1
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Yao H, Wu Y, Zhong Y, Huang C, Guo Z, Jin Y, Wang X. Role of c-Fos in DNA damage repair. J Cell Physiol 2024; 239:e31216. [PMID: 38327128 DOI: 10.1002/jcp.31216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.
Collapse
Affiliation(s)
- Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Xu Q, Zhu F, Pan Y, Ren Y, Li J, Huang N, Liu K, Wang Y. HIV Tat-Conjugated Histone H3 Peptides Induce Tumor Cell Death Via Cellular Stress Responses. Hum Gene Ther 2023; 34:42-55. [PMID: 36373826 DOI: 10.1089/hum.2022.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histone H3 is a nucleosome scaffold protein that is involved in a variety of intracellular processes. Aberrant modification of H3 is important in carcinogenesis. In contrast, free histones in cells can act as stimuli to trigger cellular immune responses and cell death. In this study, we linked cell-penetrating peptide HIV Tat to a histone H3 fragment to achieve intracellular delivery in tumor cells. We found that Tat-conjugated histone polypeptides localized to nuclei of lung and breast cancer cells and caused cell death. A trans-configured Tat sequence displayed dramatically improved peptide half-life and cytotoxicity. Mechanistic studies demonstrated that treatment with the peptides significantly elevated mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species (ROS) production, as well as levels of stress-inducible transcription factor ATF3 (activating transcription factor 3) and AP-1 (activating protein-1). Cytotoxicity of the peptide was significantly reduced by inhibition of AP-1 activity and ROS production. These results suggest the potential of Tat-conjugated H3 peptides as antitumor agents to induce cell death via increased cellular stress response by activating p38-MAPK signaling and intracellular ROS production.
Collapse
Affiliation(s)
- Qian Xu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Feimei Zhu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei Minzu University, Enshi, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Scutellaria baicalensis in the Treatment of Hepatocellular Carcinoma: Network Pharmacology Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4572660. [PMID: 36874613 PMCID: PMC9981289 DOI: 10.1155/2023/4572660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Objective The aim of the study was to use a network pharmacological method and experimental validation to examine the mechanism of Scutellaria baicalensis (SB) against hepatocellular carcinoma (HCC). Methods The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and GeneCards were used for screening of targets of SB for the treatment of HCC. Cytoscape (3.7.2) software was used to construct the "drug-compound-intersection target interaction" interaction network. The STING database was used to analyze the interactions of the previous intersecting targets. The results were visualized and processed by performing GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathway enrichment analysis at the target sites. The core targets were docked with the active components by AutoDockTools-1.5.6 software. We used cellular experiments to validate the bioinformatics predictions. Results A total of 92 chemical components and 3258 disease targets including 53 intersecting targets were discovered. The results showed that wogonin and baicalein, the main chemical components of SB, could inhibit the viability and proliferation of hepatocellular carcinoma cells, promote apoptosis through the mitochondrial apoptotic pathway, and effectively act on AKT1, RELA, and JUN targets. Conclusion SB has multiple components and targets in the treatment of HCC, providing possible potential targets for the treatment of HCC and providing a basis for further research.
Collapse
|
5
|
Zhou L. Caspase-8: Friend or Foe in Bortezomib/Lenalidomide-Based Therapy for Myeloma. Front Oncol 2022; 12:861709. [PMID: 35321428 PMCID: PMC8936587 DOI: 10.3389/fonc.2022.861709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Antiproliferation and proapoptosis are two major molecular mechanisms of action of drugs used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib (PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug types approved for the treatment of myeloma. Bortezomib and lenalidomide activate caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells, suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite pathway. In this mini-review, I summarized recent advances in determining the molecular mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and explored the possible functions of caspase-8 in the proliferation and apoptosis of myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma have been discussed.
Collapse
Affiliation(s)
- Liang Zhou
- *Correspondence: Liang Zhou, ; orcid.org/0000-0003-0820-1520
| |
Collapse
|
6
|
Tsubota M, Miyazaki T, Ikeda Y, Hayashi Y, Aokiba Y, Tomita S, Sekiguchi F, Wang D, Nishibori M, Kawabata A. Caspase-Dependent HMGB1 Release from Macrophages Participates in Peripheral Neuropathy Caused by Bortezomib, a Proteasome-Inhibiting Chemotherapeutic Agent, in Mice. Cells 2021; 10:cells10102550. [PMID: 34685531 PMCID: PMC8533714 DOI: 10.3390/cells10102550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Given the role of macrophage-derived high mobility group box 1 (HMGB1) in chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel, we analyzed the role of HMGB1 and macrophages in the CIPN caused by bortezomib, a proteasome-inhibiting chemotherapeutic agent used for the treatment of multiple myeloma. Repeated administration of bortezomib caused CIPN accompanied by early-stage macrophage accumulation in the dorsal root ganglion. This CIPN was prevented by an anti-HMGB1-neutralizing antibody, thrombomodulin alfa capable of accelerating thrombin-dependent degradation of HMGB1, antagonists of the receptor for advanced glycation end-products (RAGE) and C-X-C motif chemokine receptor 4 (CXCR4), known as HMGB1-targeted membrane receptors, or macrophage depletion with liposomal clodronate, as reported in a CIPN model caused by paclitaxel. In macrophage-like RAW264.7 cells, bortezomib as well as MG132, a well-known proteasome inhibitor, caused HMGB1 release, an effect inhibited by caspase inhibitors but not inhibitors of NF-κB and p38 MAP kinase, known to mediate paclitaxel-induced HMGB1 release from macrophages. Bortezomib increased cleaved products of caspase-8 and caused nuclear fragmentation or condensation in macrophages. Repeated treatment with the caspase inhibitor prevented CIPN caused by bortezomib in mice. Our findings suggest that bortezomib causes caspase-dependent release of HMGB1 from macrophages, leading to the development of CIPN via activation of RAGE and CXCR4.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yuya Ikeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yusuke Hayashi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yui Aokiba
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
- Correspondence: ; Tel.: +81-6-4307-3631
| |
Collapse
|
7
|
Wang J, Wang Y, He S, Wang Z, Deng Q, Liang H. Proteasome inhibition induces macrophage apoptosis via mitochondrial dysfunction. J Biochem Mol Toxicol 2021; 35:e22894. [PMID: 34418242 DOI: 10.1002/jbt.22894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Dysfunction of the ubiquitin-proteasome system has been linked to the pathogenesis of a variety of diseases. Proteasome inhibition not only exerts antitumor effects but also affects inflammatory signaling pathways. MG132, a proteasome inhibitor, has been shown to induce tumor cell apoptosis. However, its role in the induction of macrophage apoptosis remains unknown. In our study, we investigated the mechanism of the proapoptotic effects of MG132 in macrophages. Our data showed that MG132 treatment induced mitochondrial reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential in macrophages. We found that proteasome inhibition induced a significant increase in the apoptosis rate, as evidenced by cleavage of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenyl-phosphonium chloride (Mito-TEMPO) attenuated MG132-induced apoptosis. In conclusion, proteasome inhibition by MG132 can induce macrophage apoptosis by promoting the production of ROS and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yingling Wang
- Department of Pediatrics, The Second Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Shihan He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhu Wang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SLD, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VGD, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021; 12:555. [PMID: 34050139 PMCID: PMC8163806 DOI: 10.1038/s41419-021-03827-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Fernández-Ramos
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Barbier-Torres
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Imanol Zubiete-Franco
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio López de Davalillo
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Elisa Herraez
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.11762.330000 0001 2180 1817Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Naroa Goikoetxea-Usandizaga
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sofia Lachiondo-Ortega
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Virginia Gutiérrez-de Juan
