1
|
Zhang Y, Jiang Y, Zhu Z, Xu X, Yang H. Polyacrylonitrile microfibers pose a significant threat to the early-stage survival of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106755. [PMID: 37944326 DOI: 10.1016/j.aquatox.2023.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microplastic pollution, especially microfibers (MFs), presents a critical global environmental challenge in natural water bodies. Yet, research on the toxic effects of MFs, particularly during early fish development, is limited. This study aimed to investigate MFs' toxic effects and mechanisms on early-stage zebrafish. Zebrafish embryos were exposed to varying concentrations of polyacrylonitrile microfibers (PanMfs) for 7 days. Results revealed PanMfs adhering to the embryos' surface, with higher concentrations accelerating heart rate and causing pericardial edema in post-hatching larvae. Larvae ingested PanMfs, leading to their accumulation in the intestines and increased levels of reactive oxygen species (ROS) and mitochondrial quantity. Notably, lipid metabolism and calcium ion related signaling pathways underwent significant changes. Low concentration MFs affected glycometabolism pathways, with potential roles for aldob and cacng1a, exhibiting pronounced increases in ROS levels. High concentration of MFs had the most profound impact on signal transduction-related pathways, and possibly triggering micromitophagy and apoptosis in zebrafish intestinal epithelial cells through the Kras/MAPK signaling pathway, with potential roles for kras and mapk9. Although ROS increase was somewhat alleviated, it resulted in decreased survival rates and restricted growth in high concentration of MFs group. These findings highlight the significant threat of MFs to the early survival of fish. MFs pollution prevention and control hold great significance in the conservation of fishery resources.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China.
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
Leucine Reconstitutes Phagocytosis-Induced Cell Death in E. coli-Infected Neonatal Monocytes-Effects on Energy Metabolism and mTOR Signaling. Int J Mol Sci 2021; 22:ijms22084271. [PMID: 33924101 PMCID: PMC8074332 DOI: 10.3390/ijms22084271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
MΦ differentiate from circulating monocytes (Mo). The reduced ability of neonatal Mo to undergo apoptosis after E. coli infection (phagocytosis-induced cell death (PICD)) could contribute to sustained inflammatory processes. The objective of our study was to investigate whether immune metabolism in Mo can be modified to gain access to pro-apoptotic signaling. To this end, we supplemented Mo from neonates and from adults with the branched amino acid leucine. In neonatal Mo, we observed increased energy production via oxidative phosphorylation (Oxphos) after E. coli infection via Seahorse assay. Leucine did not change phagocytic properties. In neonatal Mo, we detected temporal activation of the AKT and mTOR pathways, accompanied with subsequent activation of downstream targets S6 Kinase (S6K) and S6. FACS analyses showed that once mTOR activation was terminated, the level of anti-apoptotic BCL-2 family proteins (BCL-2; BCL-XL) decreased. Release of cytochrome C and cleavage of caspase-3 indicated involvement of the intrinsic apoptotic pathway. Concomitantly, the PICD of neonatal Mo was initiated, as detected by hypodiploid DNA. This process was sensitive to rapamycin and metformin, suggesting a functional link between AKT, mTOR and the control of intrinsic apoptotic signaling. These features were unique to neonatal Mo and could not be observed in adult Mo. Supplementation with leucine therefore could be beneficial to reduce sustained inflammation in septic neonates.
