1
|
Barrau C, Marie M, Ehrismann C, Gondouin P, Sahel JA, Villette T, Picaud S. Prevention of Sunlight-Induced Cell Damage by Selective Blue-Violet-Light-Filtering Lenses in A2E-Loaded Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1195. [PMID: 39456449 PMCID: PMC11504362 DOI: 10.3390/antiox13101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Blue light accelerates retinal aging. Previous studies have indicated that wavelengths between 400 and 455 nm are most harmful to aging retinal pigment epithelia (RPE). This study explored whether filtering these wavelengths can protect cells exposed to broad sunlight. Primary porcine RPE cells loaded with 20 µM A2E were exposed to emulated sunlight filtered through eye media at 1.8 mW/cm2 for 18 h. Filters selectively filtering out light over 400-455 nm and a dark-yellow filter were interposed. Cell damage was measured by apoptosis, hydrogen peroxide (H2O2) production, and mitochondrial membrane potential (MMP). Sunlight exposure increased apoptosis by 2.7-fold and H2O2 by 4.8-fold, and halved MMP compared to darkness. Eye Protect SystemTM (EPS) technology, filtering out 25% of wavelengths over 400-455 nm, reduced apoptosis by 44% and H2O2 by 29%. The Multilayer Optical Film (MOF), at 80% of light filtered, reduced apoptosis by 91% and H2O2 by 69%, and increased MMP by 73%, overpassing the dark-yellow filter. Photoprotection increased almost linearly with blue-violet light filtering (400-455 nm) but not with total blue filtering (400-500 nm). Selective filters filtering out 25% (EPS) to 80% (MOF) of blue-violet light offer substantial protection without affecting perception or non-visual functions, making them promising for preventing light-induced retinal damage with aesthetic acceptance for permanent wear.
Collapse
Affiliation(s)
- Coralie Barrau
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Mélanie Marie
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - Camille Ehrismann
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Pauline Gondouin
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, French National Institute of Health and Medical Research (INSERM)-DGOS Clinical Investigation Center 1423, 28 Rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine and Medical Center, Pittsburgh, PA 15213, USA
| | - Thierry Villette
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Serge Picaud
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| |
Collapse
|
2
|
Tsou SC, Chuang CJ, Hsu CL, Chen TC, Yeh JH, Wang M, Wang I, Chang YY, Lin HW. The Novel Application of EUK-134 in Retinal Degeneration: Preventing Mitochondrial Oxidative Stress-Triggered Retinal Pigment Epithelial Cell Apoptosis by Suppressing MAPK/p53 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39268877 DOI: 10.1002/tox.24416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by mitochondrial dysfunction of retinal pigment epithelium (RPE) cells. EUK-134 is a mimetic of SOD2 and catalase, widely used for its antioxidant properties in models of light-induced damage or oxidative stress. However, its effects on the retina are not yet clear. Here, we investigated the capability of EUK-134 in averting AMD using sodium iodate (NaIO3)-induced Balb/c mouse and ARPE-19 cells (adult RPE cell line). In vivo, EUK-134 effectively antagonized NaIO3-induced retinal deformation and prevented outer and inner nuclear layer thinning. In addition, it was found that the EUK-134-treated group significantly down-regulated the expression of cleaved caspase-3 compared with the group treated with NaIO3 alone. Our results found that EUK-134 notably improved cell viability by preventing mitochondrial ROS accumulation-induced membrane potential depolarization-mediated apoptosis in NaIO3-inducted ARPE-19 cells. Furthermore, we found that EUK-134 could inhibit p-ERK, p-p38, p-JNK, p-p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP by increasing Bcl-2 protein expression. Additionally, we employed MAPK pathway inhibitors by SB203580 (a p38 inhibitor), U0126 (an ERK inhibitor), and SP600125 (a JNK inhibitor) to corroborate the aforementioned observation. The results support that EUK-134 may effectively prevent mitochondrial oxidative stress-mediated retinal apoptosis in NaIO3-induced retinopathy.
Collapse
Affiliation(s)
- Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Ju Chuang
- Emergency Department, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Fietz A, Corsi F, Hurst J, Schnichels S. Blue Light Damage and p53: Unravelling the Role of p53 in Oxidative-Stress-Induced Retinal Apoptosis. Antioxidants (Basel) 2023; 12:2072. [PMID: 38136192 PMCID: PMC10740515 DOI: 10.3390/antiox12122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In the digital age, the widespread presence of electronic devices has exposed humans to an exceptional amount of blue light (BL) emitted from screens, LEDs, and other sources. Studies have shown that prolonged exposure to BL could have harmful effects on the visual system and circadian rhythm regulation. BL is known to induce oxidative stress, leading to DNA damage. Emerging research indicates that BL may also induce cell death pathways that involve the tumor-suppressor protein p53. Activated p53 acts as a transcription factor to regulate the expression of genes involved in cell cycle arrest, DNA repair, and apoptosis. This study aimed to explore the implication of p53 in BL-caused retinal damage, shedding light on the potential mechanisms of oxidative-stress-induced retinal diseases. BL-exposed porcine retinal cultures demonstrated increased p53- and caspase-mediated apoptosis, depending on exposure duration. Direct inhibition of p53 via pifithrin α resulted in the prevention of retinal cell death. These findings raise concerns about the long-term consequences of the current daily BL exposure and its potential involvement in various pathological conditions, including oxidative-stress-based retinal diseases like age-related macular degeneration. In addition, this study paves the way for the development of novel therapeutic approaches for oxidative-stress-based retinal diseases.