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Misti V. McCain
- grid.1006.70000 0001 0462 7212Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Maria J. Perugorria
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.11480.3c0000000121671098Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jon Mabe
- grid.6496.d0000 0004 1763 8481Electronics and Communications Unit, IK4-Tekniker, Eibar, Spain
| | - Nicolás Navasa
- grid.420175.50000 0004 0639 2420Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia Spain
| | - Cecilia M. P. Rodrigues
- grid.9983.b0000 0001 2181 4263Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Fabregat
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.418284.30000 0004 0427 2257TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, Barcelona, Spain
| | - Loreto Boix
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Victor Sapena
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Juan Anguita
- grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ,grid.420175.50000 0004 0639 2420Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia Spain
| | - Shelly C. Lu
- grid.50956.3f0000 0001 2152 9905Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - José M. Mato
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus M. Banales
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.11480.3c0000000121671098Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Erica Villa
- grid.7548.e0000000121697570Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, Modena, Italy
| | - Helen L. Reeves
- grid.1006.70000 0001 0462 7212Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Freeman Road, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Jordi Bruix
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Maria Reig
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d’Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Jose J. G. Marin
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain ,grid.11762.330000 0001 2180 1817Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Teresa C. Delgado
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María L. Martínez-Chantar
- grid.420175.50000 0004 0639 2420Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
HDAC6-Selective Inhibitor Overcomes Bortezomib Resistance in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22031341. [PMID: 33572814 PMCID: PMC7866276 DOI: 10.3390/ijms22031341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Although multiple myeloma (MM) patients benefit from standard bortezomib (BTZ) chemotherapy, they develop drug resistance, resulting in relapse. We investigated whether histone deacetylase 6 (HDAC6) inhibitor A452 overcomes bortezomib resistance in MM. We show that HDAC6-selective inhibitor A452 significantly decreases the activation of BTZ-resistant markers, such as extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NF-κB), in acquired BTZ-resistant MM cells. Combination treatment of A452 and BTZ or carfilzomib (CFZ) synergistically reduces BTZ-resistant markers. Additionally, A452 synergizes with BTZ or CFZ to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3), resulting in decreased expressions of low-molecular-mass polypeptide 2 (LMP2) and LMP7. Furthermore, combining A452 with BTZ or CFZ leads to synergistic cancer cell growth inhibition, viability decreases, and apoptosis induction in the BTZ-resistant MM cells. Overall, the synergistic effect of A452 with CFZ is more potent than that of A452 with BTZ in BTZ-resistant U266 cells. Thus, our findings reveal the HDAC6-selective inhibitor as a promising therapy for BTZ-chemoresistant MM.
Collapse
|
10
|
Liu Y, Feng M, Cai J, Li S, Dai X, Shan G, Wu S. Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Exp Eye Res 2021; 204:108446. [PMID: 33476605 DOI: 10.1016/j.exer.2021.108446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Neovascular age-related macular degeneration (neoAMD) is the leading cause of blindness in AMD and manifests as choroidal neovascularization (CNV). Anti-vascular endothelial growth factor (VEGF) therapies are the mainstay treatments but with limited efficacy and cause detrimental effects on the retina after long-term application. These disadvantages warrant alternative strategy. Herein, we examined the effect on CNV by intravitreal injection of bortezomib, a reversible proteasome inhibitor, and further dissected the mechanism. Krypton red Laser was used to create CNV model in mice. The angiogenesis volume was assessed in choroidal flat-mount with isolectin GS-IB4 labeling and the leakage was examined with fluorescein fundus angiography. Injection of Borsub inhibited angiogenesis in the CNV model which was dose-dependent; the injection significantly inhibited leakage as well. Furthermore, Borsub injection reduced the contents of VEGF-A, macrophage chemotactic factor 1 (MCP-1), and platelet-derived growth factor (PDGF)-D but not PDGF-B, examined by enzyme-linked immunosorbent assay, in choroid/retinal pigment epithelium (RPE) tissue. These injections also reduced phospho-VEGFR-2 and phospho-PDGFRβ in choroid/RPE tissue examined by immunoblotting. Moreover, Borsub inhibited the recruitment of mural cells or macrophages to laser-injured spots. Injection of Borsub indicated negative effect on scotopic and photopic responses recorded by electroretinogram. Altogether, intravitreal injection of Borsub significantly reduced CNV by antagonizing VEGF-A/Flk-1 and PDGF-D/PDGFRβ pathways without impacting electroretinography parameters. Thus, Borsub may offer an invaluable therapy for the prevention and treatment of neoAMD.
Collapse
Affiliation(s)
- Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Meiling Feng
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Xufeng Dai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China.
| |
Collapse
|
11
|
Lin W, Li L, Chen J, Li D, Hou J, Guo H, Shen J. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 80:540-545. [PMID: 29964198 DOI: 10.1016/j.fsi.2018.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 05/25/2023]
Abstract
Crowding stress is one of the most common environmental stressors in intensive aquaculture. To investigate the influences of long-term crowding stress on nonspecific immune responses and apoptosis in fish, grass carp (Ctenopharyngodon idella) were cultured at low (0.9 kg m-2), medium (2.97 kg m-2) and high (5.9 kg m-2) stocking densities for 10 weeks in the present study. The results showed that elevation of stocking densities caused splenic tissue damages and inflammatory responses, which are characterized with the formation of melano-macrophage centers and the increase of granulocytes as well as significant upregulation of inflammatory cytokine genes (il1β and tnfα). The remarkable decline in the activities of serum lysozyme, acid phosphatase and alkaline phosphatase under high stocking density further confirmed that increased stocking density affected fish nonspecific immune response negatively. Moreover, the transcriptional levels of splenic apoptotic-related genes caspase-8, fasl and caspase-3 increased significantly while the mRNA levels of bax, bcl2, apaf1 and caspase-9 remained unchanged. This result showed that increased stocking density caused splenic cell apoptosis, which were closely associated with the FasL signaling pathway. Our findings revealed that crowding stress could influence fish nonspecific immune response negatively and increase inappropriate apoptosis of the spleen, which would make fish more susceptible to pathogens and ultimately impair fish survival. The breeding density utilized in this study also provides some reference values in intensive aquaculture systems from the perspective of fish health and welfare.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
12
|
Kim SJ, Noh TH, Son S, Kim DH, Kim W, Lee Y, Choo J, Heo G, Kim MJ, Chung HY, Jung Y, Jung JH, Moon HR, Im E. Novel β-phenylacrylic acid derivatives exert anti-cancer activity by inducing Src-mediated apoptosis in wild-type KRAS colon cancer. Cell Death Dis 2018; 9:877. [PMID: 30158525 PMCID: PMC6115383 DOI: 10.1038/s41419-018-0942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/19/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022]
Abstract
Many stress conditions including chemotherapy treatment is known to activate Src and under certain condition Src can induce the apoptotic signal via c-Jun N-terminal kinase (JNK) activation. Here we report that the newly synthesized β-phenylacrylic acid derivatives, MHY791 and MHY1036 (MHYs), bind to epidermal growth factor receptor (EGFR) tyrosine kinase domains and function as EGFR inhibitors, having anti-cancer activities selectively in wild-type KRAS colon cancer. Mechanistically, MHYs-induced Src/JNK activation which enhanced their pro-apoptotic effects and therefore inhibition of Src by the chemical inhibitor PP2 or Src siRNA abolished the response. In addition, MHYs generated reactive oxygen species and increased ER stress, and pretreatment with antioxidant-inhibited MHY-induced ER stress, Src activation, and apoptosis. Furthermore, the irreversible EGFR inhibitor PD168393 also activated Src while the reversible EGFR inhibitor gefitinib showed the opposite effect, indicating that MHYs are the irreversible EGFR inhibitor. Collectively, Src can play a key role in apoptosis induced by the novel EGFR inhibitor MHYs, suggesting that activation of Src might prove effective in treating EGFR/wild-type KRAS colon cancer.