Collapse
|
3
|
Ji Y, Shen J, Li M, Zhu X, Wang Y, Ding J, Jiang S, Chen L, Wei W. RMP/URI inhibits both intrinsic and extrinsic apoptosis through different signaling pathways. Int J Biol Sci 2019; 15:2692-2706. [PMID: 31754340 PMCID: PMC6854365 DOI: 10.7150/ijbs.36829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
The evading apoptosis of tumor cells may result in chemotherapy resistance. Therefore, investigating what molecular events contribute to drug-induced apoptosis, and how tumors evade apoptotic death, provides a paradigm to explain the relationship between cancer genetics and treatment sensitivity. In this study, we focused on the role of RMP/URI both in cisplatin-induced endogenous apoptosis and in TRAIL-induced exogenous apoptosis in HCC cells. Although flow cytometric analysis indicated that RMP overexpression reduced the apoptosis rate of HCC cells treated with both cisplatin and TRAIL, there was a difference in mechanism between the two treatments. Western blot showed that in intrinsic apoptosis induced by cisplatin, the overexpression of RMP promoted the Bcl-xl expression both in vitro and in vivo. Besides, RMP activated NF-κB/p65(rel) through the phosphorylation of ATM. However, in TRAIL-induced extrinsic apoptosis, RMP significantly suppressed the transcription and expression of P53. Moreover, the forced expression of P53 could offset this inhibitory effect. In conclusion, we presumed that RMP inhibited both intrinsic and extrinsic apoptosis through different signaling pathways. NF-κB was distinctively involved in the RMP circumvention of intrinsic apoptosis, but not in the extrinsic apoptosis of HCC cells. RMP might play an important role in defects of apoptosis, hence the chemotherapeutic resistance in hepatocellular carcinoma. These studies are promising to shed light on a more rational approach to clinical anticancer drug design and therapy.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jian Shen
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Li
- Department of Tumor, People Hospital of Maanshan, Maanshan, 243000, China
| | - Xiaoxiao Zhu
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yanyan Wang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiazheng Ding
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Shunyao Jiang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Linqi Chen
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - Wenxiang Wei
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Chi X, Su P, Bi D, Tai Z, Li Y, Pang Y, Li Q. Lamprey immune protein-1 (LIP-1) from Lampetra japonica induces cell cycle arrest and cell death in HeLa cells. FISH & SHELLFISH IMMUNOLOGY 2018; 75:295-300. [PMID: 29410138 DOI: 10.1016/j.fsi.2018.01.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
The lamprey (Lampetra japonica), a representative of the jawless vertebrates, is the oldest extant species in the world. LIP-1, which has a jacalin-like domain and an aerolysin pore-forming domain, has previously been identified in Lampetra japonica. However, the structure and function of the LIP-1 protein have not been described. In this study, the LIP-1 gene was overexpressed in HeLa cells and H293T cells. The results showed that the overexpression of LIP-1 in HeLa cells significantly elevated LDH release (P < 0.05), phosphatidylserine exposure and ROS accumulation. The overexpression of LIP-1 also had remarkable effects on the organelles in HeLa cells, while it had no effect on H293T cell organelles. Array data indicated that overexpression of LIP-1 primarily upregulated P53 signaling pathways in HeLa cells. Cell cycle assay results confirmed that LIP-1 caused arrest in the G2/M phase of the cell cycle in HeLa cells. In summary, our findings provide insights into the function and characterization of LIP-1 genes in vertebrates and establish the foundation for further research into the biological function of LIP-1. Our observations suggest that this lamprey protein has the potential for use in new applications in the medical field.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Dan Bi
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Zhao Tai
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yingying Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
5
|
Grbatinić I, Milošević NT. Incipient UV-Induced Structural Changes in Neutrophil Granulocytes: Morphometric and Texture Analysis of Two-Dimensional Digital Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:387-393. [PMID: 26906218 DOI: 10.1017/s1431927616000532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study is to determine the ability and consequent significance of fractal and lacunarity analysis together with computational morphometric and gray-level co-occurrence matrix (GLCM) analysis in detecting subtle initial UVB-induced chromatin and cytosolic changes in neutrophil granulocytes. In addition, the direction and potential significance of the observed changes is speculated. Feulgen-stained neutrophils are pictured and their digitalized images are analyzed in specialized software for digital image processing and ImageJ analysis. Significant statistical difference is observed (p0.05). For other parameters there was mostly high statistical significance (p>0.05). Significant unmatched correlations were found as sensitive markers of early morphological changes in cells exposed to UV light. In addition, the correlation between nuclear area and entropy was determined and was highly significant (p<0.001). UVB light, due to its high absorbance by DNA molecules, leads to double behavior of the cells. On one hand, cells start to rearrange but on the other UV light starts very early to immediately damage the cell. All these processes are very subtle in their intensity and GLCM analysis and computational imaging methods based on fractal geometry, i.e. fractal and morphometric analysis, in particular their combination, are very sensitive for detecting and describing these early chromatin changes.
