1
|
He K, Meng X, Su J, Jiang S, Chu M, Huang B. Oleanolic acid inhibits the tumor progression by regulating Lactobacillus through the cytokine-cytokine receptor interaction pathway in 4T1-induced mice breast cancer model. Heliyon 2024; 10:e27028. [PMID: 38449659 PMCID: PMC10915379 DOI: 10.1016/j.heliyon.2024.e27028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
The therapeutic mechanism of oleanolic acid (OA) in breast cancer has been widely reported, but little has been known about the combined effects of transcriptome and gut microbiome. In this study, the phenotypic effect of oleanolic acid on mice was tested at the end of the administration cycle, and RNA sequencing on murine tumor tissue and 16S-rRNA sequencing on intestinal contents were conducted to analyze gene expression profiles and microbial diversity between the control group and OA treated group using 4T1-induced mice breast cancer model. As a result, it has been confirmed that oleanolic acid would play a significant inhibitory effect on the development of breast tumors in mice. Based on the integrative analysis of the transcriptomic and metagenomic data, it was found that the abundance of Lactobacillus in the intestinal flora of mice significantly increased in the OA group. Moreover, the up-regulation of Il10 had a significant effect on inhibiting the tumor progression, which played a role through cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Wang J, Ma C, Tang Z, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Mechanism study of oleanolic acid derivative, K73-03, inducing cell apoptosis in hepatocellular carcinoma. Cancer Cell Int 2024; 24:17. [PMID: 38185661 PMCID: PMC10771654 DOI: 10.1186/s12935-023-03119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024] Open
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a kind of pentacyclic triterpene, which widely distributes in nature. OA possesses a powerful anti-cancer effect; however, its low solubility limits its bioavailability and application. In this study, a new OA derivative, K73-03, was used to determine its effect on liver cancer cells and detailed molecular mechanisms. Here, we show that K73-03 may lead to the disorder of mitochondria in HepG2 cells, leading to excessive ROS production and apoptosis in cells. Meanwhile, K73-03 could induce cell apoptosis by inhibiting JAK2/STAT3 pathway and NF-κB/P65 pathway. Collectively, this study may provide a preliminary basis for further cancer treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Physiology, Dalian Medical University, Dalian, China
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Chuchu Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhongyuan Tang
- Department of Orthodontics, College of Stomatology, Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Histology and Embryology Department, Dalian Medical University, Dalian, China
| | - Jun Wang
- Pathophysiology Department, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2th Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, 116000, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Nizami ZN, Aburawi HE, Semlali A, Muhammad K, Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants (Basel) 2023; 12:1159. [PMID: 37371889 DOI: 10.3390/antiox12061159] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that regulate various cellular processes. However, at high levels, ROS induce oxidative stress, which in turn can trigger cell death. Cancer cells alter the redox homeostasis to facilitate protumorigenic processes; however, this leaves them vulnerable to further increases in ROS levels. This paradox has been exploited as a cancer therapeutic strategy with the use of pro-oxidative drugs. Many chemotherapeutic drugs presently in clinical use, such as cisplatin and doxorubicin, induce ROS as one of their mechanisms of action. Further, various drugs, including phytochemicals and small molecules, that are presently being investigated in preclinical and clinical studies attribute their anticancer activity to ROS induction. Consistently, this review aims to highlight selected pro-oxidative drugs whose anticancer potential has been characterized with specific focus on phytochemicals, mechanisms of ROS induction, and anticancer effects downstream of ROS induction.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire-Université Laval, Quebec, QC G1V 0A6, Canada
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. PHYTOCHEMISTRY 2022; 203:113340. [PMID: 35987401 DOI: 10.1016/j.phytochem.2022.113340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Medicinal plants have been used to treat different diseases throughout the human history namely in traditional medicine. Most of the plants mentioned in this review article belong among them, including those that are widely spread in the nature, counted frequently to be food and nutrition plants and producing pharmacologically important secondary metabolites. Triterpenoids represent an important group of plant secondary metabolites displaying emerging pharmacological importance. This review article sheds light on four selected triterpenoids, oleanolic, ursolic, betulinic and platanic acid, and on their amide derivatives as important natural or semisynthetic agents in cancer treatment, and, in part, in pathogenic microbe treatment. A literature search was made in the Web of Science for the given key words covering the required area of secondary plant metabolites and their amide derivatives. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and biological activity of their relevant amide derivatives have been summarized therein. Mainly anti-cancer effects, and, in part, antimicrobial and other effects of the four selected triterpenoids and their amide derivatives have also been reviewed. A comparison of the effects of the parent plant products and those of their amide derivatives has been made.