Collapse
Affiliation(s)
- Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae Hwan Noh
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Sujin Son
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Do Hyun Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunna Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Jae Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jee Hyung Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
13
|
Dietary magnesium deficiency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Sci Rep 2018; 8:12705. [PMID: 30139942 PMCID: PMC6107577 DOI: 10.1038/s41598-018-30485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Grass carp (223.85–757.33 g) were fed diets supplemented with magnesium (73.54–1054.53 mg/kg) for 60 days to explore the impacts of magnesium deficiency on the growth and intestinal structural integrity of the fish. The results demonstrated that magnesium deficiency suppressed the growth and damaged the intestinal structural integrity of the fish. We first demonstrated that magnesium is partly involved in (1) attenuating antioxidant ability by suppressing Nrf2 signalling to decrease antioxidant enzyme mRNA levels and activities (except CuZnSOD mRNA levels and activities); (2) aggravating apoptosis by activating JNK (not p38MAPK) signalling to upregulate proapoptotic protein (Apaf-1, Bax and FasL) and caspase-2, -3, -7, -8 and -9 gene expression but downregulate antiapoptotic protein (Bcl-2, IAP and Mcl-1b) gene expression; (3) weakening the function of tight junctional complexes (TJs) by promoting myosin light chain kinase (MLCK) signalling to downregulate TJ gene expression [except claudin-7, ZO-2b and claudin-15 gene expression]. Additionally, based on percent weight gain (PWG), against reactive oxygen species (ROS), against caspase-9 and claudin-3c in grass carp, the optimal dietary magnesium levels were calculated to be 770.38, 839.86, 856.79 and 811.49 mg/kg, respectively.
Collapse
|
14
|
Wu P, Pan FY, Feng L, Jiang WD, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue supplementation modulates gill immunological and barrier health status of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:637-648. [PMID: 29360541 DOI: 10.1016/j.fsi.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of methionine hydroxy analogue (MHA) on the physical barrier and immune defence in the gill of young grass carp (Ctenopharyngodon idella). A total 630 young grass carp with an average initial weight of 259.70 ± 0.47 g were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one DL-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. After feeding trial, 15 fish from each treatment were challenged with Flavobacterium columnare. Compared to the basal diet, optimal MHA improved cellular structure integrity of gill via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < .05). Simultaneously, optimal MHA supplementation improved cellular structure integrity of gill via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < .05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase (MLCK) mRNA levels (P < .05). Summarily, MHA could improve the physical barrier of fish gill. In addition, optimal MHA supplementation increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin and β-defensin, suggesting that MHA could enhance antimicrobial ability of fish gill. Meanwhile, optimal MHA supplementation enhanced the immune defence of gill via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < .05). In conclusion, the positive effect of MHA on gill health is associated with the improvement of the defence against apoptosis, antioxidant status, tight junctions and immune defence of fish gill. Meanwhile, MHA was superior to DLM on improving the physical barrier of fish gill. For the direction to healthy breeding of young grass carp, the optimal MHA supplementation levels on the premise of 4.01 g/kg methionine basal were estimated by quadratic regression curve, such as 5.49, 6.17 and 6.02 g/kg diet bases on the defence against gill-rot, malondialdehyde content and LZ activity in the gill, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
15
|
Wu P, Tian L, Zhou XQ, Jiang WD, Liu Y, Jiang J, Xie F, Kuang SY, Tang L, Tang WN, Yang J, Zhang YA, Shi HQ, Feng L. Sodium butyrate enhanced physical barrier function referring to Nrf2, JNK and MLCK signaling pathways in the intestine of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 73:121-132. [PMID: 29222028 DOI: 10.1016/j.fsi.2017.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effect of dietary sodium butyrate (SB) supplementation on the intestinal physical barrier function of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg-1 diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg-1 diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila to explore the effect of SB supplementation on intestinal physical barrier function and the potential mechanisms in fish. The results showed that optimal SB supplementation: (1) down-regulated the cysteine-aspartic protease-2 (caspase-2), caspase-3 (rather than PI), caspase-7, caspase-8 (rather than PI), caspase-9, fatty acid synthetase ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), B-cell lymphoma 2 associated X protein (Bax) and c-Jun Nterminal protein kinase (JNK) mRNA levels, up-regulated the B-cell lymphoma protein-2 (Bcl-2) (rather than PI), inhibitor of apoptosis proteins (IAP) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in the intestine (P < 0.05), inhibited the intestinal cell apoptosis, maintained the intestine cell structure integrity; (2) increased NF-E2-related factor 2 (Nrf2) mRNA levels and nucleus protein levels, and down-regulated kelch-like-ECH-associated protein (Keap1b) (rather than Keap1a) mRNA levels in the intestine, up-regulated copper/zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase 1a (GPx1a), GPx1b, GPx4a, GPx4b, glutathione S-transferases R (GSTR), GSTP1, GSTP2, GSTO1, GSTO2 and glutathione reductase (GR) mRNA levels in the intestine, increased the corresponding antioxidant enzymes activity (P < 0.05), thus enhancing the ability of scavenging free radicals and decreasing the reactive oxygen species (ROS) content, decreasing the lipid and protein peroxidation, as well as alleviating oxidative damage; (3) down-regulated the molecule myosin light-chain kinase (MLCK) mRNA levels in the intestine, and up-regulated the occludin, zonula occludens-1 (ZO-1), ZO-2, claudin-b, claudin-c, claudin-f, claudin-3c (rather than PI), claudin-7a, claudin-7b and claudin-11 mRNA levels, down-regulated claudin-12, claudin-15a and claudin-15b mRNA levels (P < 0.05), thus maintaining the structural integrity between cells. This study suggests that SB supplementation could improve fish intestinal physical barrier function. Furthermore, according to the positive effect, MSB was superior to PSB on improving intestinal physical barrier function of fish. Finally, based on protein carbonyl content in the PI, the optimal SB supplementation (MSB as SB source) for young grass carp was estimated to be 338.8 mg kg-1 diet.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Xie
- Shanghai Menon Animal Nutrition Technology Co., Ltd, Shanghai 201807, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu, 610041, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - He-Qun Shi
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Zhang Y, Yang B, Zhao J, Li X, Zhang L, Zhai Z. Proteasome Inhibitor Carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal (MG132) Enhances Therapeutic Effect of Paclitaxel on Breast Cancer by Inhibiting Nuclear Factor (NF)-κB Signaling. Med Sci Monit 2018; 24:294-304. [PMID: 29332931 PMCID: PMC5779800 DOI: 10.12659/msm.908139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), a peptide aldehyde proteasome inhibitor, can inhibit tumor progression by inactivating nuclear factor (NF)-κB signaling. Paclitaxel (PTX) is part of a routine regimen for the treatment of breast cancer. However, activation of the NF-κB pathway after treatment with PTX confers insensitivity to this drug. This study investigated the potential effect of MG132 as a co-treatment with PTX against breast cancer, and clarifies the underlying molecular mechanisms. Material/Methods Breast cancer cells were treated with PTX, MG132, or PTX plus MG132, and the therapeutic effects were evaluated phenotypically. A mouse model of breast cancer was used to determine the combined effect of PTX plus MG132 in vivo. Results Treatment with PTX plus MG132 suppressed aggressive phenotypes of breast cancer cells more effectively than PTX alone. Consistently, MG132 also enhanced the suppressive effect of PTX on tumor growth in C57BL/6 mice. Significantly, activation of the NF-κB pathway by PTX was attenuated by MG132. Conclusions Based on our findings, we suggest the application of MG132 in clinical practice in combination with PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yunjing Zhang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Bin Yang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Jinping Zhao
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Xiaoli Li
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Long Zhang
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Zhenhua Zhai
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland).,Department of Oncology, Cancer Centre, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
17
|
Du J, Zhang X, Han J, Man K, Zhang Y, Chu ESH, Nan Y, Yu J. Pro-Inflammatory CXCR3 Impairs Mitochondrial Function in Experimental Non-Alcoholic Steatohepatitis. Theranostics 2017; 7:4192-4203. [PMID: 29158819 PMCID: PMC5695006 DOI: 10.7150/thno.21400] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.