Collapse
Affiliation(s)
- Agnes Fietz
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| | - Francesca Corsi
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - José Hurst
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| | - Sven Schnichels
- Center for Ophthalmology Tübingen, University Eye Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (F.C.); (S.S.)
| |
Collapse
|
4
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
5
|
Singh S, Singh TG. Imatinib Attenuates Pentylenetetrazole Kindled and Pilocarpine Induced Recurrent Spontaneous Seizures in Mice. Neurochem Res 2023; 48:418-434. [PMID: 36239857 DOI: 10.1007/s11064-022-03758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
c-Abl is a non-receptor tyrosine kinase that promotes intracellular apoptotic signaling in prolonged epileptic seizures. PTZ and pilocarpine-induced continuous epileptic convulsions cause neuronal death and gliosis. C-Abl is linked to oxidative stress, neuronal hyperexcitability, mitochondrial malfunction, and subsequent seizures. We investigated the involvement of c-Abl in epileptogenesis by employing its selective inhibitor Imatinib (1 & 3 mg/kg; i.p.) together with conventional medication valproate (110 mg/kg; i.p.) tends to be effective in decreasing seizures threshold provoked by PTZ for 15 days and pilocarpine for 37 days. Further, Imatinib was effective in preventing epileptic seizures arbitrated oxidative stress injury. Oxidative stress has been linked to excitotoxicity that is considered to pathogenic factor in epileptic brain damage. As ELIZA and biochemical estimations showed the high level of c-Abl as an indicator of neuronal oxidative and apoptosis under chronic PTZ & pilocarpine epileptic seizures marked by decreased antioxidants and elevated levels of caspase-3 that were successfully prevented with Imatinib treatment same as valproate (standard drug). Further, the aberrant c-Abl activation is also linked with neuroinflammation that is also predisposing factor in the development of seizures. Selective inhibition of c-Abl by Imatinib also showed anti-inflammatory activity marked with suppressed levels of NF-kB and pro-inflammatory mediators (TNF-alpha, IL-1β, and IL-6) suggesting the neuroprotective effect of Imatinib same as valproate (standard drug) in epilepsy. Therefore, the current study provides preclinical evidence of Imatinib as a potential treatment for seizures, as well as an understanding of potential role of c-Ablin epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
6
|
Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer's and Parkinson's disease compared to age-related macular degeneration. Front Neurosci 2022; 16:1029473. [PMID: 36620455 PMCID: PMC9811148 DOI: 10.3389/fnins.2022.1029473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The protein p53 is the main human tumor suppressor. Since its discovery, extensive research has been conducted, which led to the general assumption that the purview of p53 is also essential for additional functions, apart from the prevention of carcinogenesis. In response to cellular stress and DNA damages, p53 constitutes the key point for the induction of various regulatory processes, determining whether the cell induces cell cycle arrest and DNA repair mechanisms or otherwise cell death. As an implication, aberrations from its normal functioning can lead to pathogeneses. To this day, neurodegenerative diseases are considered difficult to treat, which arises from the fact that in general the underlying pathological mechanisms are not well understood. Current research on brain and retina-related neurodegenerative disorders suggests that p53 plays an essential role in the progression of these conditions as well. In this review, we therefore compare the role and similarities of the tumor suppressor protein p53 in the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD), two of the most prevalent neurological diseases, to the age-related macular degeneration (AMD) which is among the most common forms of retinal degeneration.
