain
| | - Ernestina Aguilar-Fenollosa
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Castelló de la Plana, Spain
- Departamento de Calidad, Torres Hnos. y Sucs. S. A. U., Almenara, Spain
| | - Josep A Jaques
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Mónica A Hurtado
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| |
Collapse
|
13
|
Sousa VC, Zélé F, Rodrigues LR, Godinho DP, Charlery de la Masselière M, Magalhães S. Rapid host-plant adaptation in the herbivorous spider mite Tetranychus urticae occurs at low cost. CURRENT OPINION IN INSECT SCIENCE 2019; 36:82-89. [PMID: 31539789 DOI: 10.1016/j.cois.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The herbivorous spider mite Tetranychus urticae is a generalist world crop pest. Early evidence for host races, its fully sequenced genome resolved to the chromosome level, and the development of other molecular tools in this species suggest that this arthropod can be a good model to address host plant adaptation and early stages of speciation. Here, we evaluate this possibility by reviewing recent studies of host-plant adaptation in T. urticae. We find that evidence for costs of adaptation are relatively scarce and that studies involving molecular-genetics and genomics are mostly disconnected from those with phenotypic tests. Still, with the ongoing development of genetic and genomic tools for this species, T. urticae is becoming an attractive model to understand the molecular basis of host-plant adaptation.
Collapse
Affiliation(s)
- Vitor C Sousa
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| | - Flore Zélé
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Leonor R Rodrigues
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Diogo P Godinho
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Maud Charlery de la Masselière
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| |
Collapse
|
14
|
A New Prevalent Densovirus Discovered in Acari. Insight from Metagenomics in Viral Communities Associated with Two-Spotted Mite ( Tetranychus urticae) Populations. Viruses 2019; 11:v11030233. [PMID: 30866521 PMCID: PMC6466187 DOI: 10.3390/v11030233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.
Collapse
|
15
|
Zélé F, Santos JL, Godinho DP, Magalhães S. Wolbachia both aids and hampers the performance of spider mites on different host plants. FEMS Microbiol Ecol 2018; 94:5097780. [DOI: 10.1093/femsec/fiy187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Flore Zélé
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Joaquim L Santos
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Diogo P Godinho
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|