1
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
2
|
Yadav H, Singh R. Immunomodulatory role of non-ionizing electromagnetic radiation in human leukemiamonocytic cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121843. [PMID: 37207815 DOI: 10.1016/j.envpol.2023.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In daily life, people are usually exposed to radiofrequency radiations (RFR). The effects of RFR on human physiology have been a major source of controversy since the WHO declared that these radiations are a type of environmental energy that interacts with the physiological functioning of the human body. The immune system provides internal protection and promotes long-term health and survival. However, the relevant research on the innate immune system and radiofrequency radiation is scant. In this connection, we hypothesized that innate immune responses would be influenced by exposure to non-ionizing electromagnetic radiation from mobile phones in a cell-specific and time-dependent manner. To analyze this hypothesis, human leukemia monocytic cell lines were exposed to 2318 MHz (MHz) RFR emitted by mobile phones at a power density of 0.224 W/m2 in a controlled manner for various time durations (15, 30, 45, 60, 90, and 120 min). Systematic studies on cell viability, nitric oxide (NO), superoxide (SO), pro-inflammatory cytokine production, and phagocytic assays were performed after the irradiation. The duration of exposure seems to have a substantial influence on the RFR-induced effects. It was noticed that after 30 min of exposure, the RFR dramatically enhanced the pro-inflammatory cytokine IL-1α level as well as reactive species such as NO and SO generation as compared to the control. In contrast, the RFR dramatically reduced the phagocytic activity of monocytes during 60 min of treatment when compared to the control. Interestingly, the irradiated cells restored their normal functioning until the final 120-min of exposure. Furthermore, mobile phone exposure had no influence on cell viability or TNF-α level. The results showed that RFR exhibits a time-dependent immune-modulatory role in the human leukemia monocytic cell line. Nevertheless, more research is needed to further determine the long-term effects and precise mechanism of action of RFR.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India; Department of Environmental Science, Jamia Millia Islamia, Delhi- 110025, India.
| |
Collapse
|
3
|
Sueiro-Benavides RA, Leiro-Vidal JM, Salas-Sánchez AÁ, Rodríguez-González JA, Ares-Pena FJ, López-Martín ME. Radiofrequency at 2.45 GHz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142681. [PMID: 33071139 DOI: 10.1016/j.scitotenv.2020.142681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors such as air pollution by particles and/or electromagnetic fields (EMFs) are studied as harmful agents for human health. We analyzed whether the combined action of EMF with fine and coarse black carbon (BC) particles induced cell damage and inflammatory response in RAW 264.7 cell line macrophages exposed to 2.45 GHz in a gigahertz transverse electromagnetic (GTEM) chamber at sub-thermal specific absorption rate (SAR) levels. Radiofrequency (RF) dramatically increased BC-induced toxicity at high doses in the first 24 h and toxicity levels remained high 72 h later for all doses. The increase in macrophage phagocytosis induced after 24 h of RF and the high nitrite levels obtained by stimulation with lipopolysaccharide (LPS) endotoxin 24 and 72 h after radiation exposure suggests a prolongation of the innate and inflammatory immune response. The increase of proinflammatory cytokines tumor necrosis factor-α, after 24 h, and of interleukin-1β and caspase-3, after 72 h, indicated activation of the pro-inflammatory response and the apoptosis pathways through the combined effect of radiation and BC. Our results indicate that the interaction of BC and RF modifies macrophage immune response, activates apoptosis, and accelerates cell toxicity, by which it can activate the induction of hypersensitivity reactions and autoimmune disorders.