Collapse
Affiliation(s)
- Ivan Grbatinić
- 1Laboratory of Digital Image Processing,School of Medicine,University of Belgrade,Visegradka 2, Belgrade,Serbia
| | - Nebojša T Milošević
- 2Department of Biophysics,School of Medicine,University of Belgrade,Visegradka 2, Belgrade,Serbia
| |
Collapse
|
6
|
Gu X, Ali T, Chen R, Hu G, Zhuang Y, Luo J, Cao H, Han B. In vivo studies of molybdenum-induced apoptosis in kidney cells of caprine. Biol Trace Elem Res 2015; 165:51-8. [PMID: 25627418 DOI: 10.1007/s12011-015-0238-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
Molybdenum (Mo) is an essential microelement for the health of animals and human beings, and high dietary intake of Mo can lead to pathological conditions. However, the cytotoxic effects of high levels of Mo on the renal cells in ruminants have not been reported. Therefore, this in vivo study in goats was designed to investigate the impact of Mo on kidney-related apoptosis genes, and histopathological and ultrastructural changes in renal cells using real-time quantitative polymerase chain reaction (RT-qPCR), light microscopy, and transmission electron microscopy. A total of 48 goats were randomly distributed in equal number into four groups and assigned with one of three oral treatments of ammonium molybdate (15, 30, and 45 mg Mo kg(-1) BW), while control group received no Mo. Kidney tissues were taken from individual goat at days 0, 25, and 50 for determining expression of apoptosis genes including Bax, Bcl-2, Cyt c, caspase-3, and Smac. The results revealed that the expression of Bax, Smac, Cyt c, and caspase-3 was significantly (P < 0.05 or P < 0.01) upregulated in renal cells, whereas Bcl-2 was downregulated (P < 0.01). Histopathological lesions showed degeneration of renal tubule, glomerular atrophy, and dilation of Bowman's capsule. In addition, ultrastructural injury that predicted varying degrees of vacuolization, irregularity, fission of the nucleus, and swelling of mitochondria was observed in the cytoplasma of cells in groups treated with 30 and 45 mg Mo kg(-1). This concluded that high levels of molybdenum, which induces apoptosis of caprine renal cells, might be involved in the mitochondrial intrinsic pathway.
Collapse
Affiliation(s)
- Xiaolong Gu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
SHH, WNT, and NOTCH pathways in medulloblastoma: when cancer stem cells maintain self-renewal and differentiation properties. Childs Nerv Syst 2014; 30:1165-72. [PMID: 24695855 DOI: 10.1007/s00381-014-2403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Infant medulloblastoma (MB) is a malignant neuroepithelial embryonal tumor of the cerebellum, believed to derive from precursor granule cells with stem or progenitor cells appearance, and caused by a change in expression profile of genes related to the development. This work aims to study the expression profile of these genes in MB tumors, correlating with clinicopathological characteristics. METHODS We quantified, by qPCR in 40 MB tumor samples, the expression of genes in HH (PTCH1, PTCH2, and GLI1), WNT (APC, CTNNB1, WIF1, and DKK2), and NOTCH pathways (NOTCH2 and HES1), which have a crucial role in development, and genes as MYCC, MYCN, and TERT, correlating this findings to patient's clinicopathological characteristics. RESULTS Considering the universal RNA as our control sample, and considering the median of gene expression in the control samples as our cutoff, we observed that HES1 gene showed decreased expression compared to control (p = 0.0059), but patients with HES1 overexpression were directly related to a shorter survival (p = 0.0165). Individuals with higher GLI1 gene expression had significant shorter survival (p = 0.0469), and high expression was prevalent in patients up to 5 years old (p = 0.0479). Patients showing high PTCH2 expression were related to worse survival (p = 0.0426), and it was correlated with GLI1 high expression (p = 0.0094). We also observed a concomitant overexpression of WIF1 and DKK2 genes in a subgroup of MB samples (n = 11, p = 0.0118). CONCLUSIONS Our results suggest the presence of activated developmental signaling pathways in MB, which are important for cell proliferation and maintenance, and that may be targeted for novel therapeutic options.