Collapse
|
7
|
Terao R, Ahmed T, Suzumura A, Terasaki H. Oxidative Stress-Induced Cellular Senescence in Aging Retina and Age-Related Macular Degeneration. Antioxidants (Basel) 2022; 11:2189. [PMID: 36358561 PMCID: PMC9686487 DOI: 10.3390/antiox11112189] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Aging leads to a gradual decline of function in multiple organs. Cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) are age-related ocular diseases. Because their pathogenesis is unclear, it is challenging to combat age-related diseases. Cellular senescence is a cellular response characterized by cell cycle arrest. Cellular senescence is an important contributor to aging and age-related diseases through the alteration of cellular function and the secretion of senescence-associated secretory phenotypes. As a driver of stress-induced premature senescence, oxidative stress triggers cellular senescence and age-related diseases by inducing senescence markers via reactive oxygen species and mitochondrial dysfunction. In this review, we focused on the mechanism of oxidative stress-induced senescence in retinal cells and its role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroko Terasaki
- Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Lu Y, Qi H. Evaluate the Protective Effect of Antioxidants on Retinal Pigment Cell Hazard Induced by Blue Light: A Mini-Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2098317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yujing Lu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
9
|
Feng JH, Dong XW, Yu HL, Shen W, Lv XY, Wang R, Cheng XX, Xiong F, Hu XL, Wang H. Cynaroside protects the blue light-induced retinal degeneration through alleviating apoptosis and inducing autophagy in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153604. [PMID: 34130054 DOI: 10.1016/j.phymed.2021.153604] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 05/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Blue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear. PURPOSE This study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo. STUDY DESIGN/METHODS Blue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn. RESULTS Cyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 μg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo. CONCLUSION Cyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiao-Wei Dong
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Hao-Li Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Wei Shen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue-Xiang Cheng
- Hubei Fenghuang Baiyunshan Pharmaceutical Co., Ltd, Macheng 438300, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
10
|
Donato L, D’Angelo R, Alibrandi S, Rinaldi C, Sidoti A, Scimone C. Effects of A2E-Induced Oxidative Stress on Retinal Epithelial Cells: New Insights on Differential Gene Response and Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E307. [PMID: 32290199 PMCID: PMC7222197 DOI: 10.3390/antiox9040307] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress represents one of the principal inductors of lifestyle-related and genetic diseases. Among them, inherited retinal dystrophies, such as age-related macular degeneration and retinitis pigmentosa, are well known to be susceptible to oxidative stress. To better understand how high reactive oxygen species levels may be involved in retinal dystrophies onset and progression, we performed a whole RNA-Seq experiment. It consisted of a comparison of transcriptomes' profiles among human retinal pigment epithelium cells exposed to the oxidant agent N-retinylidene-N-retinylethanolamine (A2E), considering two time points (3h and 6h) after the basal one. The treatment with A2E determined relevant differences in gene expression and splicing events, involving several new pathways probably related to retinal degeneration. We found 10 different clusters of pathways involving differentially expressed and differentially alternative spliced genes and highlighted the sub- pathways which could depict a more detailed scenario determined by the oxidative-stress-induced condition. In particular, regulation and/or alterations of angiogenesis, extracellular matrix integrity, isoprenoid-mediated reactions, physiological or pathological autophagy, cell-death induction and retinal cell rescue represented the most dysregulated pathways. Our results could represent an important step towards discovery of unclear molecular mechanisms linking oxidative stress and etiopathogenesis of retinal dystrophies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
11
|
Park JW, Sung MS, Ha JY, Guo Y, Piao H, Heo H, Park SW. Neuroprotective Effect of Brazilian Green Propolis on Retinal Ganglion Cells in Ischemic Mouse Retina. Curr Eye Res 2019; 45:955-964. [PMID: 31842625 DOI: 10.1080/02713683.2019.1705493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The current study was undertaken to investigate whether Brazilian green propolis (BGP) can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and examined the possible mechanisms underlying this neuroprotection. MATERIALS AND METHODS C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to establish retinal ischemia-reperfusion injury. Mice then received saline or BGP (200 mg/kg) intraperitoneally once daily until sacrifice. The expression of hypoxia-inducing factor (HIF)-1α and glial fibrillary acidic protein (GFAP) and the level of histone acetylation were assessed at 1, 3, and 7 days after injury. The expression of Bax, Bcl-2, p53, NF-κB, Nrf2, and HO-1 were also analyzed at 3 days after injury. The neuroprotective effect of BGP treatment on RGC survival was evaluated using Brn3a immunohistochemical staining. RESULTS The expression of HIF-1α and GFAP was increased and the level of histone acetylation decreased in saline-treated ischemic retinas within 7 days. BGP treatment effectively attenuated the elevated expression of HIF-1α, GFAP, Bax, NF-κB and p53. The expression of Bcl-2, Nrf2, HO-1 and the level of histone acetylation increased by BGP treatment, resulting in a significant difference between BGP-treated and saline-treated retinas. Immunohistochemical staining for Brn3a also revealed that BGP treatment protected against RGC loss in ischemic retina. CONCLUSIONS Our results suggest that BGP has a neuroprotective effect on RGCs through the upregulation of histone acetylation, downregulation of apoptotic stimuli, and suppression of NF-κB mediated inflammatory pathway in ischemic retina. These findings suggest that BGP is a potential neuroprotective agent against RGC loss under oxidative stress.