Collapse
Affiliation(s)
- Rosa Ana Sueiro-Benavides
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Jose Manuel Leiro-Vidal
- Research Institute on Chemical and Biological Analysis, Dept. of Microbiology and Parasitology, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Aarón Ángel Salas-Sánchez
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain; ELEDIA@UniTN - DISI - University of Trento, 38123, Trentino-Alto Adige, Italy.
| | - J Antonio Rodríguez-González
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Francisco J Ares-Pena
- CRETUS Institute, Dept. Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - M Elena López-Martín
- CRETUS Institute, Dept. Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Mitran MI, Nicolae I, Tampa M, Mitran CI, Caruntu C, Sarbu MI, Ene CD, Matei C, Georgescu SR, Popa MI. Reactive Carbonyl Species as Potential Pro-Oxidant Factors Involved in Lichen Planus Pathogenesis. Metabolites 2019; 9:E213. [PMID: 31623383 PMCID: PMC6836031 DOI: 10.3390/metabo9100213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The constant generation of reactive carbonyl species (RCSs) by lipid peroxidation during aerobic metabolism denotes their involvement in cell homeostasis. Skin represents the largest organ of the body that is exposed to lipid peroxidation. Previous studies have suggested the involvement of oxidative stress in the development of lichen planus (LP), a chronic inflammatory skin condition with a complex pathogenesis. The aim of our study is to investigate a panel of pro-oxidants (4-hydroxy-nonenal (4-HNE), thiobarbituric acid reactive substances (TBARS), and malondialdehyde (MDA)), the total antioxidant status (TAS), and thiol-disulfide homeostasis parameters (TDHP), including total thiol (TT), native thiol (NT), disulfides (DS), DS/NT ratio, DS/TT ratio, and NT/TT ratio. The comparative determinations of serum levels of 4-HNE, TBARS, and MDA in patients with LP (n = 31) and controls (n = 26) show significant differences between the two groups (4-HNE: 7.81 ± 1.96 µg/mL vs. 6.15 ± 1.17 µg/mL, p < 0.05, TBARS: 4.23 ± 0.59 µmol/L vs. 1.99 ± 0.23 µmol/L, p < 0.05, MDA: 32.3 ± 6.26 ng/mL vs. 21.26 ± 2.36 ng/mL). The serum levels of TAS are lower in LP patients compared to the control group (269.83 ± 42.63 µmol/L vs. 316.46 ± 28.76 µmol/L, p < 0.05). The serum levels of TDHP are altered in LP patients compared to controls (NT: 388.10 ± 11.32 µmol/L vs. 406.85 ± 9.32., TT: 430.23 ± 9.93 µmol/L vs. 445.88 ± 9.01 µmol/L, DS: 21.06 ± 1.76 µmol/L vs. 19.52 ± 0.77µmol/L). Furthermore, a negative association between pro-oxidants and TAS is identified (4-HNE - rho = -0.83, p < 0.01, TBARS - rho = -0.63, p < 0.01, and MDA - rho = -0.69, p < 0.01). Understanding the mechanisms by which bioactive aldehydes exert their biological effects on the skin could help define effective therapeutical strategies to counteract the cytotoxic effects of these reactive metabolic intermediates.