Collapse
Affiliation(s)
- Zulal Özdemir
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Zhou Z, Dong Y, Li N, Niu M, Wang S, Zhou Y, Sun Z, Chu P, Tang Z. An oleanolic acid derivative, K73-03, inhibits pancreatic cancer cells proliferation in vitro and in vivo via blocking EGFR/Akt pathway. Cell Biol Int 2022; 46:1801-1813. [PMID: 35925004 DOI: 10.1002/cbin.11866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Oleanolic acid (OA) and its derivatives show potent anticancer function. Pancreatic cancer (PC) is the fourth core motive of cancer-related deaths worldwide. Epidermal growth factor receptor (EGFR) has been implicated in PC and has been validated as a therapeutic target. Our study demonstrated that K73-03, an OA derivative, was identified as a potent inhibitor of EGFR by using reverse pharmacophore screening and molecular dynamics simulation assays. Moreover, Western blot analysis showed that K73-03 markedly suppressed the levels of phosphorylated-EGFR (p-EGFR) and phosphorylated-Akt (p-Akt). The inhibitory effect of K73-03 on PC cells was assessed in vitro and in vivo. Mechanistically, K73-03 effectively inhibited the cell proliferation of PC cells, and induced apoptosis and autophagy of ASPC-1 cells in a dose-dependent manner. Additionally, pretreatment with chloroquine, an autophagy inhibitor, significantly inhibited K73-03-induced autophagy and enhanced K73-03-induced apoptotic cell death. K73-03 also strongly repressed ASPC-1 cells xenograft growth in vivo. Thus, all these findings provided new clues about OA analog K73-03 as an effective anticancer agent targeted EGFR against ASPC-1 cells, it is worth further evaluation in the future.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yaokun Dong
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Na Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Mengyue Niu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- Department of pharmacy, School of chemical engineering, Dalian University of Technology, Dalian, China
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaolin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Roman G. Anticancer activity of Mannich bases: a review of recent literature. ChemMedChem 2022; 17:e202200258. [PMID: 35678192 DOI: 10.1002/cmdc.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Indexed: 11/05/2022]
Abstract
This report summarizes the latest published data on the antiproliferative action and cytotoxic activity of Mannich bases, a structurally heterogeneous category of chemical entities that includes compounds which are synthesized via the grafting of an aminomethyl function onto diverse substrates by means of the Mannich reaction. The present overview of the topic is an update to the information assembled in a previously published review that covered the literature up to 2014.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic polymers, 41A Aleea Gr. Ghica Voda, 700487, Iasi, ROMANIA
| |
Collapse
|
7
|
Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022; 148:112785. [PMID: 35272138 DOI: 10.1016/j.biopha.2022.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.
Collapse
|
8
|
Feng J, Li S, Zhang B, Duan N, Zhou R, Yan S, Elango J, Liu N, Wu W. FGFC1 Exhibits Anti-Cancer Activity via Inhibiting NF-κB Signaling Pathway in EGFR-Mutant NSCLC Cells. Mar Drugs 2022; 20:md20010076. [PMID: 35049931 PMCID: PMC8781927 DOI: 10.3390/md20010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
FGFC1, an active compound isolated from the culture of marine fungi Stachybotrys longispora FG216, elicits fibrinolytic, anti-oxidative, and anti-inflammatory activity. We have previously reported that FGFC1 inhibited the proliferation, migration, and invasion of the non-small cell lung cancer (NSCLC) cells in vitro. However, the precise mechanisms of FGFC1 on NSCLC and its anti-cancer activity in vivo remains unclear. Hence, this study was focused to investigate the effects and regulatory mechanisms of FGFC1 on two NSCLC cell lines, EGFR-mutant PC9 (ex19del) and EGFR wild-type H1299. Results suggested that FGFC1 significantly inhibited proliferation, colony formation, as well as triggered G0/G1 arrest and apoptosis of PC9 cells in a dose- and time-dependent manner, but no obvious inhibitory effects were observed in H1299 cells. Subsequently, transcriptome analysis revealed that FGFC1 significantly down-regulated 28 genes related to the NF-κB pathway, including IL-6, TNF-α, and ICAM-1 in the PC9 cells. We further confirmed that FGFC1 decreased the expression of protein p-IKKα/β, p-p65, p-IκB, IL-6, and TNF-α. Moreover, NF-κB inhibitor PDTC could strengthen the effects of FGFC1 on the expression of CDK4, Cyclin D1, cleaved-PARP-1, and cleaved-caspase-3 proteins, suggesting that the NF-κB pathway plays a major role in FGFC1-induced cell cycle arrest and apoptosis. Correspondingly, the nuclear translocation of p-p65 was also suppressed by FGFC1 in PC9 cells. Finally, the intraperitoneal injection of FGFC1 remarkably inhibited PC9 xenograft growth and decreased the expression of Ki-67, p-p65, IL-6, and TNF-α in tumors. Our results indicated that FGFC1 exerted anti-cancer activity in PC9 cells via inhibiting the NF-κB signaling pathway, providing a possibility for FGFC1 to be used as a lead compound for the treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Jingwen Feng
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai 201306, China;
| | - Bing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Namin Duan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Rui Zhou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Shike Yan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
| | - Ning Liu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
- Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.L.); (W.W.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.F.); (B.Z.); (N.D.); (R.Z.); (S.Y.); (J.E.)
- Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.L.); (W.W.)
| |
Collapse
|
9
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
10
|
Liang Z, Pan R, Meng X, Su J, Guo Y, Wei G, Zhang Z, He K. Transcriptome study of oleanolic acid in the inhibition of breast tumor growth based on high-throughput sequencing. Aging (Albany NY) 2021; 13:22883-22897. [PMID: 34607975 PMCID: PMC8544337 DOI: 10.18632/aging.203582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022]
Abstract
The function of oleanolic acid (OA) in various types of cancer has been reported frequently, especially for breast cancer. However, the regulation of breast tumor growth in response to OA treatment has not been studied in depth. Here, we first explored the effect of OA treatment on breast tumors in vitro and in vivo and then used RNA-seq technology to study the effect and molecular mechanism of OA treatment of MCF-7 cells, particularly at the level of functional genomics. The results showed that 40 μM OA treatment could significantly inhibit the proliferation and induce the apoptosis of MCF-7 cells. Through analysis of RNA sequencing data quality and differentially expressed genes (DEGs), 67 significantly downregulated genes and 260 significantly upregulated genes were identified to be involved in OA treatment of MCF-7 cells. Among these genes, 43 unique DEGs were enriched in several signaling pathways and Gene Ontology terms, such as p53 signaling pathway, TNF signaling pathway and mTOR signaling pathway. Six downregulated genes, including THBS1, EDN1, CACNG4, CCN2, AXIN2 and BMP4, as well as six upregulated genes, including ATF4, SERPINE1, SESN2, PPARGC1A, EGR1 and JAG1, were selected as target genes in response to OA treatment. The inhibitory effect of OA on breast cancer was also found in the following mouse experiments. Our study provides evidence and molecular support for the treatment of breast cancer with OA.
Collapse
Affiliation(s)
- Zhuoran Liang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.,Harbin Vocational and Technical College, Harbin, Heilongjiang 150081, PR China
| | - Ruolan Pan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Yong Guo
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Gang Wei
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Zhi Zhang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China
| |
Collapse
|
11
|
Wang D, Wang J, Zhang J, Yi X, Piao J, Li L, Wang J, Zhang P, He Q. Decrease of ABCB1 protein expression and increase of G 1 phase arrest induced by oleanolic acid in human multidrug-resistant cancer cells. Exp Ther Med 2021; 22:735. [PMID: 34055052 PMCID: PMC8138263 DOI: 10.3892/etm.2021.10167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
Oleanolic acid (OA) is a natural compound that can be found in a number of edible and medicinal plants and confers diverse biological actions. However, the direct target of OA in human tumor cells remains poorly understood, preventing its application in clinical and health settings. A previous study revealed that overexpression of caveolin-1 in human leukemia HL-60 cells can increase its sensitivity to OA. The present study aimed to investigate the effects of OA on the doxorubicin-resistant human breast cancer MCF-7 cell line (MCF-7/DOX), harringtonine-resistant human leukemia HL-60 cells (HL-60/HAR) and their corresponding parental cell lines. Western blotting was performed to measure protein expression levels, whilst Cell Counting Kit-8 (CCK-8) assays, cell cycle analysis (by flow cytometry) and apoptosis assays (with Annexin V/PI staining) were used to assess drug sensitivity. CCK-8 assay results suggested that MCF-7/DOX cells, which overexpress the caveolin-1 protein, have similar OA susceptibility to their parent line. In addition, sensitivity of MCF-7/DOX cells to OA was not augmented by knocking down caveolin-1 using RNA interference. HL-60/HAR cells exhibited a four-fold increased sensitivity to OA compared with that in their parental HL-60 cells according to CCK-8 assay. Both of the resistant cell lines exhibited higher numbers of cells at G1 phase arrest compared with those in their parent lines, as measured via flow cytometry. Treatment of both MCF-7 cell lines with 100 µM OA for 48 h induced apoptosis, with increased effects observed in resistant cells. However, no PARP-1 or caspase-3 cleavage was observed, with some positive Annexin V staining found after HL-60/HAR cells were treated with OA, suggesting that cell death occurred via non-classical apoptosis or through other cell death pathways. It was found that OA was not a substrate of ATP-binding cassette subfamily B member 1 (ABCB1) in drug-resistant cells, as indicated by the accumulation of rhodamine 123 assessed using flow cytometry. However, protein expression of ABCB1 in both of the resistant cell lines was significantly decreased after treatment with OA in a concentration-dependent manner. Collectively, these results suggest that OA could reduce ABCB1 protein expression and induce G1 phase arrest in multidrug-resistant cancer cells. These findings highlight the potential of OA for cancer therapy.
Collapse
Affiliation(s)
- Didi Wang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jincai Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Juan Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Xin Yi
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China.,Department of Clinical Medicine, Heilongjiang Nursing College, Harbin, Heilongjiang 150086, P.R. China
| | - Jinhua Piao
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Li Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jianjie Wang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Pengxia Zhang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Qiyang He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| |
Collapse
|
12
|
DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition. DNA Repair (Amst) 2020; 98:103032. [PMID: 33494010 DOI: 10.1016/j.dnarep.2020.103032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common and significant cancers in females regarding the loss of life quality. Similar to other cancers, one of the etiologic factors in breast cancer is DNA damage. A plethora of molecules are responsible for sensing DNA damage and mediating actions which lead to DNA repair, senescence, cell cycle arrest and if damage is unbearable to apoptosis. In each of these, aberrations leading to unrepaired damage was resulted in uncontrolled proliferation and cancer. Another cellular function is autophagy defined as a process eliminating of unnecessary proteins in stress cases involved in pathogenesis of cancer. Knowing their role in cancer, scholars have tried to develop strategies in order to target DDR and autophagy. Further, the interactions of DDR and autophagy plus their regulatory role on each other have been focused simultaneously. The present review study has aimed to illustrate the importance of DDR and autophagy in breast cancer according to the related studies and uncover the relation between DDR and autophagy and its significance in breast cancer therapy.
