1
|
Youseif SH, Abdel-Fatah HMK, Khalil MS. A new source of bacterial myrosinase isolated from endophytic Bacillus sp. NGB-B10, and its relevance in biological control activity. World J Microbiol Biotechnol 2022; 38:215. [PMID: 36056962 PMCID: PMC9440883 DOI: 10.1007/s11274-022-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Plant metabolism interacts strongly with the plant microbiome. Glucosinolates, secondary metabolites synthesized by Brassica plants, are hydrolyzed by myrosinase into bioactive compounds of great importance in human health and plant protection. Compared with myrosinase from plant sources, myrosinase enzymes of microbial origin have not been extensively investigated. Therefore, seven endophytic strains corresponding to Bacillus sp. were isolated from Eruca vesicaria ssp. sativa plants that could hydrolyse glucosinolates (sinigrin) in the culture medium and showed myrosinase activity (0.08–19.92 U mL−1). The bglA myrosinase-related gene encoding the 6-phospho-β-glucosidase (GH 1) from Bacillus sp. NGB-B10, the most active myrosinase-producing bacterium, was successfully identified. Response surface methodology (RSM) was applied to statistically optimize culture conditions for myrosinase production from Bacillus sp. strain NGB-B10. The Plackett–Burman design indicated that nitrogen concentration, incubation period, and agitation speed were the significant parameters in myrosinase production. The application of the Box–Behnken design of RSM resulted in a 10.03-fold increase in enzyme activity as compared to the non-optimized culture conditions. The myrosinase was partially purified by 40% fractionation followed by SDS-PAGE analysis which yielded two subunits that had a molecular weight of 38.6 and 35.0 KDa. The purified enzyme was stable under a broad range of pH (5.5–10) and temperatures (10–65 °C). The hydrolysis products released by bacterial myrosinase from some glucosinolate extracts had higher and/or equivalent in vitro antagonistic activity against several phytopathogenic fungi compared to the nystatin (a broad-spectrum antifungal agent). This study provides original information about a new source of bacterial myrosinase and affords an optimized method to enhance myrosinase production.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza, 12619, Egypt. .,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th October, Giza, 12451, Egypt.
| | - Hanan M K Abdel-Fatah
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mary S Khalil
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Yepes-Molina L, Carvajal M. Nanoencapsulation of sulforaphane in broccoli membrane vesicles and their in vitro antiproliferative activity. PHARMACEUTICAL BIOLOGY 2021; 59:1490-1504. [PMID: 34714214 PMCID: PMC8567929 DOI: 10.1080/13880209.2021.1992450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 05/29/2023]
Abstract
CONTEXT The development of nanocarriers of plant origin, such as plant cell membranes, has recently been investigated. Also, plant bioactive compounds as sulforaphane (SFN) from broccoli have recognized antioxidant or anticancer properties. OBJECTIVE To investigate the capacity of membrane vesicles from broccoli (BM-vesicles) to encapsulate SFN and their application in the cancer cell line. MATERIALS AND METHODS Physicochemical analysis was carried out to characterize BM-vesicles through different approaches: dynamic light scattering, transmission electron microscopy, stopped-flow analysis, and proteomic analysis. They were applied at different concentrations (BM-vesicles at 0.04-0.00315% of protein and SFN at 5, 25, and 100 µM) in SK-MEL-28 cells during 24 h for studying cytotoxicity and gene expression. RESULTS The entrapment efficiency was 41%. The anticancer activity tested in cells showed a decrease in proliferation when SFN in BM-vesicles was utilized. Expression patterns when SFN was applied in an encapsulated form showed a reduction of cancer markers and an increase of AQP3. Also, the metabolism of SFN occurred inside of cells, and higher SFN penetrated when it was encapsulated. DISCUSSION The results showed that encapsulated SFN was better absorbed by melanoma cells providing metabolism products and a reduction of cancer molecular markers. Also aquaporin, AQP3 was pointed to as an important marker since it appeared to play a key role in homeostasis due to the importance of water transport in biological processes. CONCLUSION These results indicate that SFN and SFN encapsulated in BM-vesicles have a high activity for the inhibition of melanocyte development. Therefore, BM-vesicles could serve as nanocarriers for drugs.