Collapse
|
18
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
19
|
Perumal N, Perumal M, Kannan A, Subramani K, Halagowder D, Sivasithamparam N. Morin impedes Yap nuclear translocation and fosters apoptosis through suppression of Wnt/β-catenin and NF-κB signaling in Mst1 overexpressed HepG2 cells. Exp Cell Res 2017; 355:124-141. [DOI: 10.1016/j.yexcr.2017.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
|
20
|
Pan FY, Wu P, Feng L, Jiang WD, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue improves intestinal immunological and physical barrier function in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 64:122-136. [PMID: 28279791 DOI: 10.1016/j.fsi.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
This study was conducted to test the hypothesis that methionine hydroxy analogue (MHA) enhances the defense against enteritis occurrence via improving intestinal barrier function in fish. After 630 young grass carp (Ctenopharyngodon idella) (259.70 ± 0.47 g) fed six graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine group (6.4 g/kg diet) for 8 weeks. At the end of feeding trial, 15 fish from each treatment were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA enhanced the capacity of fish against enteritis emergence, which might be related to the positive effects of MHA on intestinal immunological and physical barrier function in fish. Dietary MHA supplementation enhanced intestinal immunological barrier function via (1) lysozyme (LZM) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1; (2) repressing p38MAPK/IKKβ/IκBα/NF-κB signaling pathway to down-regulate pro-inflammatory cytokines mRNA levels except IL-8 mRNA level only in mid and distal intestine; (3) potentiating TOR-signal cascades to up-regulate anti-inflammatory cytokines. Meanwhile, dietary MHA supplementation improved intestinal physical barrier via (1) down-regulating c-Jun N-terminal kinase mRNA levels to inhibit death receptor and mitochondria pathways induced apoptosis; (2) modulating Keap1a/Nrf2 system to elevate antioxidant enzymes genes isoforms mRNA levels and corresponding enzymes activities, subsequently alleviate oxidative damage; (3) down-regulating MCLK gene expression to up-regulating occludin, zonula occluden 1 and claudins mRNA levels except claudin-7a and claudin-7b only in the proximal intestine. In conclusion, bases on the capacity defense against enteritis, proximal intestinal malondialdehyde content and lysozyme activity, the optimal MHA supplementation levels were 5.83, 5.59 and 6.07 g/kg diet (4.01 g/kg methionine basal), respectively. This study indicates that MHA exerts a positive effect on fish intestinal health status and a superior efficacy to dl-methionine based on the positive effects.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget 2017; 7:18736-49. [PMID: 26934650 PMCID: PMC4951325 DOI: 10.18632/oncotarget.7702] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023] Open
Abstract
Survival of cancer cells relies on the unfolded protein response (UPR) to resist stress triggered by the accumulation of misfolded proteins within the endoplasmic reticulum (ER). The IRE1α-XBP1 pathway, a key branch of the UPR, is activated in many cancers. Here, we show that the expression of both mature and spliced forms of XBP1 (XBP1s) is up-regulated in acute myeloid leukemia (AML) cell lines and AML patient samples. IRE1α RNase inhibitors [MKC-3946, 2-hydroxy-1-naphthaldehyde (HNA), STF-083010 and toyocamycin] blocked XBP1 mRNA splicing and exhibited cytotoxicity against AML cells. IRE1α inhibition induced caspase-dependent apoptosis and G1 cell cycle arrest at least partially by regulation of Bcl-2 family proteins, G1 phase controlling proteins (p21cip1, p27kip1 and cyclin D1), as well as chaperone proteins. Xbp1 deleted murine bone marrow cells were resistant to growth inhibition by IRE1α inhibitors. Combination of HNA with either bortezomib or AS2O3 was synergistic in AML cytotoxicity associated with induction of p-JNK and reduction of p-PI3K and p-MAPK. Inhibition of IRE1α RNase activity increased expression of many miRs in AML cells including miR-34a. Inhibition of miR-34a conferred cellular resistance to HNA. Our results strongly suggest that targeting IRE1α driven pro-survival pathways represent an exciting therapeutic approach for the treatment of AML.