Collapse
Affiliation(s)
- Madalina Irina Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Ilinca Nicolae
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Iulia Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Maria Isabela Sarbu
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Clara Matei
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Simona Roxana Georgescu
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mircea Ioan Popa
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| |
Collapse
|
5
|
He GL, Luo Z, Shen TT, Li P, Yang J, Luo X, Chen CH, Gao P, Yang XS. Inhibition of STAT3- and MAPK-dependent PGE 2 synthesis ameliorates phagocytosis of fibrillar β-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells. J Neuroinflammation 2016; 13:296. [PMID: 27871289 PMCID: PMC5117690 DOI: 10.1186/s12974-016-0762-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
Background Prostaglandin E2 (PGE2)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE2 in Alzheimer’s disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar β-amyloid (fAβ) in microglial cells exposed to EMF are poorly understood. Given the important role of PGE2 in neural physiopathological processes, we investigated the PGE2-related signaling mechanism in the immunomodulatory phagocytosis of EMF-stimulated N9 microglial cells (N9 cells). Methods N9 cells were exposed to EMF with or without pretreatment with the selective inhibitors of cyclooxygenase-2 (COX-2), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs) and antagonists of PG receptors EP1-4. The production of endogenous PGE2 was quantified by enzyme immunoassays. The phagocytic ability of N9 cells was evaluated based on the fluorescence intensity of the engulfed fluorescent-labeled fibrillar β-amyloid peptide (1-42) (fAβ42) measured using a flow cytometer and a fluorescence microscope. The effects of pharmacological agents on EMF-activated microglia were investigated based on the expressions of JAK2, STAT3, p38/ERK/JNK MAPKs, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), and EP2 using real-time PCR and/or western blotting. Results EMF exposure significantly increased the production of PGE2 and decreased the phagocytosis of fluorescent-labeled fAβ42 by N9 cells. The selective inhibitors of COX-2, JAK2, STAT3, and MAPKs clearly depressed PGE2 release and ameliorated microglial phagocytosis after EMF exposure. Pharmacological agents suppressed the phosphorylation of JAK2-STAT3 and MAPKs, leading to the amelioration of the phagocytic ability of EMF-stimulated N9 cells. Antagonist studies of EP1-4 receptors showed that EMF depressed the phagocytosis of fAβ42 through the PGE2 system, which is linked to EP2 receptors. Conclusions This study indicates that EMF exposure could induce phagocytic depression via JAK2-STAT3- and MAPK-dependent PGE2-EP2 receptor signaling pathways in microglia. Therefore, pharmacological inhibition of PGE2 synthesis and EP2 receptors may be a potential therapeutic strategy to combat the neurobiological deterioration that follows EMF exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0762-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Zhen Luo
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ting-Ting Shen
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ping Li
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ju Yang
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Xue Luo
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Chun-Hai Chen
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xue-Sen Yang
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal 2014; 2014:417842. [PMID: 24634611 PMCID: PMC3918703 DOI: 10.1155/2014/417842] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.
Collapse
|
7
|
Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:602987. [PMID: 24027759 PMCID: PMC3763575 DOI: 10.1155/2013/602987] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/24/2023]
Abstract
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited.
Collapse
|
8
|
Ba X, Hadjiargyrou M, DiMasi E, Meng Y, Simon M, Tan Z, Rafailovich MH. The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials 2011; 32:7831-8. [DOI: 10.1016/j.biomaterials.2011.06.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022]
|
9
|
Dini L, Panzarini E. The influence of a 6 mT static magnetic field on apoptotic cell phagocytosis depends on monocyte/macrophage differentiation. Exp Biol Med (Maywood) 2011; 235:1432-41. [PMID: 21127341 DOI: 10.1258/ebm.2010.010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous work we showed that a 6 mT static magnetic field (SMF) interferes with monocyte/macrophage 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of promonocytes (U937 cells) and monocytes (THP-1 cells). In this study we investigated whether in the same cells and under the same conditions, phagocytosis of apoptotic cells is influenced by 6 mT SMF exposure. Fluid phase endocytosis and phagocytosis of latex particles were also analyzed for comparison. The results indicate that SMF exposure has effects on phagocytosis but not on fluid phase endocytosis, and that these effects are greater at the late stages of macrophage differentiation (THP-1 > U937 cells). The phagocytosis index and rate of phagocytosis decreased under SMF exposure while the number of latex particles bound to the plasma membrane of TPA-differentiated U937 and THP-1 cells increased. Conversely, the rate of phagocytosis of apoptotic cells increased under SMF exposure, while the number of apoptotic cells bound to the plasma membrane of isolated human Kupffer cells, Raw 264.7 macrophages and TPA-differentiated THP-1 and U937 cells decreased. In non-differentiated U937 and THP-1 cells, the SMF exposure enhanced the number of cell-surface bound apoptotic cells and latex beads.
Collapse
Affiliation(s)
- Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Via per Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
10
|
Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis 2010; 15:995-7. [DOI: 10.1007/s10495-010-0524-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|