Collapse
Affiliation(s)
- Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
3
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
4
|
Iahtisham-Ul-Haq, Khan S, Awan KA, Iqbal MJ. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2021; 46:e13886. [PMID: 34350614 DOI: 10.1111/jfbc.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering various biological benefits for health promotion and disease prevention. This compound is considered vital to curtail numerous metabolic disorders. Various studies have proven its beneficial effects against cancer prevention and its possible utilization as a therapeutic agent in cancer treatment. Understanding the mechanistic pathways and possible interactions at cellular and subcellular levels is key to design and develop cancer therapeutics for humans. In this respect, a number of mechanisms such as modulation of carcinogen metabolism & phase II enzymatic activities, cell cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have been reported to be involved in cancer prevention. This article provides sufficient information by critical analysis to understand the mechanisms involved in cancer prevention attributed to sulforaphane. Furthermore, various clinical studies have also been included for design and development of novel therapies for cancer prevention and cure. PRACTICAL APPLICATIONS: Diet and dietary components are potential tools to address various lifestyle-related disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer prevalence are quite large which are worsen by adopting unhealthy lifestyles. Cancer can be treated with various therapies but those are acquiring side effects causing the patients to suffer the treatment regime. Nutraceuticals and functional foods provide safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is a pivotal compound to be targeted as a potential agent for cancer treatment both in preventive and therapeutic regimes. This article provides sufficient evidence via discussing the underlying mechanisms of positive effects of sulforaphane to further the research for developing anticancer drugs that will help assuage this lethal morbidity.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- School of Food and Nutrition, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
5
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
6
|
Lee TL, Lai TC, Lin SR, Lin SW, Chen YC, Pu CM, Lee IT, Tsai JS, Lee CW, Chen YL. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics 2021; 11:3131-3149. [PMID: 33537078 PMCID: PMC7847683 DOI: 10.7150/thno.52677] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Rationale: Cardiovascular diseases, such as myocardial infarction (MI), are the leading causes of death worldwide. Reperfusion therapy is the common standard treatment for MI. However, myocardial ischemia/reperfusion (I/R) causes cardiomyocyte injury, including apoptosis and fibrosis. We aimed to investigate the effects of conditioned medium from adipose-derived stem cells (ADSC-CM) on apoptosis and fibrosis in I/R-treated hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes and the underlying mechanisms. Methods: ADSC-CM was collected from ADSCs. The effects of intramuscular injection of ADSC-CM on cardiac function, cardiac apoptosis, and fibrosis examined by echocardiography, Evans blue/TTC staining, TUNEL assay, and Masson's trichrome staining in I/R-treated mice. We also examined the effects of ADSC-CM on apoptosis and fibrosis in H/R-treated H9c2 cells by annexin V/PI flow cytometry, TUNEL assay, and immunocytochemistry. Results: ADSC-CM treatment significantly reduced heart damage and fibrosis of I/R-treated mice and H/R-treated cardiomyocytes. In addition, the expression of apoptosis-related proteins, such as p53 upregulated modulator of apoptosis (PUMA), p-p53 and B-cell lymphoma 2 (BCL2), as well as the fibrosis-related proteins ETS-1, fibronectin and collagen 3, were significantly reduced by ADSC-CM treatment. Moreover, we demonstrated that ADSC-CM contains a large amount of miR-221/222, which can target and regulate PUMA or ETS-1 protein levels. Furthermore, the knockdown of PUMA and ETS-1 decreased the induction of apoptosis and fibrosis, respectively. MiR-221/222 overexpression achieved similar results. We also observed that cardiac I/R markedly increased apoptosis and fibrosis in miR-221/222 knockout (KO) mice, while ADSC-CM decreased these effects. The increased phosphorylation of p38 and NF‐κB not only mediated myocardial apoptosis through the PUMA/p53/BCL2 pathway but also regulated fibrosis through the ETS-1/fibronectin/collagen 3 pathway. Conclusions: Overall, our results show that ADSC-CM attenuates cardiac apoptosis and fibrosis by reducing PUMA and ETS-1 expression, respectively. The protective effect is mediated via the miR-221/222/p38/NF-κB pathway.