Collapse
|
13
|
Smith DK, Hasanali SL, Wang J, Kallifatidis G, Morera DS, Jordan AR, Terris MK, Klaassen Z, Bollag R, Lokeshwar VB, Lokeshwar BL. Promotion of epithelial hyperplasia by interleukin-8-CXCR axis in human prostate. Prostate 2020; 80:938-949. [PMID: 32542667 PMCID: PMC8327464 DOI: 10.1002/pros.24026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The clinical manifestation of benign prostatic hyperplasia (BPH) is causally linked to the inflammatory microenvironment and proliferation of epithelial and stromal cells in the prostate transitional zone. The CXC-chemokine interleukin-8 (IL-8) contributes to inflammation. We evaluated the expression of inflammatory cytokines in clinical specimens, primary cultures, and prostatic lineage cell lines. We investigated whether IL-8 via its receptor system (IL-8 axis) promotes BPH. METHODS The messenger RNA and protein expression of chemokines, including components of the IL-8 axis, were measured in normal prostate (NP; n = 7) and BPH (n = 21), urine (n = 24) specimens, primary cultures, prostatic lineage epithelial cell lines (NHPrE1, BHPrE1, BPH-1), and normal prostate cells (RWPE-1). The functional role of the IL-8 axis in prostate epithelial cell growth was evaluated by CRISPR/Cas9 gene editing. The effect of a combination with two natural compounds, oleanolic acid (OA) and ursolic acid (UA), was evaluated on the expression of the IL-8 axis and epithelial cell growth. RESULTS Among the 19 inflammatory chemokines and chemokine receptors we analyzed, levels of IL-8 and its receptors (CXCR1, CXCR2), as well as, of CXCR7, a receptor for CXCL12, were 5- to 25-fold elevated in BPH tissues when compared to NP tissues (P ≤ .001). Urinary IL-8 levels were threefold to sixfold elevated in BPH patients, but not in asymptomatic males and females with lower urinary tract symptoms (P ≤ .004). The expression of the IL-8 axis components was confined to the prostate luminal epithelial cells in both normal and BPH tissues. However, these components were elevated in BPH-1 and primary explant cultures as compared to RWPE-1, NHPrE1, and BHPrE1 cells. Knockout of CXCR7 reduced IL-8, and CXCR1 expression by 4- to 10-fold and caused greater than or equal to 50% growth inhibition in BPH-1 cells. Low-dose OA + UA combination synergistically inhibited the growth of BPH-1 and BPH primary cultures. In the combination, the drug reduction indices for UA and OA were 16.4 and 7852, respectively, demonstrating that the combination was effective in inhibiting BPH-1 growth at significantly reduced doses of UA or OA alone. CONCLUSION The IL-8 axis is a promotor of BPH pathogenesis. Low-dose OA + UA combination inhibits BPH cell growth by inducing autophagy and reducing IL-8 axis expression in BPH-epithelial cells.
Collapse
Affiliation(s)
- Diandra K. Smith
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Sarrah L. Hasanali
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jiaojiao Wang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Georgios Kallifatidis
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| | - Daley S. Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Andre R. Jordan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Martha K. Terris
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Roni Bollag
- Department of Pathology, Bio-Repository Alliance of Georgia for Oncology (BRAG-Onc), Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L. Lokeshwar
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
14
|
Wang SS, Zhang QL, Chu P, Kong LQ, Li GZ, Li YQ, Yang L, Zhao WJ, Guo XH, Tang ZY. Synthesis and antitumor activity of α,β-unsaturated carbonyl moiety- containing oleanolic acid derivatives targeting PI3K/AKT/mTOR signaling pathway. Bioorg Chem 2020; 101:104036. [DOI: 10.1016/j.bioorg.2020.104036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
|
15
|
Yu B, Yuan B, Li J, Kiyomi A, Kikuchi H, Hayashi H, Hu X, Okazaki M, Sugiura M, Hirano T, Fan Y, Pei X, Takagi N. JNK and Autophagy Independently Contributed to Cytotoxicity of Arsenite combined With Tetrandrine via Modulating Cell Cycle Progression in Human Breast Cancer Cells. Front Pharmacol 2020; 11:1087. [PMID: 32765280 PMCID: PMC7379898 DOI: 10.3389/fphar.2020.01087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Novel therapeutic strategies for breast cancer are urgently needed due to the sustained development of drug resistance and tumor recurrence. Trivalent arsenic derivative (arsenite, AsIII) has been reported to induce cytotoxicity in breast cancer cells. We recently demonstrated that AsIII plus tetrandrine (Tetra), a Chinese plant-derived alkaloid, exerted potent antitumor activity against human breast cancer cells, however, the underlying mechanisms for their action have not been well defined. In order to provide fundamental insights for understanding the action of AsIII plus Tetra, the effects of the combined regimen on two breast cancer cell lines T47D and MDA-MB-231 were evaluated. Compared to T47D cells, MDA-MB-231 cells were much more susceptible to the synergistic cytotoxic effects of AsIII and Tetra. Besides the induction of apoptotic/necrotic cell death, S-phase arrest and autophagic cell death were also observed in MDA-MB-231 cells. Exposure of MDA-MB-231 cells to AsIII and Tetra caused the activation of MAPKs. Cytotoxicity of the combined regimen in MDA-MB-231 cell was significantly abrogated by SP600125, a potent c-Jun N-terminal kinase (JNK) inhibitor. However, similar abrogation was not caused by p38 and ERK inhibitors. The addition of either autophagy inhibitors (3-methyladenine or wortmannin) or SP600125 corrected the combined regimen-triggered S-phase arrest, whereas had little effect on the apoptosis/necrosis induction in the cells. Surprisingly, SP600125NC, a negative control for SP600125, significantly strengthened S-phase arrest and the cytotoxicity induced by the combined regimen. The addition of SP600125 did not alter autophagy induction. In conclusion, the cytotoxicity of AsIII combined with Tetra was attributed to the induction of S-phase arrest, apoptotic/necrotic and autophagic cell death. The enhanced cytotoxicity of the two drugs by SP600125NC might be explained by its capability to strengthen S-phase arrest. Our results suggested that JNK and autophagy independently contributed to the cytotoxicity via modulating cell cycle progression. The study further provides fundamental insights for the development of AsIII in combination with Tetra for patients with different types of breast cancer.