Collapse
|
22
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
23
|
Pan FY, Feng L, Jiang WD, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue enhanced fish immunity via modulation of NF-κB, TOR, MLCK, MAPKs and Nrf2 signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 56:208-228. [PMID: 27422756 DOI: 10.1016/j.fsi.2016.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Our study investigated the effect of dietary methionine hydroxy analogue (MHA) on growth and immunity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (259.70 ± 0.47 g) were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1 in the immune organs (P < 0.05), suggesting that MHA could enhance antimicrobial ability of fish. Meanwhile, optimal MHA enhanced the immune function of immune organs via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < 0.05). In addition, optimal MHA improved cellular structure integrity of immune organs via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < 0.05). Simultaneously, optimal MHA improved cellular structure integrity of immune organs via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < 0.05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase mRNA levels (P < 0.05). In conclusion, MHA exerted a positive effect on the immune function and structural integrity of immune organs in fish. Furthermore, according to the positive effect, MHA was superior to DLM in grass carp. However, based on the growth performance, the efficacy of MHA relative to DLM was 97%. Finally, on the premise of the basal diet containing 4.01 g/kg methionine, the optimal MHA supplementation levels based on feed intake, PWG, defense against skin hemorrhage and lesion, LZ and ACP activities, IgM content, against malondialdehyde, protein carbonyl and ROS in the head kidney of young grass carp were 5.07, 5.21, 5.76, 5.90, 5.88, 5.80, 6.22, 5.68 and 6.85 g/kg diet, respectively.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
24
|
Proteasome Inhibitor MG132 Enhances Sensitivity to Cisplatin on Ovarian Carcinoma Cells In Vitro and In Vivo. Int J Gynecol Cancer 2016; 26:839-44. [DOI: 10.1097/igc.0000000000000703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BackgroundPlatinum-based combination chemotherapy after surgery is considered a standard treatment; therefore, any recent drug development should be new, effective, and low toxic, and should have a synergistic effect with platinum. This study aimed to observe the growth of SKOV3 cells after treatment with cisplatin by combining with carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) and to investigate the effect of the relationship between MG132 and cisplatin combination.Materials and MethodsCell growth was detected by methyl thiazolyl tetrazolium assay after treatment with MG132 at 0.5, 1.5, 2.5, 3.5, and 5.0 μg/mL concentrations for 24, 48, and 72 hours; with cisplatin at 1.0, 2.0, 3.0, 4.0, and 5.0 μg/mL concentrations; and with combination with MG132 at 1.5 μg/mL for 24 hours. The apoptotic rates of cells were detected by a flow cytometer after cisplatin treatment at 1.0, 2.0, 3.0, and 4.0 μg/mL concentrations and that combined with MG132 at 1.5 μg/mL concentration for 12, 24, and 36 hours. A total of 20 BALB/c (nu/nu) female nude mice (age, 4–6 weeks; body weight, 17–19 g) were divided into 4 groups: control, MG132, cisplatin, and combination groups. The expression of Caspase3 and Beclin1 was detected by Western blot analysis and reverse transcription-polymerase chain reaction after treatment with 3.0 μg/mL of the cisplatin group and combined treatment with 1.5 μg/mL of MG132 group for 24 hours, respectively.ResultsMethyl thiazolyl tetrazolium assay demonstrated the inhibitory rates, and the flow cytometery showed that the apoptotic rates in the combination group were higher than those in the cisplatin group (P < 0.01). Western blot analysis and reverse transcription-polymerase chain reaction detected that Caspase3 and Beclin1 at a relative quantity in the combination group were higher than those in the cisplatin group (P < 0.05).ConclusionsMG132 has a synergistic antitumor effect by combining with cisplatin, and it is expected to be an effective antitumor drug for platinum-resistant refractory ovarian cancer.
Collapse
|
25
|
Chen X, Shen J, Wang Y, Chen X, Yu S, Shi H, Huo K. Up-regulation of c-Fos associated with neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 2015; 35:363-376. [PMID: 25354492 DOI: 10.1007/s10571-014-0132-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/24/2014] [Indexed: 02/03/2023]
Abstract
The proto-oncogene c-Fos is an important member of the activating protein 1 (AP-1) transcription complex involved in major cellular functions such as transformation, proliferation, differentiation, and apoptosis. The expression of c-Fos is very tightly regulated and responses rapidly and transiently to a plethora of apoptotic stimuli. However, it is still unclear how c-Fos functions on neuronal activities following intracerebral hemorrhage (ICH). In the present studies, we uncovered that the up-regulation of c-Fos is related to neuronal apoptosis following ICH probably via FasL/Fas apoptotic pathway. From the results of Western blot and immunohistochemistry, we obtained that c-Fos is significantly up-regulated surrounding the hematoma following ICH and co-locates with active caspase-3 in the neurons. Besides, electrophoretic mobility shift assay exhibits high AP-1 DNA-binding activities in ICH groups due to the increase of c-Fos expression. In addition, there are concomitant up-regulation of Fas ligand (FasL), which is the target protein of AP-1, Fas, active caspase-8, and active caspase-3 in vivo and in vitro studies. What is more, our in vitro study showed that using c-Fos-specific RNA interference in primary cortical neurons, the expression of FasL and active caspase-3 are suppressed. Thus, our results indicated that c-Fos might exert its pro-apoptotic function on neuronal apoptosis following ICH.
Collapse
Affiliation(s)
- Xiaomei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Xiaojing Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Shi Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Huili Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China.
| |
Collapse
|
26
|
Hu Y, Wang L, Wang L, Wu X, Wu X, Gu Y, Shu Y, Sun Y, Shen Y, Xu Q. Preferential cytotoxicity of bortezomib toward highly malignant human liposarcoma cells via suppression of MDR1 expression and function. Toxicol Appl Pharmacol 2015; 283:1-8. [DOI: 10.1016/j.taap.2014.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 12/27/2014] [Indexed: 02/05/2023]
|
27
|
Abstract
The activity of c-Jun N-terminal kinase (JNK) was initially described as ultraviolet- and oncogene-induced kinase activity on c-Jun. Shortly after this initial discovery, JNK activation was reported for a wider variety of DNA-damaging agents, including γ-irradiation and chemotherapeutic compounds. As the DNA damage response mechanisms were progressively uncovered, the mechanisms governing the activation of JNK upon genotoxic stresses became better understood. In particular, a recent set of papers links the physical breakage in DNA, the activation of the transcription factor NF-κB, the secretion of TNF-α, and an autocrine activation of the JNK pathway. In this review, we will focus on the pathway that is initiated by a physical break in the DNA helix, leading to JNK activation and the resultant cellular consequences. The implications of these findings will be discussed in the context of cancer therapy with DNA-damaging agents.
Collapse
Affiliation(s)
- Vincent Picco
- Biomedical Research Department, Centre Scientifique de Monaco, Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging of Nice, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
28
|
Witort E, Lulli M, Carloni V, Capaccioli S. Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells. J Chemother 2014; 25:292-7. [PMID: 24070137 DOI: 10.1179/1973947813y.0000000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemoresistance is a major cause of mortality of patients with advanced and metastatic hepatocellular carcinoma (HCC), the fifth most common cancer in the world. We employed a molecular approach to inhibit cell proliferation and induce apoptosis in HepG2 cells, originated from human hepatocarcinoma. TRADD gene expression was knocked down by an antisense oligonucleotide (ASO TRADD), resulting in TRADD protein decrease by 60%, coinciding with increase of apoptotic cell death of up to 30%. Combination of the ASO TRADD with the cytotoxic drugs 5-fluorouracil or paclitaxel did not improve chemosensitivity of HepG2 cells, while the combined administration of the ASO TRADD with proteasome inhibitors MG132 or ALLN inhibited cell proliferation by 80% and 93%, respectively. Taken together, these findings reveal the importance to combine proteasome inhibitors with silencing of anti-apoptotic signalling components to target HCC cells effectively and provide useful data for developing potential treatments of HCC.
