1
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
2
|
Kaneko T, Otoshi R, Sekine A, Baba T, Yamada C, Haga S, Tagami Y, Sawazumi T, Takemura T, Komatsu S, Hagiwara E, Ogura T. Drug-related pneumonitis caused by amikacin liposome inhalation suspension: One pathologically proven case and single-center experience. Respir Investig 2024; 62:513-516. [PMID: 38615375 DOI: 10.1016/j.resinv.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Amikacin liposome inhalation suspension (ALIS) is known to cause drug-related pneumonitis, which has been described as "hypersensitivity pneumonitis (HP)". However, its clinical and pathological characteristics have never been reported. We retrospectively evaluated 18 patients treated with ALIS. Three (16.7%) patients developed HP-pattern pneumonitis on high-resolution computed tomography. Serum eosinophil counts were elevated up to above 1000/μL in these three patients, which decreased with ALIS discontinuation only. Of note, the specimen obtained by transbronchial lung cryobiopsy in one patient revealed a mild degree of lymphocyte and eosinophil infiltration. Rather, the findings of acute lung injury such as an edematous thickening of the alveolar walls, and an accumulation of foamy degenerative macrophages in the alveolar lumina was prominent. A pulmonary alveolar proteinosis reaction was also observed. HP-pattern pneumonitis due to ALIS may pathologically correspond to acute lung injury and a pulmonary alveolar proteinosis reaction despite increasing serum eosinophil counts.
Collapse
Affiliation(s)
- Taichi Kaneko
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Ryota Otoshi
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Akimasa Sekine
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Chieri Yamada
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Sanshiro Haga
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Yoichi Tagami
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Tomoe Sawazumi
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Tamiko Takemura
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Shigeru Komatsu
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Eri Hagiwara
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| |
Collapse
|
3
|
Ding S, Wang X, Ma F, Cai Z, Li X, Gao J, Chen X, Wu L. Effect and Mechanism of Mycobacterium avium MAV-5183 on Apoptosis of Mouse Ana-1 Macrophages. Cell Biochem Biophys 2024; 82:885-894. [PMID: 38430410 DOI: 10.1007/s12013-024-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
To investigate the effects and mechanisms of Mycobacterium avium MAV-5183 protein on apoptosis in mouse Ana-1 macrophages. A pET-21a-MAV-5183 recombinant plasmid was constructed. The recombinant MAV-5183 protein was cloned, expressed, purified, and identified using an anti-His-tagged antibody. Rabbits were immunized to obtain antiserum, and its potency and immunoreactivity were assessed through WB. Mouse Ana-1 macrophages were incubated with varying concentrations of MAV-5183 protein. Flow cytometry, following ANNEXIN V-FITC/PI double staining, detected apoptosis. Western Blot analysis was conducted to identify apoptosis-related molecules Caspase-9/8/3 and vesicle-related molecules ASC, NLRP3, and Cleaved-casp1. ELISA measured TNF-α and IL-6 levels in the culture supernatant. LDH activity and ROS levels were analyzed separately. RT-qPCR measured mRNA levels of Caspase-9/8/3, ASC, NLRP3, Caspase-1, IL-1β, Bax, MAPK-p38, Bcl-2, TNF-α, and IL-6. MAV-5183 protein was successfully cloned, purified, and identified. In in vitro studies on Ana-1 macrophages, MAV-5183 protein increased the expression of Caspase-9/8/3, ASC, NLRP3 (P < 0.01), induced ROS secretion (P < 0.05), and promoted inflammatory cytokine secretion (TNF-α, IL-6, P < 0.0001); however, it did not significantly affect LDH (P > 0.05). MAV-5183 also induced apoptosis in Ana-1 macrophages (P < 0.05). RT-qPCR results indicated a significant increase in mRNA expression of Caspase-9/8/3, ASC, NLRP3, TNF-α, IL-6, MAPK-p38, and pro-apoptotic factor Bax (P < 0.01), with no significant effect on Bcl-2 and IL-1β mRNA (P > 0.05). The data indicate that MAV-5183 induces macrophage apoptosis through a caspase-dependent pathway and promotes inflammatory cytokine secretion via ROS.