Collapse
Affiliation(s)
- Bowen Yu
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan.,Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan.,Laboratory of Pharmacology, School of Pharmacy, Josai University, Saitama, Japan
| | - JingZhe Li
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anna Kiyomi
- Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Xiaomei Hu
- Hematology Department, XiYuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mari Okazaki
- Laboratory of Pharmacology, School of Pharmacy, Josai University, Saitama, Japan
| | - Munetoshi Sugiura
- Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Toshihiko Hirano
- Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yingyi Fan
- Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaohua Pei
- Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| |
Collapse
|
16
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
17
|
Donovan MG, Selmin OI, Stillwater BJ, Neumayer LA, Romagnolo DF. Do Olive and Fish Oils of the Mediterranean Diet Have a Role in Triple Negative Breast Cancer Prevention and Therapy? An Exploration of Evidence in Cells and Animal Models. Front Nutr 2020; 7:571455. [PMID: 33123546 PMCID: PMC7573103 DOI: 10.3389/fnut.2020.571455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common malignancy and cause of cancer-related mortality among women worldwide. Triple negative breast cancers (TNBC) are the most aggressive and lethal of the breast cancer molecular subtypes, due in part to a poor understanding of TNBC etiology and lack of targeted therapeutics. Despite advances in the clinical management of TNBC, optimal treatment regimens remain elusive. Thus, identifying interventional approaches that suppress the initiation and progression of TNBC, while minimizing side effects, would be of great interest. Studies have documented an inverse relationship between the incidence of hormone receptor negative breast cancer and adherence to a Mediterranean Diet, particularly higher consumption of fish and olive oil. Here, we performed a review of studies over the last 5 years investigating the effects of fish oil, olive oil and their components in model systems of TNBC. We included studies that focused on the fish oil ω-3 essential fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in addition to olive oil polyphenolic compounds and oleic acid. Both beneficial and deleterious effects on TNBC model systems are reviewed and we highlight how multiple components of these Mediterranean Diet oils target signaling pathways known to be aberrant in TNBC including PI3K/Akt/mTOR, NF-κB/COX2 and Wnt/β-catenin.
Collapse
Affiliation(s)
- Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ, United States
| | - Ornella I. Selmin
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
| | - Barbara J. Stillwater
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Leigh A. Neumayer
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Donato F. Romagnolo
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Donato F. Romagnolo
| |
Collapse
|
18
|
Gao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, Fan H, Liu Z, Zhu H. Cardio-renal Exosomes in Myocardial Infarction Serum Regulate Proangiogenic Paracrine Signaling in Adipose Mesenchymal Stem Cells. Am J Cancer Res 2020; 10:1060-1073. [PMID: 31938051 PMCID: PMC6956822 DOI: 10.7150/thno.37678] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration. However, the molecular mechanisms underlying MSCs activation remain largely unknown, thus hindering their clinical translation. Exosomes are small vesicles that act as intercellular messengers, and their potential for stem cell activation in pathological conditions has not been fully characterized yet. Here, we aim to investigate whether serum exosomes are involved in the remote activation of MSCs after myocardial infarction (MI). Methods: We established MI mouse model by ligating the left anterior descending branch of the coronary artery. Afterwards, serum exosomes were isolated from control (Con Exo) and MI mice (MI Exo) by differential centrifugation. Exosomes were characterized through transmission electron microscopy and nanoparticle tracking analysis. The cell proliferation rate was evaluated by CCK-8 and EdU incorporation assays. Exosomal miRNA and protein levels were assessed using qRT-PCR and western blotting, respectively. VEGF levels in the supernatant and serum were quantified by ELISA. Matrigel plug and tube formation assays were used to evaluate angiogenesis. To explore miR-1956 roles, overexpression and knock-down experiments were performed using mimic and inhibitor, respectively. Finally, miR-1956 target genes were confirmed using the luciferase reporter assay. Results: Both types of exosomes exhibited typical characteristics and could be internalized by adipose-derived MSCs (ADMSCs). MI Exo enhanced ADMSCs proliferation through the activation of ERK1/2. Gain- and loss-of-function studies allowed the validation of miR-1956 (enriched in MI Exo) as the functional messenger that stimulates ADMSCs-mediated angiogenesis and paracrine VEGF signaling, by downregulating Notch-1. Finally, we found that the ischemic myocardium and kidney may be the main sources that release serum exosomes after MI. Conclusions: Cardio-renal exosomes deliver miR-1956 and activate paracrine proangiogenic VEGF signaling in ADMSCs after MI; this process also involves Notch-1, which functions as the core mediator.