Collapse
Affiliation(s)
| | - Mi Sun Sung
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Jun Young Ha
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Yue Guo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Helong Piao
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Hwan Heo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Sang Woo Park
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| |
Collapse
|
12
|
Marie M, Gondouin P, Pagan D, Barrau C, Villette T, Sahel J, Picaud S. Blue-violet light decreases VEGFa production in an in vitro model of AMD. PLoS One 2019; 14:e0223839. [PMID: 31644596 PMCID: PMC6808507 DOI: 10.1371/journal.pone.0223839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Blue light is an identified risk factor for age-related macular degeneration (AMD). The production of vascular endothelial growth factor (VEGF), leading to neovascularization, is a major complication of the wet form of this disease. We investigated how blue light affects VEGF expression and secretion using A2E-loaded retinal pigment epithelium (RPE) cells, a cell model of AMD. Incubation of RPE cells with A2E resulted in a significant increase in VEGF mRNA and, intracellular and secreted VEGF protein levels, but not mRNA levels of VEGFR1 or VEGFR2. Blue light exposure of A2E-loaded RPE cells resulted in a decrease in VEGF mRNA and protein levels, but an increase in VEGFR1 levels. The toxicity of 440 nm light on A2E-loaded RPE cells was enhanced by VEGF supplementation. Our results suggest that age-related A2E accumulation may result in VEGF synthesis and release. This synthesis of VEGF, which enhances blue light toxicity for the RPE cells, is itself suppressed by blue light. Anti-VEGF therapy may therefore improve RPE survival in AMD.
Collapse
Affiliation(s)
- Mélanie Marie
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Pauline Gondouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Pagan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - José Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
13
|
Cheng Z, Yao W, Zheng J, Ding W, Wang Y, Zhang T, Zhu L, Zhou F. A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res 2018; 180:92-101. [PMID: 30578788 DOI: 10.1016/j.exer.2018.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
The Retinal Pigment Epithelium (RPE) is a monolayer of cells located above the choroid. It mediates human visual cycle and nourishes photoreceptors. Hypoxia-induced oxidative stress to RPE is a vital cause of retinal degeneration such as the Age-related Macular Degeneration. Most of these retinal diseases are irreversible with no efficient treatment, therefore protecting RPE cells from hypoxia stress is an important way to prevent or slow down the progression of retinal degeneration. Betulinic acid (BA) and betulin (BE) are pentacyclic triterpenoids with anti-oxidative property, but little is known about their effect on RPE cells. We investigated the protective effect of BA, BE and their derivatives against cobalt chloride-induced hypoxia stress in RPE cells. Human ARPE-19 cells were exposed to BA, BE and their eighteen derivatives (named as H3H20) that we customized through replacing moieties at C3 and C28 positions. We found that cobalt chloride reduced cell viability, increased Reactive Oxygen Species (ROS) production as well as induced apoptosis and necrosis in ARPE-19 cells. Interestingly, the pretreatment of 3-O-acetyl-glycyl- 28-O-glycyl-betulinic acid effectively protected cells from acute hypoxia stress induced by cobalt chloride. Our immunoblotting results suggested that this derivative attenuated the cobalt chloride-induced activation of Akt, Erk and JNK pathways. All findings were further validated in human primary RPE cells. In summary, this BA derivate has protective effect against the acute hypoxic stress in human RPE cells and may be developed into a candidate agent effective in the prevention of prevalent retinal diseases.
Collapse
Affiliation(s)
- Zhengqi Cheng
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zheng
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Weimin Ding
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, China
| | - Yang Wang
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
14
|
Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis 2018; 9:287. [PMID: 29459695 PMCID: PMC5833722 DOI: 10.1038/s41419-018-0331-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/23/2022]
Abstract
Aims Blue light is an identified risk factor for age-related macular degeneration (AMD). We investigated oxidative stress markers and mitochondrial changes in A2E-loaded retinal pigment epithelium cells under the blue–green part of the solar spectrum that reaches the retina to better understand the mechanisms underlying light-elicited toxicity. Results Primary retinal pigment epithelium cells were loaded with a retinal photosensitizer, AE2, to mimic aging. Using a custom-made illumination device that delivers 10 nm-wide light bands, we demonstrated that A2E-loaded RPE cells generated high levels of both hydrogen peroxide (H2O2) and superoxide anion (O2•−) when exposed to blue–violet light. In addition, they exhibited perinuclear clustering of mitochondria with a decrease of both their mitochondrial membrane potential and their respiratory activities. The increase of oxidative stress resulted in increased levels of the oxidized form of glutathione and decreased superoxide dismutase (SOD) and catalase activities. Furthermore, mRNA expression levels of the main antioxidant enzymes (SOD2, catalase, and GPX1) also decreased. Conclusions Using an innovative illumination device, we measured the precise action spectrum of the oxidative stress mechanisms on A2E-loaded retinal pigment epithelium cells. We defined 415–455 nm blue–violet light, within the solar spectrum reaching the retina, to be the spectral band that generates the highest amount of reactive oxygen species and produces the highest level of mitochondrial dysfunction, explaining its toxic effect. This study further highlights the need to filter these wavelengths from the eyes of AMD patients.
Collapse
|
15
|
Kim BJ, Zack DJ. The Role of c-Jun N-Terminal Kinase (JNK) in Retinal Degeneration and Vision Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:351-357. [PMID: 29721963 DOI: 10.1007/978-3-319-75402-4_43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen-activated protein (MAP) kinase family, has been shown to modulate a variety of biological processes associated with neurodegenerative pathology of the retina. In particular, various retinal cell culture and animal models related to glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK signaling may contribute to disease pathogenesis. This mini-review discusses the impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells (RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal studies, with particular attention to modulation of JNK signaling as a potential therapeutic target for the treatment of retinal disease.
