1
|
Dantas-Torres F, de Sousa-Paula LC, Otranto D. The Rhipicephalus sanguineus group: updated list of species, geographical distribution, and vector competence. Parasit Vectors 2024; 17:540. [PMID: 39731169 DOI: 10.1186/s13071-024-06572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 12/29/2024] Open
Abstract
The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R. sanguineus sensu stricto, with subsequent revalidation of former synonyms (Rhipicephalus linnaei, Rhipicephalus rutilus, and Rhipicephalus secundus) and even the description of new species (Rhipicephalus afranicus and Rhipicephalus hibericus). With a much clearer picture of the taxonomy of these species, we present an updated list of species belonging to the R. sanguineus group, along with a review of their geographic distribution and vector role for various pathogens of animals and humans. We also identify knowledge gaps to be bridged in future studies.
Collapse
Affiliation(s)
- Filipe Dantas-Torres
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil.
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, MT, USA
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Doss N, Morrone A, Forgione P, Trevisan G, Bonin S. Review of Lyme Borreliosis in Africa-An Emerging Threat in Africa. BIOLOGY 2024; 13:897. [PMID: 39596852 PMCID: PMC11591761 DOI: 10.3390/biology13110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Lyme borreliosis (LB) is more common in the Northern Hemisphere. It is endemic mainly in North America, where the vectors are Ixodes scapularis and Ixodes pacificus, and in Eurasia, where the vectors are Ixodes ricinus and Ixodes persulcatus. Both tick-borne diseases and LB are influenced by climate change. Africa and South America are crossed by the equator and are situated in both the Northern and Southern Hemispheres. In Africa, the LB is present on the Mediterranean and the Indian Ocean coasts. Borrelia lusitaniae is prevalent in countries bordering the Mediterranean Sea, such as Tunisia, Morocco, Algeria, and Egypt. Ticks were detected in the Ixodes Ricinus, which are carried by migratory birds and the Ixodes inopinatus and captured by the Psammodromus algirus lizards. The Borreliae Lyme Group (LG) and, in particular, Borrelia garinii, have been reported in countries bordering the Indian Ocean, such as Kenya, Tanzania, and Mozambique, transported by migratory birds from North African countries, where the vector was identified as Hyalomma rufipes ticks. This review aims to document the presence of Borreliae LG and LB in Africa.
Collapse
Affiliation(s)
- Nejib Doss
- Department of Dermatology, Military Hospital of Tunis, Tunis 1008, Tunisia;
| | - Aldo Morrone
- IRCCS Dermatologic Institute San Gallicano, 00144 Rome, Italy;
| | - Patrizia Forgione
- Dermatology Unit, Lyme Disease Regional Center, 80134 Naples, Italy;
| | - Giusto Trevisan
- Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy;
| |
Collapse
|
3
|
Yousery A, Soliman DE, Samy AA, Allam AM, Shaalan MG, Abdel Hamid AE. Molecular detection of some zoonotic tick-borne pathogens in ticks collected from camels (Camelus dromedarius) as hosts and wild rodents as potential reservoirs. Vet Res Commun 2024; 48:3197-3207. [PMID: 39145855 PMCID: PMC11442481 DOI: 10.1007/s11259-024-10488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Ticks and tick-borne pathogens pose a great threat to human and animal health. The present study aimed to determine the prevalence of ticks that infest camels and investigate the presence of tick-borne pathogens in the blood of camels, associated ticks, and surrounding rodents as reservoirs. From 100 inspected camels, from different localities in the Giza governorate, 1000 ixodid ticks were collected; these ticks belonged to three genera: Hyalomma, Amblyomma, and Rhipicephalus. The genus Hyalomma was represented by four species, Hyalomma dromedarii was the most prevalent species (55.4%), followed by Hyalomma excavatum (22%), Hyalomma impeltatum (11.6%) and Hyalomma rufipes (2.8%). The genus Amblyomma was represented by two species, Amblyomma gemma (2.8%) and Amblyomma marmoreum (2.7%), while the genus Rhipicephalus was represented by only one species, Rhipicephalus pulchellus (2.7%). Ticks, camel blood, and rodents (total number 100 brown rats) are screened for tick-borne pathogens (Borrelia burgdorferi, Borrelia miyamotoi, Babesia sp., and Coxiella burnetii) using PCR. Camel blood was found to be infected with Borrelia burgdorferi (66.6%), Borrelia miyamotoi (55%), and Babesia sp. (11.6%). Coxiella burnetii DNA was detected in all the collected ticks but was not detected in the blood of camels or rodents. Borrelia miyamotoi was detected in 12.5% of H. impeltatum, 55% of Camels, and 6% of the rodents, which may indicate a proposed risk of dispersal of B. miyamotoi, the agent of tick-borne relapsing fever.