Collapse
|
29
|
Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014; 18:947-61. [PMID: 24712303 PMCID: PMC4508135 DOI: 10.1111/jcmm.12279] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
30
|
Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, Jing Y, Wu GJ. Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol 2013; 73:69-77. [DOI: 10.1007/s00280-013-2318-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022]
|
31
|
Kong Y, Ma LQ, Bai PS, Da R, Sun H, Qi XG, Ma JQ, Zhao RM, Chen NZ, Nan KJ. Helicobacter pylori promotes invasion and metastasis of gastric cancer cells through activation of AP-1 and up-regulation of CACUL1. Int J Biochem Cell Biol 2013; 45:2666-78. [PMID: 24004834 DOI: 10.1016/j.biocel.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Infection with Helicobacter pylori is important in the development and progression of gastric cancer. However, the mechanisms that regulate this activation in gastric tumors remain elusive. CACUL1 has been cloned and identified as a novel gene that is expressed in many types of cancer and is involved in cell cycle regulation and tumor growth. The current study aimed to examine the expression of CACUL1 in gastric cancer samples and analyze its correlation with H. pylori infection. We found that CACUL1 was highly expressed in gastric cancer tissues and negatively correlated with gastric cancer differentiation and TNM stage. In addition, CACUL1 expression was high in H. pylori-infected tissues compared with H. pylori non-infected tissue. We found that H. pylori could up-regulate CACUL1 expression through activating protein 1. The up-regulation of CACUL1 expression could promote matrix metalloproteinase 9 and Slug expression to increase invasion and metastasis of tumor cells. These results suggested that H. pylori-triggered CACUL1 production occurred in an activating protein 1-dependent manner and regulated matrix metalloproteinase 9 and Slug expression to affect the invasion and metastasis of tumor cells. Therefore, CACUL1 is a potential therapeutic target for the treatment of aggressive gastric cancer.
Collapse
Affiliation(s)
- Ying Kong
- Department of Oncology, First Hospital of Xi'an Jiaotong University, No. 277 YanTa West Road, Xi'an, Shaanxi 710061, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pietkiewicz S, Sohn D, Piekorz RP, Grether-Beck S, Budach W, Sabapathy K, Jänicke RU. Oppositional regulation of Noxa by JNK1 and JNK2 during apoptosis induced by proteasomal inhibitors. PLoS One 2013; 8:e61438. [PMID: 23593480 PMCID: PMC3623862 DOI: 10.1371/journal.pone.0061438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 03/14/2013] [Indexed: 01/28/2023] Open
Abstract
Proteasome inhibitors (PIs) potently induce apoptosis in a variety of tumor cells, but the underlying mechanisms are not fully elucidated. Comparing PI-induced apoptosis susceptibilities of various mouse embryonic fibroblast (MEF) lines differing in their c-jun N-terminal kinase (JNK) 1 and 2 status, we show that several hallmarks of apoptosis were most rapidly detectable in JNK2-/- cells, whereas they appeared only delayed and severely reduced in their intensities in cells expressing JNK2. Consistent with our finding that PI-induced apoptosis requires de novo protein synthesis, the proteasomal inhibitor MG-132 induced expression of the BH3-only protein Noxa at the transcriptional level in a JNK1-dependent, but JNK2-opposing manner. As the knockdown of Noxa blocked only the rapid PI-induced apoptosis of JNK2-/- cells, but not the delayed death occurring in JNK1-/- and JNK1+/+ cells, our data uncover a novel PI-induced apoptosis pathway that is regulated by the JNK1/2-dependent expression of Noxa. Furthermore, several transcription factors known to modulate Noxa expression including ATF3, ATF4, c-Jun, c-Myc, HIF1α, and p53 were found upregulated following MG-132 exposure. From those, only knockdown of c-Myc rescued JNK2-/- cells from PI-induced apoptosis, however, without affecting expression of Noxa. Together, our data not only show that a rapid execution of PI-induced apoptosis requires JNK1 for upregulation of Noxa via an as yet unknown transcription factor, but also that JNK2 controls this event in an oppositional manner.
Collapse
Affiliation(s)
- Sabine Pietkiewicz
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, University of Düsseldorf, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, University of Düsseldorf, Düsseldorf, Germany
| | - Roland P. Piekorz
- Institute for Biochemistry and Molecular Biology II, University of Düsseldorf, Düsseldorf, Germany
| | | | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, University of Düsseldorf, Düsseldorf, Germany
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, University of Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
33
|
HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo. PLoS One 2012; 7:e52576. [PMID: 23285100 PMCID: PMC3527572 DOI: 10.1371/journal.pone.0052576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Combinations of proteasome inhibitors and histone deacetylases (HDAC) inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC) is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel) was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1) gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like) activity assay. Here we report that (i) the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii) the combination also synergistically inhibits tumor growth in vivo; (iii) two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1) expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.
Collapse
|
34
|
Amaro HM, Barros R, Guedes AC, Sousa-Pinto I, Malcata FX. Microalgal compounds modulate carcinogenesis in the gastrointestinal tract. Trends Biotechnol 2012; 31:92-8. [PMID: 23260440 DOI: 10.1016/j.tibtech.2012.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 01/04/2023]
Abstract
Gastrointestinal cancers rank second in overall cancer-related deaths. Carotenoids, sulfated polysaccharides, and polyunsaturated fatty acids (PUFAs) from microalgae exhibit cancer chemopreventive features at different stages of carcinogenesis. For instance, sulfated polysaccharides bear a prophylactic potential via blocking adhesion of pathogens to the gastric surface, whereas carotenoids are effective against Helicobacter pylori infection. This effect is notable because H. pylori has been targeted as the primary cause of gastric cancer. Recent results on antitumor and antibacterial compounds synthesized by microalgae are reviewed here, with an emphasis on their impact upon H. pylori infection and derived pathologies accompanying the progression of gastric carcinogenesis.
Collapse
Affiliation(s)
- Helena M Amaro
- Interdisciplinary Centre for Marine and Environmental Research (CIIMAR/CIMAR), Rua dos Bragas no. 289, P-4050-123 Porto, Portugal
| | | | | | | | | |
Collapse
|
35
|
Chun J, Joo EJ, Kang M, Kim YS. Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells. J Cell Biochem 2012; 114:456-70. [DOI: 10.1002/jcb.24386] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/30/2012] [Indexed: 01/13/2023]
|
36
|
Wang Z, Hu W, Zhang JL, Wu XH, Zhou HJ. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2012; 2:103-12. [PMID: 23650588 PMCID: PMC3642128 DOI: 10.1016/j.fob.2012.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 01/05/2023] Open
Abstract
Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase.
Collapse
Key Words
- AO, acridine orange
- DHA, dihydroartemisinin
- Dihydroartemisinin
- EB, ethidium bromide
- Iron
- K562 cell
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Mitophagy
- PARP, poly(ADP-ribose) polymerases
- PBS, phosphate buffer saline
- ROS
- ROS, reactive oxygen species
- TfR, transferrin receptor
Collapse
Affiliation(s)
- Zeng Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, People's Republic of China ; Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest New Drugs 2012; 30:2252-62. [DOI: 10.1007/s10637-012-9804-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/15/2012] [Indexed: 01/13/2023]
|
38
|
Stulpinas A, Imbrasaitė A, Kalvelytė AV. Daunorubicin induces cell death via activation of apoptotic signalling pathway and inactivation of survival pathway in muscle-derived stem cells. Cell Biol Toxicol 2012; 28:103-14. [PMID: 22252735 DOI: 10.1007/s10565-011-9210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/26/2011] [Indexed: 02/02/2023]
Abstract
Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Vilnius University Institute of Biochemistry, Mokslininkų 12, Vilnius, 08662, Lithuania.
| | | | | |
Collapse
|
39
|
Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1825:64-76. [PMID: 22037302 PMCID: PMC3242858 DOI: 10.1016/j.bbcan.2011.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/26/2023]
Abstract
The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers.