Collapse
|
7
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
8
|
Mitsiogianni M, Trafalis DT, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. Eur J Nutr 2020; 60:147-158. [PMID: 32215717 DOI: 10.1007/s00394-020-02227-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE(S) Growing evidence supports that isothiocyanates exert a wide range of bioactivities amongst of which is their capacity to interact with the epigenetic machinery in various cancers including melanoma. Our aim was to characterise the effect of sulforaphane and iberin on histone acetylation and methylation as a potential anti-melanoma strategy. METHODS We have utilised an in vitro model of malignant melanoma [consisting of human (A375, Hs294T, VMM1) and murine (B16F-10) melanoma cell lines as well as a non-melanoma (A431) and a non-tumorigenic immortalised keratinocyte (HaCaT) cell line] exposed to sulforaphane or iberin. Cell viability was evaluated by the Alamar blue assay whilst total histone deacetylases and acetyltransferases activities were determined by the Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively. The expression levels of specific histone deacetylases and acetyltransferases together with those of lysine acetylation and methylation marks were obtained by western immunoblotting. RESULTS Overall, both sulforaphane and iberin were able to (1) reduce cell viability, (2) decrease total histone deacetylase activity and (3) modulate the expression levels of various histone deacetylases as well as acetyl and methyl transferases thus modulating the acetylation and methylation status of specific lysine residues on histones 3 and 4 in malignant melanoma cells. CONCLUSIONS Our findings highlight novel insights as to how sulforaphane and iberin differentially regulate the epigenetic response in ways compatible with their anticancer action in malignant melanoma.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology Unit, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.
| |
Collapse
|
9
|
Zambrano V, Bustos R, Mahn A. Insights about stabilization of sulforaphane through microencapsulation. Heliyon 2019; 5:e02951. [PMID: 31844781 PMCID: PMC6895643 DOI: 10.1016/j.heliyon.2019.e02951] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The health–promoting properties of sulforaphane (SFN) are well known, however its instability is still a hurdle for its incorporation into food matrices. SFN can be stabilized by microencapsulation, technique sparingly explored for isothiocyanates so far. This review summarizes the advances in microencapsulation of SFN and other isothiocyanates. Encapsulation efficiency and degradation rate of sulforaphane in different systems are compared and discussed. Ionic gelation and complex coacervation seem more adequate for SFN, both underexplored until now. Drying conditions after chemical encapsulation are determinant, most likely related to thermal degradation of SFN. The current information is insufficient to identify the most adequate encapsulation system and the optimal process conditions to stabilize SFN aiming at its incorporation into food matrices. Accordingly, encapsulation conditions should be investigated, which arises as a new research line. Stability studies are encouraged since this information will help in designing SFN microencapsulation strategies that extend the industrial application of this promising health-promoting compound.
Collapse
Affiliation(s)
- Víctor Zambrano
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Rubén Bustos
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| |
Collapse
|
10
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
11
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
12
|
Allyl isothiocyanate regulates lysine acetylation and methylation marks in an experimental model of malignant melanoma. Eur J Nutr 2019; 59:557-569. [PMID: 30762097 PMCID: PMC7058602 DOI: 10.1007/s00394-019-01925-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Objective(s) Isothiocyanates (ITCs) are biologically active plant secondary metabolites capable of mediating various biological effects including modulation of the epigenome. Our aim was to characterize the effect of allyl isothiocyanate (AITC) on lysine acetylation and methylation marks as a potential epigenetic-induced anti-melanoma strategy. Methods Our malignant melanoma model consisted of (1) human (A375) and murine (B16-F10) malignant melanoma as well as of human; (2) brain (VMM1) and lymph node (Hs 294T) metastatic melanoma; (3) non-melanoma epidermoid carcinoma (A431) and (4) immortalized keratinocyte (HaCaT) cells subjected to AITC. Cell viability, histone deacetylases (HDACs) and acetyltransferases (HATs) activities were evaluated by the Alamar blue, Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively, while their expression levels together with those of lysine acetylation and methylation marks by western immunoblotting. Finally, apoptotic gene expression was assessed by an RT-PCR-based gene expression profiling methodology. Results AITC reduces cell viability, decreases HDACs and HATs activities and causes changes in protein expression levels of various HDACs, HATs, and histone methyl transferases (HMTs) all of which have a profound effect on specific lysine acetylation and methylation marks. Moreover, AITC regulates the expression of a number of genes participating in various apoptotic cascades thus indicating its involvement in apoptotic induction. Conclusions AITC exerts a potent epigenetic effect suggesting its potential involvement as a promising epigenetic-induced bioactive for the treatment of malignant melanoma.