Collapse
Affiliation(s)
- Byung-Jin Kim
- The Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- The Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Kim J, Jin HL, Jang DS, Jeong KW, Choung SY. Hyperoside (quercetin-3-O-β-D-galactopyranoside) protects A2E-laden retinal pigmented epithelium cells against UVA and blue light-induced apoptosis in vitro and in vivo. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Zhu X, Wang K, Yao Y, Zhang K, Zhou F, Zhu L. Triggering p53 activation is essential in ziyuglycoside I-induced human retinoblastoma WERI-Rb-1 cell apoptosis. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Yong Yao
- Department of Ophthalmology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi 214023 Jiangsu Province People's Republic of China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 Jiangsu Province People's Republic of China
| | - Fanfan Zhou
- Faculty of Pharmacy; University of Sydney; Sydney NSW 2006 Australia
| | - Ling Zhu
- Save Sight Institute; University of Sydney; Sydney NSW 2000 Australia
| |
Collapse
|
18
|
Balmer D, Bapst-Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet CG, Roduit R. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci 2017; 9:43. [PMID: 28298893 PMCID: PMC5331064 DOI: 10.3389/fnagi.2017.00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases' (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65 kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD.
Collapse
Affiliation(s)
| | | | - Aswin Pyakurel
- Institute for Research in OphthalmologySion, Switzerland; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des AveuglesLausanne, Switzerland
| | - Martine Emery
- Institute for Research in Ophthalmology Sion, Switzerland
| | | | | | - Raphael Roduit
- Institute for Research in OphthalmologySion, Switzerland; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des AveuglesLausanne, Switzerland
| |
Collapse
|
19
|
Lin CH, Wu MR, Li CH, Cheng HW, Huang SH, Tsai CH, Lin FL, Ho JD, Kang JJ, Hsiao G, Cheng YW. Editor's Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis. Toxicol Sci 2017; 157:196-210. [DOI: 10.1093/toxsci/kfx030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
20
|
Park SI, Lee EH, Kim SR, Jang YP. Anti-apoptotic effects of Curcuma longa L. extract and its curcuminoids against blue light-induced cytotoxicity in A2E-laden human retinal pigment epithelial cells. J Pharm Pharmacol 2017; 69:334-340. [PMID: 28155996 DOI: 10.1111/jphp.12691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of the study was to investigate the protective effect of the Curcuma longa L. extract (CLE) and its curcuminoids against blue light-induced cytotoxicity in human retinal pigment epithelial (RPE) cells laded with A2E. A2E has been concerned in age-related macular degeneration (AMD). METHODS To perform this study, A2E-accumulated ARPE-19 cells were exposed to blue light to induce cytotoxicity. The cytotoxicity and apoptotic gene expression levels were evaluated using a lactate dehydrogenase (LDH) assay and real-time PCR analysis, respectively. KEY FINDINGS Curcuma longa L. extract was found to exert a protective effect in a dose-dependent manner. At a concentration of 15 μm, curcumin, demethoxycurcumin and bisdemethoxycurcumin exerted significant protective effects against blue light-induced cytotoxicity. Treatment with CLE and curcuminoids meaningfully reduced the mRNA levels of c-Abl and p53, which was known to be augmented in apoptotic RPE cells. Demethoxycurcumin and bisdemethoxycurcumin were found to inhibit p38 expression, which is increased in blue light-irradiated A2E-accumulated RPE cells. CONCLUSIONS Curcuma longa L. extract and its curcuminoids provided significant protection against photooxidative damage and apoptosis in the RPE cells. Our results suggest that curcuminoids may show potential in the treatment of AMD.
Collapse
Affiliation(s)
- Sang-Il Park
- Department of Life and Nanopharmaceutical Sciences, Graduated School, Kyung Hee University, Seoul, Korea
| | - Eun Hye Lee
- Department of Life and Nanopharmaceutical Sciences, Graduated School, Kyung Hee University, Seoul, Korea
| | - So Ra Kim
- Department of Optometry, Seoul National University of Science and Technology, Seoul, Korea
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduated School, Kyung Hee University, Seoul, Korea.,Department of Oriental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
21
|
Kang JH, Choung SY. Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res 2016; 39:1703-1715. [PMID: 27659166 DOI: 10.1007/s12272-016-0839-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 09/11/2016] [Indexed: 12/13/2022]
Abstract
Damage of retinal pigment epithelial (RPE) cells by A2E may be critical for age-related macular degeneration (AMD) management. Accumulation and photooxidation of A2E are known to be one of the critical causes in AMD. Here, we evaluated the protective effect of resveratrol (RES), piceatannol (PIC) and RES glycones on blue-light-induced RPE cell death caused by A2E photooxidation. A2E treatment followed by blue light exposure caused significant damages on human RPE cells (ARPE-19). But the damages were attenuated by post- and pre-treatment of RES and PIC in our in vitro models. The results of cell free system and FAB-MS analysis clearly showed that the reduction of A2E by blue light exposure was significantly rescued, and that oxidized forms of A2E were significantly reduced by RES or PIC treatment. Besides, RES or PIC inhibited the intracellular accumulation of A2E. Not only RES and PIC but RES glycones showed protection of ARPE-19 cells against A2E and blue-light-induced photo-damage. These findings demonstrate that RES and its analogs may have protective effects against A2E and blue-light-induced ARPE-19 cell death through regulation of A2E accumulation as well as photooxidation of A2E. Thus RES and its analogs may be beneficial for AMD treatment.