Collapse
|
19
|
Zhu B, Ren C, Du K, Zhu H, Ai Y, Kang F, Luo Y, Liu W, Wang L, Xu Y, Jiang X, Zhang Y. Olean-28,13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem Pharmacol 2019; 170:113642. [PMID: 31541631 DOI: 10.1016/j.bcp.2019.113642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Lung cancer, similar to other chronic diseases, occurs due to perturbations in multiple signaling pathways. Mono-targeted therapies are not ideal since they are not likely to be effective for the treatment and prevention of lung cancer, and are often associated with drug resistance. Therefore, the development of multi-targeted agents is required for novel lung cancer therapies. Thioredoxin reductase (TrxR or TXNRD1) is a pivotal component of the thioredoxin (Trx) system. Various types of tumor cells are able to overexpress TrxR/Trx proteins in order to maintain tumor survival, and this overexpression has been shown to be associated with clinical outcomes, including irradiation and drug resistance. Emerging evidence has indicated that oleanolic acid (OA) and its derivatives exhibit potent anticancer activity, and are able to overcome drug resistance in cancer cell lines. In the present study, it was demonstrated that a novel synthesized OA family compound, olean-28,13b-olide 2 (OLO-2), synergistically enhanced cisplatin (CDDP)-mediated apoptosis, led to the activation of caspase-3 and the generation of reactive oxygen species (ROS), induced DNA damage, and inhibited the activation of the extracellular-signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), AKT and nuclear factor-κB (NF-κB) pathways in human multidrug-resistant A549/CDDP lung adenocarcinoma cells. Subsequent analyses revealed that OLO-2 inhibited P-glycoprotein (P-gp or ABCB1) and TrxR by reducing their expression at the protein and mRNA levels, and by suppressing P-gp ATPase and TrxR activities. Further biological evaluation indicated that OLO-2 significantly reduced Trx and excision repair cross-complementary1 (ERCC1) protein expression and significantly inhibited the proliferation of drug-sensitive (A549) and multidrug-resistant (A549/CDDP) non-small cell lung cancer (NSCLC) cells, but had no effect on non-tumor lung epithelial-like cells. In addition, the present study demonstrated, for the first time, to the best of our knowledge, that overexpressing or knocking down TrxR in NSCLC cells enhanced or attenuated, respectively, the resistance of NSCLC cells against CDDP, which indicated that TrxR plays an important role in CDDP resistance and functions as a protector of NSCLC against chemotherapeutic drugs. OLO-2 treatment also exhibited up to 4.6-fold selectivity against human lung adenocarcinoma cells. Taken together, the results of the present study shed light on the drug resistance-reversing effects of OLO-2 in lung cancer cells.
Collapse
Affiliation(s)
- Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China.
| | - Ke Du
- Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Yong Ai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Fenghua Kang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yi Luo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Yang Xu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
20
|
Xu B, Ding MY, Weng Z, Li ZQ, Li F, Sun X, Chen QL, Wang YT, Wang Y, Zhou GC. Discovery of fused bicyclic derivatives of 1H-pyrrolo[1,2-c]imidazol-1-one as VDR signaling regulators. Bioorg Med Chem 2019; 27:3879-3888. [DOI: 10.1016/j.bmc.2019.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
21
|
Zhang YJ, Xu ZG, Li SQ, He LJ, Tang Y, Chen ZZ, Yang DL. Benzimidazoisoquinoline derivatives inhibit glioblastoma cell proliferation through down-regulating Raf/MEK/ERK and PI3K/AKT pathways. Cancer Cell Int 2018; 18:90. [PMID: 29988358 PMCID: PMC6022716 DOI: 10.1186/s12935-018-0588-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Background Recent studies showed that benzimidazoleisoquinolinone derivatives exhibit anticancer activity against human cancer cell lines. The aim of this study is to evaluate the anti-tumor effects and mechanisms of benzimidazoleisoquinolinones in isocitrate dehydrogenase-wildtype subtype of human glioblastoma (GBM) cells. Methods Human U87 and LN229 cell lines were used to perform the experiments. MTT was applied to screen the effective small molecular inhibitors suppressing growth of GBM cells. Colony formation and BrdU staining assays were performed to assess the inhibition effect of compound-1H on the proliferation of GBM cells. The cell cycle and apoptosis were measured by flow cytometry and western blot to analyze the changes of the relative protein expressions and their signal pathways. Results Compound-1H could suppress GBM cells in a time- and dose-dependent manner. Treatment of compound-1H could arrest cell cycle in S phase through up-regulating P21 and P53, and down-regulating cyclin A and E in a dose-dependent manner. Compound-1H also induced mitochondrial-dependent apoptosis by increasing Bax, cleaved caspase-3, cleaved caspase-9 and poly ADP-ribose polymerase expression, and decreasing Bcl-2 expression. Moreover, phosphorylated (p)-AKT and p-ERK levels relating to cell proliferation were dramatically decreased in U87 and LN229 cells. Conclusions Our results suggest that it is the first time to report the compound-1H with benzimidazoleisoquinolinone core playing antitumor activity in human glioblastoma cells by inhibiting Raf/MEK/ERK and PI3K/AKT signaling pathways, and it could be as a lead compound for the further development of targeted glioblastoma cancer therapy.