Collapse
Affiliation(s)
- Sarah Frankland-Searby
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R. Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
40
|
Abstract
Cancer is one of the most frightful diseases mostly resulting in mortality; it has recently become more possible to overcome with the help of new therapies. In this direction, carcinogenesis is defined as a complicated process that can include several different factors that contribute to its progress. Proteasome is implicated in cancer studies as it is the main degradation system for oxidatively damaged proteins and also for several proteins playing a role in the cell cycle and transcription, which are important for cancer improvement. Because of this crucial role of proteasome in cancer development, myriad in vitro and in vivo studies have focused on the proteasome in different cancer cases. In this chapter, the involvement of proteasome in the degradation of cancer-related proteins is explained with the results of representative studies. Related to these proteins, the use of proteasome inhibitors in cancer treatment is reviewed.
Collapse
|
41
|
Chen KC, Chang LS. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways. Toxicon 2009; 55:754-61. [PMID: 19944115 DOI: 10.1016/j.toxicon.2009.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Notechis scutatus scutatus notexin induced an increase in Fas and FasL protein expression of human neuroblastoma SK-N-SH cells in a dose- and time-dependent manner. Moreover, notexin treatment upregulated transcription of Fas/FasL mRNA. Downregulation of FADD blocked notexin-induced procaspase-8 degradation and cleavage of Bid and rescued viability of notexin-treated cells. Upon exposure to notexin, activation of JNK and p38 MAPK was observed in SK-N-SH cells. Notexin-induced upregulation of Fas and FasL was suppressed by SB202190 (p38 MAPK inhibitor) and S600125 (JNK inhibitor). Downregulation of p38alpha MAPK and JNK1 by siRNA proved that upregulation of Fas/FasL was related to p38alpha MAPK and JNK1 activation. Notexin treatment evoked p38alpha MAPK-mediated ATF-2 phosphorylation and JNK1-mediated c-Jun phosphorylation. Knockdown of c-Jun and ATF-2 by siRNA or overexpression of dominant-negative c-Jun and ATF-2 revealed that both c-Jun and ATF-2 were crucial for Fas/FasL upregulation. Taken together, our data indicate that notexin-induced upregulation of Fas and FasL is triggered by p38 MAPK/ATF-2 and JNK/c-Jun signaling pathways in SK-N-SH cells.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | |
Collapse
|
42
|
Zhang L, Ebenezer PJ, Dasuri K, Bruce-Keller AJ, Liu Y, Keller JN. Proteasome inhibition modulates kinase activation in neural cells: relevance to ubiquitination, ribosomes, and survival. J Neurosci Res 2009; 87:3231-8. [PMID: 19565657 DOI: 10.1002/jnr.22147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study we examined whether established signal transduction cascades, p44/42 mitogen-activated protein kinase (ERK1/2) and Jun N-terminal kinases (JNK) pathways, are altered in N2a neural cells in response to proteasome inhibition. Additionally, we sought to elucidate the relative contribution of these signal transduction pathways to the multiple downstream effects of proteasome inhibition. Our data indicate that ERK1/2 and JNK are activated in response to proteasome inhibition. Washout of proteasome inhibitor (MG132) results in an enhancement of ERK1/2 activation and amelioration of JNK activation. Treatment with an established MAPK inhibitor resulted in an increase in proteasome inhibitor toxicity, and incubation with JNK inhibitor was observed to attenuate proteasome inhibitor toxicity significantly. Subsequent studies demonstrated that inhibition of ERK1/2 and JNK activity does not alter the gross increase in ubiquitinated protein following proteasome inhibitor administration. Similarly, ERK1/2 and JNK activity do not appear to play a role in the disruption of polysomes following proteasome inhibitor administration in neural cells. Together these data indicate that ERK1/2 and JNK activation may play differential roles in modulating neurochemical disturbances and neurotoxicity induced by proteasome inhibition.
Collapse
Affiliation(s)
- Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | |
Collapse
|
43
|
Meade AJ, Meloni BP, Cross J, Bakker AJ, Fear MW, Mastaglia FL, Watt PM, Knuckey NW. AP-1 inhibitory peptides are neuroprotective following acute glutamate excitotoxicity in primary cortical neuronal cultures. J Neurochem 2009; 112:258-70. [PMID: 19878434 DOI: 10.1111/j.1471-4159.2009.06459.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuronal cell death caused by glutamate excitotoxicity is prevalent in various neurological disorders and has been associated with the transcriptional activation of activator protein-1 (AP-1). In this study, we tested 19 recently isolated AP-1 inhibitory peptides, fused to the cell penetrating peptide TAT, for their efficacy in preventing cell death in cortical neuronal cultures following glutamate excitotoxicity. Five peptides (PYC19D-TAT, PYC35D-TAT, PYC36D-TAT, PYC38D-TAT, PYC41D-TAT) displayed neuroprotective activity in concentration responses in both l- and retro-inverso d-isoforms with increasing levels of neuroprotection peaking at 83%. Interestingly, the D-TAT peptide displayed a neuroprotective effect increasing neuronal survival to 25%. Using an AP-1 luciferase reporter assay, we confirmed that the AP-1 inhibitory peptides reduce AP-1 transcriptional activation, and that c-Jun and c-Fos mRNA following glutamate exposure is reduced. In addition, following glutamate exposure the AP-1 inhibitory peptides decreased calpain-mediated alpha-fodrin cleavage, but not neuronal calcium influx. Finally, as neuronal death following glutamate excitotoxicity was transcriptionally independent (actinomycin D insensitive), our data indicate that activation of AP-1 proteins can induce cell death via non-transcriptional pathways. Thus, these peptides have potential application as therapeutics directly or for the rational design of small molecule inhibitors in both apoptotic and necrotic neuronal death associated with AP-1 activation.
Collapse
Affiliation(s)
- Amanda J Meade
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia and Australian Neuromuscular Research Institute, QEII Medical Centre, Nedlands, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen KC, Chiou YL, Chang LS. JNK1/c-Jun and p38α MAPK/ATF-2 pathways are responsible for upregulation of Fas/FasL in human chronic myeloid leukemia K562 cells upon exposure to Taiwan cobra phospholipase A2. J Cell Biochem 2009; 108:612-20. [DOI: 10.1002/jcb.22293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Lee SE, Lim JW, Kim H. Activator protein-1 mediates docosahexaenoic acid-induced apoptosis of human gastric cancer cells. Ann N Y Acad Sci 2009; 1171:163-9. [PMID: 19723051 DOI: 10.1111/j.1749-6632.2009.04716.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Docosahexaenoic acid (DHA) shows anti-inflammatory and/or anticancer effects in some cells. Activator protein-1 (AP-1) regulates cellular proliferation and apoptosis. Although recent studies demonstrate the association between gastric cancer risk and DHA, the exact molecular mechanism has not been clarified. We investigated whether AP-1 mediates DHA-induced apoptosis of gastric cancer cells. We found that DHA induced cell death and DNA fragmentation in parallel with the activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) as well as AP-1. DHA increased the protein levels of p53, cytochrome c, and Bax in gastric cancer cells. DHA-induced DNA fragmentation and protein levels of p53, cytochrome c, and Bax were inhibited in the cells transfected with c-jun dominant-negative mutant (TAM67). Because JNK and ERK are upstream signaling for AP-1 activation, we suggest that DHA-induced activation of AP-1 may mediate apoptosis of gastric cancer cells by inducing the expression of apoptotic genes in gastric cancer cells.