Collapse
Affiliation(s)
- Jung-Hwan Kang
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea. .,Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
22
|
Preventive effect of Vaccinium uliginosum L. extract and its fractions on age-related macular degeneration and its action mechanisms. Arch Pharm Res 2015; 39:21-32. [PMID: 26589689 DOI: 10.1007/s12272-015-0683-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among the elderly. Although the pathogenesis of this disease remains still obscure, several researchers have report that death of retinal pigmented epithelium (RPE) caused by excessive accumulation of A2E is crucial determinants of AMD. In this study, the preventive effect of Vaccinium uliginosum L. (V.U) extract and its fractions on AMD was investigated in blue light-irradiated human RPE cell (ARPE-19 cells). Blue light-induced RPE cell death was significantly inhibited by the treatment of V.U extract or its fraction. To identify the mechanism, FAB-MS analysis revealed that V.U inhibits the photooxidation of N-retinyl-N-retinylidene ethanolamine (A2E) induced by blue light in cell free system. Moreover, monitoring by quantitative HPLC also revealed that V.U extract and its fractions reduced intracellular accumulation of A2E, suggesting that V.U extract and its fractions inhibit not only blue light-induced photooxidation, but also intracellular accumulation of A2E, resulting in RPE cell survival after blue light exposure. A2E-laden cell exposed to blue light induced apoptosis by increasing the cleaved form of caspase-3, Bax/Bcl-2. Additionally, V.U inhibited by the treatment of V.U extract or quercetin-3-O-arabinofuranoside. These results suggest that V.U extract and its fractions have preventive effect on blue light-induced damage in RPE cells and AMD.
Collapse
|
23
|
Kim DI, Park MJ, Lim SK, Choi JH, Kim JC, Han HJ, Kundu TK, Park JI, Yoon KC, Park SW, Park JS, Heo YR, Park SH. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: Role in diabetic retinopathy. Arch Biochem Biophys 2014; 560:36-43. [DOI: 10.1016/j.abb.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023]
|
24
|
Zareba M, Skumatz CMB, Sarna TJ, Burke JM. Photic injury to cultured RPE varies among individual cells in proportion to their endogenous lipofuscin content as modulated by their melanosome content. Invest Ophthalmol Vis Sci 2014; 55:4982-90. [PMID: 25034597 DOI: 10.1167/iovs.14-14310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We determined whether photic stress differentially impairs organelle motility of RPE lipofuscin and melanin granules, whether lethal photic stress kills cells in proportion to lipofuscin abundance, and whether killing is modulated by melanosome content. METHODS Motility of endogenous lipofuscin and melanosome granules within the same human RPE cells in primary culture was quantified by real-time imaging during sublethal blue light irradiation. Cell death during lethal irradiation was quantified by dynamic imaging of the onset of nuclear propidium iodide fluorescence. Analyzed were individual cells containing different amounts of autofluorescent lipofuscin, or similar amounts of lipofuscin and a varying content of phagocytized porcine melanosomes, or phagocytized black latex beads (control for light absorbance). RESULTS Lipofuscin granules and melanosomes showed motility slowing with mild irradiation, but slowing was greater for lipofuscin. On lethal irradiation, cell death was earlier in cells with higher lipofuscin content, but delayed by the copresence of melanosomes. Delayed death did not occur with black beads, suggesting that melanosome protection was due to properties of the biological granule, not simple screening. CONCLUSIONS Greater organelle motility slowing of the more photoreactive lipofuscin granule compared to melanosomes suggests that lipofuscin mediates mild photic injury within RPE cells. With lethal light stress endogenous lipofuscin mediates killing, but the effect is cell autonomous and modulated by coincident melanosome content. Developing methods to quantify the frequency of individual cells with combined high lipofuscin and low melanosome content may have value for predicting the photic stress susceptibility of the RPE monolayer in situ.