Collapse
Affiliation(s)
- Ayat Yousery
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Doaa E Soliman
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - A A Samy
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Ahmad M Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Mona G Shaalan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amira E Abdel Hamid
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Cossu CA, Cassini R, Bhoora RV, Menandro ML, Oosthuizen MC, Collins NE, Wentzel J, Quan M, Fagir DM, van Heerden H. Occurrence and molecular prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African wildlife: A systematic review and meta-analysis. Prev Vet Med 2024; 230:106257. [PMID: 38955115 DOI: 10.1016/j.prevetmed.2024.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/01/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Tick-borne pathogens (TBPs) constitute an emerging threat to public and animal health especially in the African continent, where land-use change, and wildlife loss are creating new opportunities for disease transmission. A review of TBPs with a focus on ticks determined the epidemiology of Rhipicephalus ticks in heartwater and the affinity of each Rickettsia species for different tick genera. We conducted a systematic review and meta-analysis to collect, map and estimate the molecular prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African wildlife. MATERIALS AND METHODS Relevant scientific articles were retrieved from five databases: PubMed, ScienceDirect, Scopus, Ovid and OAIster. Publications were selected according to pre-determined exclusion criteria and evaluated for risk of bias using the appraisal tool for cross-sectional studies (AXIS). We conducted an initial descriptive analysis followed by a meta-analysis to estimate the molecular prevalence of each pathogen. Subgroup analysis and meta-regression models were employed to unravel associations with disease determinants. Finally, the quality of evidence of every estimate was finally assessed. RESULTS Out of 577 retrieved papers, a total of 41 papers were included in the qualitative analysis and 27 in the meta-analysis. We retrieved 21 Anaplasmataceae species, six Rickettsiaceae species and Coxiella burnetii. Meta-analysis was performed for a total of 11 target pathogens. Anaplasma marginale, Ehrlichia ruminantium and Anaplasma centrale were the most prevalent in African bovids (13.9 %, CI: 0-52.4 %; 20.9 %, CI: 4.1-46.2 %; 13.9 %, CI: 0-68.7 %, respectively). Estimated TBPs prevalences were further stratified per animal order, family, species and sampling country. DISCUSSION We discussed the presence of a sylvatic cycle for A. marginale and E. ruminantium in wild African bovids, the need to investigate A. phagocytophilum in African rodents and non-human primates as well as E. canis in the tissues of wild carnivores, and a lack of data and characterization of Rickettsia species and C. burnetii. CONCLUSION Given the lack of epidemiological data on wildlife diseases, the current work can serve as a starting point for future epidemiological and/or experimental studies.
Collapse
Affiliation(s)
- C A Cossu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; Department of Animal Medicine, Production and Health, University of Padova, Legnaro 35020, Italy.
| | - R Cassini
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro 35020, Italy
| | - R V Bhoora
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - M L Menandro
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro 35020, Italy
| | - M C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - N E Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - J Wentzel
- Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - M Quan
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - D M Fagir
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - H van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
5
|
Kolo A. Anaplasma Species in Africa-A Century of Discovery: A Review on Molecular Epidemiology, Genetic Diversity, and Control. Pathogens 2023; 12:pathogens12050702. [PMID: 37242372 DOI: 10.3390/pathogens12050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma species, belonging to the family Anaplasmataceae in the order Rickettsiales, are obligate intracellular bacteria responsible for various tick-borne diseases of veterinary and human significance worldwide. With advancements in molecular techniques, seven formal species of Anaplasma and numerous unclassified species have been described. In Africa, several Anaplasma species and strains have been identified in different animals and tick species. This review aims to provide an overview of the current understanding of the molecular epidemiology and genetic diversity of classified and unclassified Anaplasma species detected in animals and ticks across Africa. The review also covers control measures that have been taken to prevent anaplasmosis transmission on the continent. This information is critical when developing anaplasmosis management and control programs in Africa.
Collapse
Affiliation(s)
- Agatha Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Distribution and Prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African Ticks: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:microorganisms11030714. [PMID: 36985288 PMCID: PMC10051480 DOI: 10.3390/microorganisms11030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23–22.85%), R. africae (13.47%; 95% CI: 2.76–28.69%), R. conorii (11.28%; 95% CI: 1.77–25.89%), A. marginale (12.75%; 95% CI: 4.06–24.35%), E. ruminantium (6.37%; 95% CI: 3.97–9.16%) and E. canis (4.3%; 95% CI: 0.04–12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0–0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83–46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27–99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.