Collapse
Affiliation(s)
- Ya-Jun Zhang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Shi-Qiang Li
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Liu-Jun He
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Yan Tang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Dong-Lin Yang
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, 402160 China
| |
Collapse
|
22
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
23
|
Song Y, Kong L, Sun B, Gao L, Chu P, Ahsan A, Qaed E, Lin Y, Peng J, Ma X, Zhang J, Wang S, Tang Z. Induction of autophagy by an oleanolic acid derivative, SZC017, promotes ROS-dependent apoptosis through Akt and JAK2/STAT3 signaling pathway in human lung cancer cells. Cell Biol Int 2017; 41:1367-1378. [PMID: 28880428 DOI: 10.1002/cbin.10868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022]
Abstract
The signal transducers and activators of transcription 3 (STAT3) signaling pathway is a common feature in many solid tumors including non-small cell lung cancer, whereas current therapies usually fail to treat this disease in majority of cases. In the present study, we aimed to investigate the cytotoxic effect and the underlying mechanisms of SZC017, an oleanolic acid derivative, on human lung cancer cells. Cell viability was significantly decreased in SZC017-treated lung cancer cells. Mechanistically, SZC017 reduced A549 cell viability by activating both apoptosis and autophagy pathways. SZC017 was able to inhibit the phosphorylation of Akt, JAK2, and STAT3 in A549 cells, resulting in the inactivation of Akt and JAK2/STAT3 signaling pathways. In addition, SZC017 could induce ROS generation and Ca2+ release. Pretreatment with N-Acetyl L-Cysteine, a ROS scavenger, could fully reverse SZC017-induced ROS and increase the expression of Akt, p-STAT3, and procaspase-3, while decrease the ratio of LC3-II/I and the expression of Beclin-1. In summary, our study provides pharmacological evidence that SZC017 exhibits potential use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Lingqi Kong
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Bin Sun
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Lei Gao
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Anil Ahsan
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Yuan Lin
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| |
Collapse
|
24
|
Wang EX, Zou BY, Shi L, Du LY, Zhu YY, Jiang YM, Ma XD, Kang XH, Wang CY, Zhen YH, Sun LD. 7-O-geranylquercetin-induced autophagy contributes to apoptosis via ROS generation in human non-small cell lung cancer cells. Life Sci 2017; 180:102-113. [PMID: 28495516 DOI: 10.1016/j.lfs.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023]
Abstract
AIMS To investigate the antitumor effects of 7-O-geranylquercetin (GQ), a novel O-alkylated derivative of quercetin, against non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H1975 and the corresponding mechanisms. MAIN METHODS Cell viability was assessed using MTT assay. The expression of proteins involved in apoptosis and autophagy was measured using western blotting. Besides, apoptosis was determined with DAPI staining, Annexin V-PI staining and transmission electron microscopy (TEM) assay, and autophagy was observed with TEM assay. Cell cycle and reactive oxygen species (ROS) level were detected using flow cytometry. KEY FINDINGS GQ inhibited viability of A549 and NCI-H1975 cells in a dose- and time-dependent manner without apparent cytotoxicity to normal human lung fibroblast cells. GQ down-regulated the expression of apoptosis-related proteins pro-caspase 3 and Bcl-2, and up-regulated the expression of cleaved-PARP and Bax in A549 and NCI-H1975 cells. Meanwhile, GQ-induced cell apoptosis could be attenuated by caspase inhibitor Z-VAD-FMK. Besides, GQ induced autophagosome formation in A549 and NCI-H1975 cells, promoted the expression of autophagy-related proteins LC3-II and Beclin 1, and suppressed the expression of p62. Autophagy inhibition with chloroquine or Beclin 1 siRNA could effectively inhibit GQ-induced apoptosis. Furthermore, GQ treatment increased the generation of ROS, and ROS inhibitor N-acetylcysteine could reverse GQ-induced autophagy and apoptosis. Taken together, GQ could induce apoptosis and autophagy via ROS generation in A549 and NCI-H1975 cells, and GQ-induced autophagy contributed to apoptosis. SIGNIFICANCE Our findings highlight that GQ is a promising anticancer agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- En-Xia Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bo-Yang Zou
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Shi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lin-Ying Du
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan-Yan Zhu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ya-Meng Jiang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiao-Dong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiao-Hui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chang-Yuan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yu-Hong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Li-Dan Sun
- Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian 116001, China.
| |
Collapse
|
25
|
Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol Sin 2017; 38:539-550. [PMID: 28112178 DOI: 10.1038/aps.2016.146] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023] Open
Abstract
Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1-100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10-40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20-40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory action of BITC; the autophagy induction is mediated by the ER stress response.