Collapse
Affiliation(s)
- Sun En Lee
- Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
46
|
Pérez P, Anaya JM, Aguilera S, Urzúa U, Munroe D, Molina C, Hermoso MA, Cherry JM, Alliende C, Olea N, Ruiz-Narváez E, González MJ. Gene expression and chromosomal location for susceptibility to Sjögren's syndrome. J Autoimmun 2009; 33:99-108. [DOI: 10.1016/j.jaut.2009.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/11/2009] [Accepted: 05/19/2009] [Indexed: 01/18/2023]
|
47
|
Carlisi D, Lauricella M, D'Anneo A, Emanuele S, Angileri L, Di Fazio P, Santulli A, Vento R, Tesoriere G. The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. Eur J Cancer 2009; 45:2425-38. [PMID: 19643600 DOI: 10.1016/j.ejca.2009.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 02/07/2023]
Abstract
This paper shows that the histone deacetylase inhibitor SAHA sensitised at sub-toxic doses human hepatocellular carcinoma cells (HepG2, Hep3B and SK-Hep1) to TRAIL-induced apoptosis, while it was ineffective in primary human hepatocytes (PHHs). In particular in HCC cells SAHA increased the expression of death receptor 5 (DR5) and caused a decrement of c-Flip. These two modifications provoked in the presence of TRAIL the rapid production of TRAIL-DISC and the activation of caspase-8. Consequently SAHA/TRAIL combination induced many apoptotic events, such as a cleavage of Bid into tBid, dissipation of mitochondrial membrane potential, activation of caspase-3 with the consequent cleavage of both NF-kB and Akt. The decrease in NF-kB level seemed to be responsible for the reduction in the content of IAP family antiapoptotic proteins while the decrease in Akt level caused a reduction in phospho-Bad. These events led to the activation of caspase-9, which contributed to the strong apoptotic activity of TRAIL. Sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by SAHA may suggest new strategies for the treatment of liver tumours.
Collapse
Affiliation(s)
- Daniela Carlisi
- Dipartimento di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo 90127, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang HQ, Liu BQ, Gao YY, Meng X, Guan Y, Zhang HY, Du ZX. Inhibition of the JNK signalling pathway enhances proteasome inhibitor-induced apoptosis of kidney cancer cells by suppression of BAG3 expression. Br J Pharmacol 2009; 158:1405-12. [PMID: 19681889 DOI: 10.1111/j.1476-5381.2009.00455.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Proteasome inhibitors represent a novel class of anti-tumour agents that have clinical efficacy against haematological and solid cancers. The anti-apoptotic protein BAG3 is a member of the Bcl-2-associated athanogene family. We have previously shown that BAG3 is up-regulated after exposure to proteasome inhibitors and that inhibition of BAG3 sensitized cells to apoptosis induced by proteasome inhibition. However, the mechanisms by which proteasome inhibition induced BAG3 expression remained unclear and the present experiments were designed to elucidate these mechanisms. EXPERIMENTAL APPROACH Effects of the proteasome inhibitor MG132 on activation of mitogenic signalling pathways were evaluated in kidney cancer cells (A498, Caki1, Caki2), with Western blotting. Specific inhibitors against individual mitogenic signalling pathways, real-time reverse transcription-polymerase chain reaction and luciferase reporter assays were used to investigate the roles of mitogenic signalling pathways in BAG3 induction after proteasome inhibition. Cell death was evaluated using Annexin V/propidium iodide staining and subsequent FACS. KEY RESULTS MG132 activated several key mitogenic signalling pathways including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activities. Induction of BAG3 by MG132 was inhibited by blocking JNK, but not ERK1/2 and p38 MAPK signalling pathways. In addition, SP600125 and dominant-negative JNK1 suppressed BAG3 promoter-driven reporter gene expression. Furthermore, activation of the JNK pathway induced BAG in kidney cancer cells after treatment with MG132. CONCLUSIONS AND IMPLICATIONS Our results suggested that the JNK pathway was associated with the protective response against proteasome inhibition, by mediating induction of BAG3.
Collapse
Affiliation(s)
- Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Loeffler-Ragg J, Mueller D, Gamerith G, Auer T, Skvortsov S, Sarg B, Skvortsova I, Schmitz KJ, Martin HJ, Krugmann J, Alakus H, Maser E, Menzel J, Hilbe W, Lindner H, Schmid KW, Zwierzina H. Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib. Mol Cancer Ther 2009; 8:1995-2006. [DOI: 10.1158/1535-7163.mct-08-0987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Di Fiore R, Santulli A, Ferrante RD, Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere G, Vento R. Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 2009; 219:301-13. [PMID: 19160414 DOI: 10.1002/jcp.21667] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel cancer stem-like cell line (3AB-OS), expressing a number of pluripotent stem cell markers, was irreversibly selected from human osteosarcoma MG-63 cells by long-term treatment (100 days) with 3-aminobenzamide (3AB). 3AB-OS cells are a heterogeneous and stable cell population composed by three types of fibroblastoid cells, spindle-shaped, polygonal-shaped, and rounded-shaped. With respect to MG-63 cells, 3AB-OS cells are extremely smaller, possess a much greater capacity to form spheres, a stronger self-renewal ability and much higher levels of cell cycle markers which account for G1-S/G2-M phases progression. Differently from MG-63 cells, 3AB-OS cells can be reseeded unlimitedly without losing their proliferative potential. They show an ATP-binding cassette transporter ABCG2-dependent phenotype with high drug efflux capacity, and a strong positivity for CD133, marker for pluripotent stem cells, which are almost unmeasurable in MG-63 cells. 3AB-OS cells are much less committed to osteogenic and adipogenic differentiation than MG-63 cells and highly express genes required for maintaining stem cell state (Oct3/4, hTERT, nucleostemin, Nanog) and for inhibiting apoptosis (HIF-1alpha, FLIP-L, Bcl-2, XIAP, IAPs, and survivin). 3AB-OS may be a novel tumor cell line useful for investigating the mechanisms by which stem cells enrichment may be induced in a tumor cell line. The identification of a subpopulation of cancer stem cells that drives tumorigenesis and chemoresistance in osteosarcoma may lead to prognosis and optimal therapy determination. Expression patterns of stem cell markers, especially CD133 and ABCG2, may indicate the undifferentiated state of osteosarcoma tumors, and may correlate with unfavorable prognosis in the clinical setting.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Dipartimento di Scienze Biochimiche, Università degli Studi di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|