Collapse
|
13
|
Frieben EE, Amin S, Sharma AK. Development of Isoselenocyanate Compounds’ Syntheses and Biological Applications. J Med Chem 2019; 62:5261-5275. [DOI: 10.1021/acs.jmedchem.8b01698] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emily E. Frieben
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
14
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, Ali S, Asrar M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed Pharmacother 2018; 103:1643-1651. [DOI: 10.1016/j.biopha.2018.04.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
16
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Arcidiacono P, Ragonese F, Stabile A, Pistilli A, Kuligina E, Rende M, Bottoni U, Calvieri S, Crisanti A, Spaccapelo R. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur J Nutr 2017; 57:2547-2569. [PMID: 28864908 PMCID: PMC6182666 DOI: 10.1007/s00394-017-1527-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023]
Abstract
Purpose Human melanoma is a highly aggressive incurable cancer due to intrinsic cellular resistance to apoptosis, reprogramming, proliferation and survival during tumour progression. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, plays a role in carcinogenesis in many cancer types. However, the cytotoxic molecular mechanisms and gene expression profiles promoted by SFN in human melanoma remain unknown. Methods Three different cell lines were used: two human melanoma A375 and 501MEL and human epidermal melanocytes (HEMa). Cell viability and proliferation, cell cycle analysis, cell migration and invasion and protein expression and phosphorylation status of Akt and p53 upon SFN treatment were determined. RNA-seq of A375 was performed at different time points after SFN treatment. Results We demonstrated that SFN strongly decreased cell viability and proliferation, induced G2/M cell cycle arrest, promoted apoptosis through the activation of caspases 3, 8, 9 and hampered migration and invasion abilities in the melanoma cell lines. Remarkably, HEMa cells were not affected by SFN treatment. Transcriptomic analysis revealed regulation of genes involved in response to stress, apoptosis/cell death and metabolic processes. SFN upregulated the expression of pro-apoptotic genes, such as p53, BAX, PUMA, FAS and MDM2; promoted cell cycle inhibition and growth arrest by upregulating EGR1, GADD45B, ATF3 and CDKN1A; and simultaneously acted as a potent inhibitor of genotoxicity by launching the stress-inducible protein network (HMOX1, HSPA1A, HSPA6, SOD1). Conclusion Overall, the data show that SFN cytotoxicity in melanoma derives from complex and concurrent mechanisms during carcinogenesis, which makes it a promising cancer prevention agent. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1527-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Francesco Ragonese
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy
| | - Anna Stabile
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Alessandra Pistilli
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ekaterina Kuligina
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,N.N. Petrov Institute of Oncology, Saint Petersburg, 197758, Russia
| | - Mario Rende
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ugo Bottoni
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy.,University Magna Graecia, Catanzaro, Italy
| | - Stefano Calvieri
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Roberta Spaccapelo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.
| |
Collapse
|
18
|
Bayat Mokhtari R, Baluch N, Homayouni TS, Morgatskaya E, Kumar S, Kazemi P, Yeger H. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J Cell Commun Signal 2017; 12:91-101. [PMID: 28735362 DOI: 10.1007/s12079-017-0401-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/25/2023] Open
Abstract
Cancer is a multi-stage process resulting from aberrant signaling pathways driving uncontrolled proliferation of transformed cells. The development and progression of cancer from a premalignant lesion towards a metastatic tumor requires accumulation of mutations in many regulatory genes of the cell. Different chemopreventative approaches have been sought to interfere with initiation and control malignant progression. Here we present research on dietary compounds with evidence of cancer prevention activity that highlights the potential beneficial effect of a diet rich in cruciferous vegetables. The Brassica family of cruciferous vegetables such as broccoli is a rich source of glucosinolates, which are metabolized to isothiocyanate compounds. Amongst a number of related variants of isothiocyanates, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis. Anti-inflammatory, pro-apoptotic and modulation of histones are some of the more important and known mechanisms by which SFN exerts chemoprevention. The effect of SFN on cancer stem cells is another area of interest that has been explored in recent years and may contribute to its chemopreventive properties. In this paper, we briefly review structure, pharmacology and preclinical studies highlighting chemopreventive effects of SFN.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Sickkids Research Center, Peter Gilgan Centre, 686 Bay St., Rm 15.9714, Toronto, ON, M5G 0A4, Canada.