Collapse
|
26
|
Gao L, Zhu H, Fan H, Liu Z. Chloroquine exacerbates serum withdrawal-induced G 1 phase arrest via an autophagy-independent mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra06737b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chloroquine exacerbates serum withdrawal-induced G1 phase arrest via an autophagy-independent, but an oxidative stress-dependent mechanism in endothelial cells.
Collapse
Affiliation(s)
- Lei Gao
- Research Institute of Heart Failure
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
- China
| | - Hongming Zhu
- Research Institute of Heart Failure
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
- China
| | - Huimin Fan
- Research Institute of Heart Failure
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
- China
| | - Zhongmin Liu
- Research Institute of Heart Failure
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
- China
| |
Collapse
|
27
|
Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA. RSC Adv 2017. [DOI: 10.1039/c7ra06793c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chitosan (CS) is a semi-synthetic bio-based polysaccharide with promising biological and antitumor properties.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | - Hossein Behboudi
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| | | | - Sussan K. Ardestani
- Institute of Biochemistry and Biophysics
- Department of Biochemistry
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
28
|
Sun B, Gao L, Ahsan A, Chu P, Song Y, Li H, Zhang Z, Lin Y, Peng J, Song Z, Wang S, Tang Z. Anticancer effect of SZC015 on lung cancer cells through ROS-dependent apoptosis and autophagy induction mechanisms in vitro. Int Immunopharmacol 2016; 40:400-409. [PMID: 27697723 DOI: 10.1016/j.intimp.2016.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/31/2016] [Accepted: 09/24/2016] [Indexed: 12/16/2022]
Abstract
Oleanolic acid (OA) and its several derivatives possess various pharmacological activities, such as antitumor and anti-inflammation. In present study, anticancer effect of SZC015, an OA derivative, and its underlying mechanisms were investigated. We demonstrated that cell viability was significantly decreased in SZC015-treated lung cancer cells, but has less cytotoxicity in human bronchial epithelial cell line. Further investigation verified that apoptosis and autophagy induction and G0/G1 phase arrest were observed in SZC015-treated H322 cells. Mechanically, the level of Akt, p-Akt, p-IκBα, and total p65, the p-p65 in the cytoplasm and nucleus were suppressed by SZC015 in H322 cells, respectively. Inhibition of p65 nuclear translocation was also confirmed by immunofluorescence staining. In addition, co-treatment with chloroquine, an autophagy inhibitor, significantly inhibited SZC015-induced autophagy and enhanced SZC015-induced apoptotic cell death. Intracellular ROS was increased in a concentration-dependent manner, which could be prevented by N-Acetyl l-Cysteine, an ROS scavenger. Moreover, the level of Akt and procaspase-3 were increased, while the ratio of LC3 II/I was decreased. Taken together, our study demonstrates that the inhibitory effect of SZC015 against H322 cells is mediated by excessive ROS generation that could suppress Akt/NF-κB signaling pathway, which thereby leads to apoptotic and autophagic cell death.
Collapse
Affiliation(s)
- Bin Sun
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Lei Gao
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Anil Ahsan
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Peng Chu
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Yanlin Song
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Hailong Li
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Zonghui Zhang
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Yuan Lin
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China
| | - Zhicheng Song
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China.
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, 9 West Section, South Road of Lvshun, Dalian, China.
| |
Collapse
|
29
|
Yang B, Zhao Y, Lou C, Zhao H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol Rep 2016; 36:2807-2813. [DOI: 10.3892/or.2016.5115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 11/05/2022] Open
|
30
|
Liu T, Wu L, Wang D, Wang H, Chen J, Yang C, Bao J, Wu C. Role of reactive oxygen species-mediated MAPK and NF-κB activation inpolygonatum cyrtonemalectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem 2016; 160:315-324. [DOI: 10.1093/jb/mvw040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023] Open
|
31
|
Mathis BJ, Cui T. CDDO and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:291-314. [PMID: 27771930 DOI: 10.1007/978-3-319-41342-6_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a continued interest in translational research focused on both natural products and manipulation of functional groups on these compounds to create novel derivatives with higher desired activities. Oleanolic acid, a component of traditional Chinese medicine used in hepatitis therapy, was modified by chemical processes to form 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO). This modification increased anti-inflammatory activity significantly and additional functional groups on the CDDO backbone have shown promise in treating conditions ranging from kidney disease to obesity to diabetes. CDDO's therapeutic effect is due to its upregulation of the master antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) through conformational change of Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and multiple animal and human studies have verified subsequent activation of Nrf2-controlled antioxidant genes via upstream Antioxidant Response Element (ARE) regions. At the present time, positive results have been obtained in the laboratory and clinical trials with CDDO derivatives treating conditions such as lung injury, inflammation and chronic kidney disease. However, clinical trials for cancer and cardiovascular disease have not shown equally positive results and further exploration of CDDO and its derivatives is needed to put these shortcomings into context for the purpose of future therapeutic modalities.
Collapse
Affiliation(s)
- Bryan J Mathis
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garners Ferry Rd., Columbia, South Carolina, 29209, USA.
| |
Collapse
|