Collapse
|
7
|
Kaba T. Geographical distribution of ixodid ticks and tick-borne pathogens of domestic animals in Ethiopia: a systematic review. Parasit Vectors 2022; 15:108. [PMID: 35346354 PMCID: PMC8961985 DOI: 10.1186/s13071-022-05221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Ethiopia, ixodid ticks and associated tick-borne pathogens (TBPs) are of great importance from both a veterinary and public health point of view. This review aimed at compiling available published data on the distribution of ixodid tick species and TBPs in the country. METHODS A standard review approach was employed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Published peer-reviewed articles and theses/dissertations reporting on ixodid ticks and TBPs in Ethiopia were searched using different keywords in many electronic databases including PubMed, Scopus, Web of Science, Google Scholar, African Journals OnLine, and institutional repositories. Articles were screened based on inclusion and exclusion criteria using the PRISMA flowchart. Data were retrieved from eligible articles and recorded in a preformed data record sheet. Descriptive statistics were employed to present data using graphs. QGIS (Quantum GIS) software version 3.4.5 was used to show the distribution of ixodid tick species and TBPs. RESULTS Overall, 35 articles that met the inclusion criteria were included in this review. Of these, 24 articles report only on ixodid ticks of domestic animals, six articles report only on TBPs in livestock or ticks, and five articles report on both ticks and TBPs in either animals or ticks. Of these studies, 54% were in the Oromia region, while only 3% of studies were in the Benishangul-Gumuz region. The Gambela region lacked studies on ticks and TBPs. At least 19 ixodid tick species have been recorded from different domestic animals including cattle, small ruminants, donkeys, horses, camels, dogs, and cats. Morphological characterization appears to be the sole method of tick species identification in the country. The distribution and abundance of specific tick species depend on geographical locations and agroecological factors. Sixteen molecularly confirmed TBPs have been identified in animal and tick tissue using molecular methods from only four administrative regions, despite the wide distribution of ticks. Among TBPs, five Anaplasma, two Ehrlichia, two Rickettsia, five Theileria, two Babesia, and one Coxiella species are the major pathogens in both livestock and humans. CONCLUSIONS Many ixodid ticks circulate in a wide geographical zone of Ethiopia. However, the limited reports on TBPs at the country level in general, and the absence of either tick or TBP reports around the border region with neighboring countries in particular, highlights the need for further study.
Collapse
Affiliation(s)
- Tamirat Kaba
- Department of Veterinary and Animal Science, College of Agricultural Science, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
8
|
Mori E, Magoga G, Panella M, Montagna M, Winsor L, Justine JL, Menchetti M, Schifani E, Melone B, Mazza G. Discovering the Pandora’s box: the invasion of alien flatworms in Italy. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02638-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kobayashi T, Chatanga E, Qiu Y, Simuunza M, Kajihara M, Hang’ombe BM, Eto Y, Saasa N, Mori-Kajihara A, Simulundu E, Takada A, Sawa H, Katakura K, Nonaka N, Nakao R. Molecular Detection and Genotyping of Coxiella-Like Endosymbionts in Ticks Collected from Animals and Vegetation in Zambia. Pathogens 2021; 10:pathogens10060779. [PMID: 34205691 PMCID: PMC8234379 DOI: 10.3390/pathogens10060779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/16/2023] Open
Abstract
Ticks are obligate ectoparasites as they require to feed on their host blood during some or all stages of their life cycle. In addition to the pathogens that ticks harbor and transmit to vertebrate hosts, they also harbor other seemingly nonpathogenic microorganisms including nutritional mutualistic symbionts. Tick nutritional mutualistic symbionts play important roles in the physiology of the host ticks as they are involved in tick reproduction and growth through the supply of B vitamins as well as in pathogen maintenance and propagation. Coxiella-like endosymbionts (CLEs) are the most widespread endosymbionts exclusively reported in ticks. Although CLEs have been investigated in ticks in other parts of the world, there is no report of their investigation in ticks in Zambia. To investigate the occurrence of CLEs, their maintenance, and association with host ticks in Zambia, 175 ticks belonging to six genera, namely Amblyomma, Argas, Haemaphysalis, Hyalomma, Ornithodoros, and Rhipicephalus, were screened for CLEs, followed by characterization of CLEs by multi-locus sequence typing of the five Coxiella housekeeping genes (dnaK, groEL, rpoB, 16S rRNA, and 23S rRNA). The results showed that 45.7% (n = 80) were positive for CLEs. The comparison of the tick 16S rDNA phylogenetic tree with that of the CLEs concatenated sequences showed that there was a strong correlation between the topology of the trees. The results suggest that most of the CLEs have evolved within tick species, supporting the vertical transmission phenomenon. However, the negative results for CLE in some ticks warrants further investigations of other endosymbionts that the ticks in Zambia may also harbor.
Collapse
Affiliation(s)
- Toshiya Kobayashi
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Elisha Chatanga
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe P.O. Box 219, Malawi
| | - Yongjin Qiu
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan;
| | - Martin Simuunza
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka P.O. Box 32379, Zambia;
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Bernard Mudenda Hang’ombe
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka P.O. Box 32379, Zambia;
- Department of ParaClinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yoshiki Eto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Ngonda Saasa
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Edgar Simulundu
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Macha Research Trust, Choma P.O. Box 630166, Zambia
| | - Ayato Takada
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan; (M.K.); (Y.E.); (A.M.-K.)
| | - Hirofumi Sawa
- Department of Diseases Control, School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.S.); (N.S.); (E.S.); (A.T.); (H.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Ken Katakura
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; (T.K.); (E.C.); (K.K.); (N.N.)
- Correspondence: ; Tel.: +81-11-706-5196
| |
Collapse
|