| | - Narges Baluch
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, 88 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Tina S Homayouni
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sushil Kumar
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Parandis Kazemi
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Herman Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Sickkids Research Center, Peter Gilgan Centre, 686 Bay St., Rm 15.9714, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
19
|
Kawarazaki A, Horinaka M, Yasuda S, Numajiri T, Nishino K, Sakai T. Sulforaphane suppresses cell growth and collagen expression of keloid fibroblasts. Wound Repair Regen 2017; 25:224-233. [PMID: 28120534 DOI: 10.1111/wrr.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Keloids are fibroproliferative diseases characterized by the accumulation of an extracellular matrix including collagen. Various growth factors, or cytokines, and their receptors are overexpressed in keloids, and they are expected to be therapy targets. Sulforaphane, a dietary isothiocyanate, has recently shown anti-tumor, anti-inflammatory, and anti-fibrotic properties. In this study, we found that sulforaphane inhibited cell growth and reduced collagen at the mRNA and protein levels in keloid fibroblasts. Moreover, sulforaphane markedly suppressed the expression of IL-6 and α-SMA and inhibited Stat3 and Smad3 signaling pathways in keloid fibroblast KF112 cells. Sulforaphane induced G2/M cell-cycle arrest with the induction of p21 in KF112 cells. In addition, sulforaphane inhibited cell growth and suppressed the expression of collagen in keloid fibroblasts under a coculture with peripheral blood mononuclear cells. Furthermore, sulforaphane suppressed IL-6, Stat3, and Smad3 signaling in the coculture system. This study suggests that sulforaphane may be a novel keloid treatment.
Collapse
Affiliation(s)
- Ayako Kawarazaki
- Department of Molecular-Targeting Cancer Prevention.,Department of Surgery, Division of Plastic and Reconstructive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | - Toshiaki Numajiri
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenichi Nishino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
20
|
Shang HS, Shih YL, Lee CH, Hsueh SC, Liu JY, Liao NC, Chen YL, Huang YP, Lu HF, Chung JG. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. ENVIRONMENTAL TOXICOLOGY 2017; 32:311-328. [PMID: 26833863 DOI: 10.1002/tox.22237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca2+ production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca2+ production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Yung-Luen Shih
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsiao Lee
- Jen-the Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Shu-Ching Hsueh
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jia-You Liu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Nien-Chieh Liao
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Hsu-Feng Lu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
- Departments of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
21
|
Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem Toxicol 2016; 100:90-102. [PMID: 27993529 DOI: 10.1016/j.fct.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
Abstract
Antioxidant-based chemotherapy has been intensely debated. Herein, we show that sulforaphane (SFN) induced mitochondrial biogenesis followed by mitochondrial fusion in a kidney cell line commonly used in nephroprotective models. At the same concentration and exposure time, SFN induced cell death in prostate cancer cells accompanied by mitochondrial biogenesis and fragmentation. Stabilization of the nuclear factor E2-related factor-2 (Nrf2) could be associated with these effects in the tumor cell line. An increase in the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC1α) level and a decrease in the hypoxia-inducible factor-1α (HIF1α) level would suggest a possible metabolic shift. The knockdown in the nuclear respiratory factor-1 (NRF1) attenuated the SFN-induced effect on prostate cancer cells demonstrating that mitochondrial biogenesis plays an important role in cell death for this kind of tumor cells. This evidence supports SFN as a potential antineoplastic agent that could inhibit tumor development and could protect normal tissues by modulating common processes.