Collapse
Affiliation(s)
- Mariusz Zareba
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
25
|
Yang J, Li Y, Chan L, Tsai YT, Wu WH, Nguyen HV, Hsu CW, Li X, Brown LM, Egli D, Sparrow JR, Tsang SH. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet 2014; 23:3445-55. [PMID: 24497574 DOI: 10.1093/hmg/ddu053] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the past decade has seen great progress in mapping loci for common diseases, studying how these risk alleles lead to pathology remains a challenge. Age-related macular degeneration (AMD) affects 9 million older Americans, and is characterized by the loss of the retinal pigment epithelium (RPE). Although the closely linked genome-wide association studies ARMS2/HTRA1 genes, located at the chromosome 10q26 locus, are strongly associated with the risk of AMD, their downstream targets are unknown. Low population frequencies of risk alleles in tissue banks make it impractical to study their function in cells derived from autopsied tissue. Moreover, autopsy eyes from end-stage AMD patients, where age-related RPE atrophy and fibrosis are already present, cannot be used to determine how abnormal ARMS2/HTRA1 expression can initiate RPE pathology. Instead, induced pluripotent stem (iPS) cell-derived RPE from patients provides us with earlier stage AMD patient-specific cells and allows us to analyze the underlying mechanisms at this critical time point. An unbiased proteome screen of A2E-aged patient-specific iPS-derived RPE cell lines identified superoxide dismutase 2 (SOD2)-mediated antioxidative defense in the genetic allele's susceptibility of AMD. The AMD-associated risk haplotype (T-in/del-A) impairs the ability of the RPE to defend against aging-related oxidative stress. SOD2 defense is impaired in RPE homozygous for the risk haplotype (T-in/del-A; T-in/del-A), while the effect was less pronounced in RPE homozygous for the protective haplotype (G-Wt-G; G-Wt-G). ARMS2/HTRA1 risk alleles decrease SOD2 defense, making RPE more susceptible to oxidative damage and thereby contributing to AMD pathogenesis.
Collapse
Affiliation(s)
- Jin Yang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yao Li
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Lawrence Chan
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Yi-Ting Tsai
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Wen-Hsuan Wu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Huy V Nguyen
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Lewis M Brown
- Quantitative Proteomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Laboratory, New York, NY 10032, USA and
| | - Janet R Sparrow
- Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA
| | - Stephen H Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine, Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA, Edward S. Harkness Eye Institute, Columbia University, New York, NY 10032, USA, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
26
|
van der Burght BW, Hansen M, Olsen J, Zhou J, Wu Y, Nissen MH, Sparrow JR. Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells. Acta Ophthalmol 2013; 91:e537-45. [PMID: 23742627 DOI: 10.1111/aos.12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.
Collapse
Affiliation(s)
- Barbro W van der Burght
- Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Viénot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel JA, Picaud S. Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS One 2013; 8:e71398. [PMID: 24058402 PMCID: PMC3751948 DOI: 10.1371/journal.pone.0071398] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
Among the identified risk factors of age-related macular degeneration, sunlight is known to induce cumulative damage to the retina. A photosensitive derivative of the visual pigment, N-retinylidene-N-retinylethanolamine (A2E), may be involved in this phototoxicity. The high energy visible light between 380 nm and 500 nm (blue light) is incriminated. Our aim was to define the most toxic wavelengths in the blue-green range on an in vitro model of the disease. Primary cultures of porcine retinal pigment epithelium cells were incubated for 6 hours with different A2E concentrations and exposed for 18 hours to 10 nm illumination bands centered from 380 to 520 nm in 10 nm increments. Light irradiances were normalized with respect to the natural sunlight reaching the retina. Six hours after light exposure, cell viability, necrosis and apoptosis were assessed using the Apotox-Glo Triplex™ assay. Retinal pigment epithelium cells incubated with A2E displayed fluorescent bodies within the cytoplasm. Their absorption and emission spectra were similar to those of A2E. Exposure to 10 nm illumination bands induced a loss in cell viability with a dose dependence upon A2E concentrations. Irrespective of A2E concentration, the loss of cell viability was maximal for wavelengths from 415 to 455 nm. Cell viability decrease was correlated to an increase in cell apoptosis indicated by caspase-3/7 activities in the same spectral range. No light-elicited necrosis was measured as compared to control cells maintained in darkness. Our results defined the precise spectrum of light retinal toxicity in physiological irradiance conditions on an in vitro model of age-related macular degeneration. Surprisingly, a narrow bandwidth in blue light generated the greatest phototoxic risk to retinal pigment epithelium cells. This phototoxic spectrum may be advantageously valued in designing selective photoprotection ophthalmic filters, without disrupting essential visual and non-visual functions of the eye.