Collapse
|
8
|
Ferrarezi MC, Curci VCLM, Cardoso TC. Cellular vacuolation and mitochondrial-associated factors induced by Clostridium perfringens epsilon toxin detected using acoustic flow cytometry. Anaerobe 2013; 24:55-9. [PMID: 24076036 DOI: 10.1016/j.anaerobe.2013.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/31/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
Abstract
Epsilon toxin (ETX) produced by Clostridium perfringens types B and D is a potent toxin that is responsible for fatal enterotoxaemia. In vitro, ETX, which is considered as a pore-forming toxin, forms a heptamer in Madin-Darby canine kidney (MDCK) cell membranes, which is considered to be a pre-pore stage. After binding of the ETX, vacuoles inside cell cytoplasm are produced. ETX causes decreased levels of essential coenzymes required for host cell energy. Here, we optimized and applied acoustic flow cytometry analysis in order to gain further insight into ETX-pathogenesis. Using acoustic flow cytometer analysis, which considered highly sensitive, ETX-exposed MDCK cells revealed mitochondrial membrane decreases followed by 25.48% and 45.45% of the exposed cells expressing the Bax and BCL-2 proteins at a pre-pore stage, respectively. These results together with high cytotoxicity and visualization of cell vacuoles, demonstrates that acoustic flow cytometry analysis potentially represents an effective tool to study ETX pathogenesis.
Collapse
Affiliation(s)
- Marina C Ferrarezi
- University of São Paulo State, Departamento de Apoio, Produção e Saúde Animal, Rua Clóvis Pestana, 793, Araçatuba 16050-680, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI, Mihalik R. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One 2012; 7:e41945. [PMID: 22860037 PMCID: PMC3409216 DOI: 10.1371/journal.pone.0041945] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/27/2012] [Indexed: 11/25/2022] Open
Abstract
For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.
Collapse
Affiliation(s)
- Zsuzsanna A Dunai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
10
|
Pantic I, Harhaji-Trajkovic L, Pantovic A, Milosevic NT, Trajkovic V. Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis. J Theor Biol 2012; 303:87-92. [PMID: 22763132 DOI: 10.1016/j.jtbi.2012.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 12/30/2022]
Abstract
The aim of our study was to employ fractal analysis for evaluation of ultrastructural changes during early stages of apoptosis. Apoptosis was induced in U251 human glioma cell line by exposure to UVB light. The cells were visualized by optical phase-contrast microscopy and photographed before the UV treatment, immediately after the treatment, as well as at 30 min intervals during 5h observation period. For each of the 32 cells analyzed, cellular and nuclear fractal dimension, as well as nuclear lacunarity, were determined at each time point. Our data demonstrate that cellular ultrastructural complexity determined by fractal dimension and lacunarity significantly decreases after the UV irradiation, with the nuclear lacunarity being a particularly sensitive parameter in detecting early apoptosis. Importantly, fractal analysis was able to detect cellular apoptotic changes earlier than conventional flow cytometric analysis of phosphatidylserine exposure, DNA fragmentation and cell membrane permeabilization. These results indicate that fractal analysis might be a powerful and affordable method for non-invasive early identification of apoptosis in cell cultures.
Collapse
Affiliation(s)
- Igor Pantic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
11
|
Lohmann C, Muschaweckh A, Kirschnek S, Jennen L, Wagner H, Häcker G. Induction of Tumor Cell Apoptosis or Necrosis by Conditional Expression of Cell Death Proteins: Analysis of Cell Death Pathways and In Vitro Immune Stimulatory Potential. THE JOURNAL OF IMMUNOLOGY 2009; 182:4538-46. [DOI: 10.4049/jimmunol.0803989] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Shi J, Shen HM. Critical role of Bid and Bax in indirubin-3′-monoxime-induced apoptosis in human cancer cells. Biochem Pharmacol 2008; 75:1729-42. [DOI: 10.1016/j.bcp.2008.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/17/2008] [Accepted: 01/24/2008] [Indexed: 11/25/2022]
|