Collapse
|
22
|
Fisher ML, Adhikary G, Grun D, Kaetzel DM, Eckert RL. The Ezh2 polycomb group protein drives an aggressive phenotype in melanoma cancer stem cells and is a target of diet derived sulforaphane. Mol Carcinog 2016; 55:2024-2036. [PMID: 26693692 PMCID: PMC4919248 DOI: 10.1002/mc.22448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022]
Abstract
Melanoma is a metastatic cancer associated with poor survival. Here, we study a subpopulation of melanoma cancer cells displaying melanoma cancer stem cell (MCS cells) properties including elevated expression of stem cell markers, increased ability to survive as spheroids, and enhanced cell migration and invasion. We show that the Ezh2 stem cell survival protein is enriched in MCS cells and that Ezh2 knockdown or treatment with small molecule Ezh2 inhibitors, GSK126 or EPZ-6438, reduces Ezh2 activity. This reduction is associated with a reduced MCS cell spheroid formation, migration, and invasion. Moreover, the diet-derived cancer prevention agent, sulforaphane (SFN), suppresses MCS cell survival and this is associated with loss of Ezh2. Forced expression of Ezh2 partially reverses SFN suppression of MCS cell spheroid formation, migration, and invasion. A375 melanoma cell-derived MCS cells form rapidly growing tumors in immune-compromised mice and SFN treatment of these tumors reduces tumor growth and this is associated with reduced Ezh2 level and H3K27me3 formation, reduced matrix metalloproteinase expression, increased TIMP3 expression and increased apoptosis. These studies identify Ezh2 as a MCS cell marker and cancer stem cell prevention target, and suggest that SFN acts to reduce melanoma tumor formation via a mechanism that includes suppression of Ezh2 function. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew L Fisher
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dan Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Cancer, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Rizzo VL, Levine CB, Wakshlag JJ. The effects of sulforaphane on canine osteosarcoma proliferation and invasion. Vet Comp Oncol 2016; 15:718-730. [DOI: 10.1111/vco.12212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/13/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- V. L. Rizzo
- Department of Clinical Sciences; Cornell University; Ithaca NY USA
| | - C. B. Levine
- Department of Clinical Sciences; Cornell University; Ithaca NY USA
| | - J. J. Wakshlag
- Department of Clinical Sciences; Cornell University; Ithaca NY USA
| |
Collapse
|
24
|
Yang YY, He HQ, Cui JH, Nie YJ, Wu YX, Wang R, Wang G, Zheng JN, Ye RD, Wu Q, Li SS, Qian F. Shikonin Derivative DMAKO-05 Inhibits Akt Signal Activation and Melanoma Proliferation. Chem Biol Drug Des 2016; 87:895-904. [DOI: 10.1111/cbdd.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yao-yao Yang
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Hui-qiong He
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Jia-hua Cui
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Yun-juan Nie
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Ya-xian Wu
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Rui Wang
- Department of Medical Oncology; First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Rd. Bengbu Anhui 233 000 China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy; Cancer Institute; Xuzhou Medical College; 209 Tongshan Rd. Xuzhou Jiangsu Province 221 004 China
| | - Jun-Nian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy; Cancer Institute; Xuzhou Medical College; 209 Tongshan Rd. Xuzhou Jiangsu Province 221 004 China
| | - Richard D. Ye
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Qiong Wu
- Department of Medical Oncology; First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Rd. Bengbu Anhui 233 000 China
| | - Shao-shun Li
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Feng Qian
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| |
Collapse
|
25
|
Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation. Int J Mol Sci 2015; 16:29732-43. [PMID: 26703571 PMCID: PMC4691138 DOI: 10.3390/ijms161226195] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022] Open
Abstract
Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Grzegorz Majewski
- Faculty of Public Health, University of Social Sciences in Lodz, 9 Sienkiewicza St., 90-113 Lodz, Poland.
| | - Katarzyna Lubecka-Pietruszewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Krystyna Fabianowska-Majewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| |
Collapse
|
26
|
|
27
|
Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species. BIOMED RESEARCH INTERNATIONAL 2015; 2015:402386. [PMID: 26185755 PMCID: PMC4491563 DOI: 10.1155/2015/402386] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 05/31/2015] [Indexed: 01/01/2023]
Abstract
According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species.
Collapse
|
28
|
Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality, content of bioactive compounds and antioxidant activity of sauerkrauts. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
30
|
Choi YJ, Lee WS, Lee EG, Sung MS, Yoo WH. Sulforaphane Inhibits IL-1β-Induced Proliferation of Rheumatoid Arthritis Synovial Fibroblasts and the Production of MMPs, COX-2, and PGE2. Inflammation 2014; 37:1496-503. [DOI: 10.1007/s10753-014-9875-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|