Collapse
Affiliation(s)
- Emilie Arnault
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | | | - Céline Nanteau
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Pauline Gondouin
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Karine Bigot
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | | | - Emmanuel Gutman
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Valérie Fontaine
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
| | | | | | - José-Alain Sahel
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Académie des Sciences-Institut de France, Paris, France
| | - Serge Picaud
- Institut de la Vision, UPMC Univ Paris 06, UMR_S 968, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Wu WC, Chang YC, Wu KY, Chen SY, Hsieh MC, Wu MH, Wu HJ, Wu WS, Kao YH. Pharmacological implications from the adhesion-induced signaling profiles in cultured human retinal pigment epithelial cells. Kaohsiung J Med Sci 2013; 30:1-11. [PMID: 24388052 DOI: 10.1016/j.kjms.2013.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022] Open
Abstract
Extracellular matrix (ECM) plays an active and complex role in regulating cellular behaviors, including proliferation and adhesion. This study aimed at delineating the adhesion-induced signaling profiles in cultured human retinal pigment epithelium (RPE) cells and investigating the antiadhesion effect of antiproliferative drugs in this context. RPE R-50 cells grown on various ECM molecules, such as type I and IV collagens, fibronectin, and laminin, were used for adhesion assay and for examining the phosphorylation profiles of signaling mediators including Akt, extracellular signal-regulated kinase (ERK) 1/2, and integrin-linked kinase (ILK) using Western blotting. The cells receiving antiproliferative drug treatment at subtoxic doses were used to evaluate their antiadhesive and suppressive effects on kinase activities. ECM coating enhanced adhesion and spreading of RPE cells significantly. The cellular attachment onto ECM-coated surfaces differentially induced Akt, ERK1/2, and ILK phosphorylation, and concomitantly increased p53 phosphorylation and cyclin D1 expression, but decreased Bcl-2/Bax ratios. Treatment with antiproliferative agents, including 5-fluorouracil, mitomycin C, and daunomycin, at subtoxic doses suppressed the ability of RPE cells to adhere to ECM substratum significantly. This suppression was in part mediated through reduction of integrin β1 and β3 expressions and interfering Akt-ILK signaling activity. Mechanistically, blockade of PI3K/Akt signaling resulted in the suppressed adhesion of RPE cells to ECM. These findings support the hypothesis that, in addition to their antimitogenic effect, antiproliferative agents also exhibit suppressive effect on the adhesiveness of cultured RPE cells. Moreover, inhibitors of the PI3K/Akt signaling mediator can potentially be used as therapeutic agents for proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwou-Yeung Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Yueh Chen
- Department of Nursing, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsien Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Jiun Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
c-Abl mediates angiotensin II-induced apoptosis in podocytes. J Mol Histol 2013; 44:597-608. [PMID: 23515840 DOI: 10.1007/s10735-013-9505-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Angiotensin II (Ang II) has been reported to cause podocyte apoptosis in rats both in vivo and in vitro studies. However, the underlying mechanisms are poorly understood. In the present study, we investigated the role of the nonreceptor tyrosine kinase c-Abl in Ang II-induced podocyte apoptosis. Male Sprague-Dawley rats in groups of 12 were administered either Ang II (400 kg/kg/min) or Ang II + STI-571 (50 mg/kg/day) by osmotic minipumps. In addition, 12 rats-receiving normal saline served as the control. Glomeruli c-Abl expression was carried out by real time PCR, Western blotting and immunolabeled, and occurrence of apoptosis was carried out by TUNEL staining and transmission electron microscopic analysis. In vitro studies, conditionally immortalized mouse podocytes were treated with Ang II (10(-9)-10(-6) M) in the presence or absence of either c-Abl inhibitor, Src-I1, specific c-Abl siRNA, or c-Abl plasmid alone. Quantification of podocyte c-Abl expression and c-Abl phosphorylation at Y245 and Y412 was carried out by real time PCR, Western blotting and immunofluorescence imaging. The nuclear c-Abl and p53 were quantified by co-immunoprecipitation and Western blotting studies. Podocyte apoptosis was analysed by flow cytometry and Hoechst-33342 staining. c-Abl expression was demonstrated in rat kidney podocytes in vivo and cultured mouse podocytes in vitro. Ang II-receiving rats displayed enhanced podocyte c-Abl expression. And Ang II significantly stimulated c-Abl expression in cultured podocytes. Furthermore Ang II upregulated podocyte c-Abl phosphorylation at Y245 and Y412. Ang II also induced an increase of nuclear p53 protein and nuclear c-Abl-p53 complexes in podocytes and podocyte apoptosis. Down-regulation of c-Abl expression by c-Abl inhibitor (Src-I1) as well as specific siRNA inhibited Ang II-induced podocyte apoptosis; conversely, podoctyes transfected with c-Abl plasmid displayed enhanced apoptosis. These findings indicate that c-Abl may mediates Ang II-induced podocyte apoptosis, and inhibition of c-Abl expression can protect podocytes from Ang II-induced injury.
Collapse
|
30
|
Chitta KR, Landero Figueroa JA, Caruso JA, Merino EJ. Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics 2013; 5:673-85. [DOI: 10.1039/c3mt20213e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Bhattacharya S, Ray RM, Chaum E, Johnson DA, Johnson LR. Inhibition of Mdm2 sensitizes human retinal pigment epithelial cells to apoptosis. Invest Ophthalmol Vis Sci 2011; 52:3368-80. [PMID: 21345989 DOI: 10.1167/iovs.10-6991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. METHODS Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. RESULTS ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3-induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. CONCLUSIONS These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|