Collapse
Affiliation(s)
- Shoupeng Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Xuan Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- School of Clinical Medicine, Nanchang University Queen Mary School, Nanchang, 330031, China
| | - Fengqian Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Zihan Cai
- Department of Medical Laboratory, Siyang Hospital, Suqian, 237000, China
| | - Xiangfang Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Jinghua Gao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Xiaowen Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Lixian Wu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China.
| |
Collapse
|
4
|
Yoshida M, Kwon AT, Qin XY, Nishimura H, Maeda S, Miyamoto Y, Yoshida Y, Hoshino Y, Suzuki H. Transcriptome analysis of long non-coding RNAs in Mycobacterium avium complex-infected macrophages. Front Immunol 2024; 15:1374437. [PMID: 38711507 PMCID: PMC11070510 DOI: 10.3389/fimmu.2024.1374437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Andrew Taejun Kwon
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiori Maeda
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Kita-Kyushu, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Kajiwara C, Shiozawa A, Urabe N, Yamaguchi T, Kimura S, Akasaka Y, Ishii Y, Tateda K. Apoptosis Inhibitor of Macrophages Contributes to the Chronicity of Mycobacterium avium Infection by Promoting Foamy Macrophage Formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:431-441. [PMID: 36602769 DOI: 10.4049/jimmunol.2200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
In Mycobacterium avium infections, macrophages play a critical role in the host defense response. Apoptosis inhibitor of macrophage (AIM), also known as CD5L, may represent a novel supportive therapy against various diseases, including metabolic syndrome and infectious diseases. The mechanisms of AIM include modulating lipid metabolism in macrophages and other host cells. We investigated the role of AIM in M. avium infections in vitro and in vivo. In a mouse model of M. avium pneumonia, foamy macrophages were induced 6 wk after infection. The bacteria localized in these macrophages. Flow cytometric analysis also confirmed that the percentage of CD11chighMHCclassIIhigh interstitial and alveolar macrophages, a cell surface marker defined as foamy macrophages, increased significantly after infection. AIM in alveolar lavage fluid and serum gradually increased after infection. Administration of recombinant AIM significantly increased the number of bacteria in the lungs of mice, accompanied by the induction of inflammatory cytokine and iNOS expression. In mouse bone marrow-derived macrophages, the mRNA expression of AIM after M. avium infection and the amount of AIM in the supernatant increased prior to the increase in intracellular bacteria. Infected cells treated with anti-AIM Abs had fewer bacteria and a higher percentage of apoptosis-positive cells than infected cells treated with isotype control Abs. Finally, AIM in the sera of patients with M. avium-pulmonary disease was measured and was significantly higher than in healthy volunteers. This suggests that AIM production is enhanced in M. avium-infected macrophages, increasing macrophage resistance to apoptosis and providing a possible site for bacterial growth.
Collapse
Affiliation(s)
- Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Urabe
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Shonan University of Medical Sciences, Kanagawa, Japan; and
| | - Yoshikiyo Akasaka
- Department of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
The Role of NRF2 in Mycobacterial Infection. Antioxidants (Basel) 2021; 10:antiox10121861. [PMID: 34942964 PMCID: PMC8699052 DOI: 10.3390/antiox10121861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection.
Collapse
|
7
|
Abukhalid N, Islam S, Ndzeidze R, Bermudez LE. Mycobacterium avium Subsp. hominissuis Interactions with Macrophage Killing Mechanisms. Pathogens 2021; 10:1365. [PMID: 34832521 PMCID: PMC8623537 DOI: 10.3390/pathogens10111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTM) are ubiquitously found throughout the environment. NTM can cause respiratory infections in individuals with underlying lung conditions when inhaled, or systemic infections when ingested by patients with impaired immune systems. Current therapies can be ineffective at treating NTM respiratory infections, even after a long course or with multidrug treatment regimens. NTM, such as Mycobacterium avium subspecies hominissuis (M. avium), is an opportunistic pathogen that shares environments with ubiquitous free-living amoeba and other environmental hosts, possibly their evolutionary hosts. It is highly likely that interactions between M. avium and free-living amoeba have provided selective pressure on the bacteria to acquire survival mechanisms, which are also used against predation by macrophages. In macrophages, M. avium resides inside phagosomes and has been shown to exit it to infect other cells. M. avium's adaptation to the hostile intra-phagosomal environment is due to many virulence mechanisms. M. avium is able to switch the phenotype of the macrophage to be anti-inflammatory (M2). Here, we have focused on and discussed the bacterial defense mechanisms associated with the intra-phagosome phase of infection. M. avium possesses a plethora of antioxidant enzymes, including the superoxide dismutases, catalase and alkyl hydroperoxide reductase. When these defenses fail or are overtaken by robust oxidative burst, many other enzymes exist to repair damage incurred on M. avium proteins, including thioredoxin/thioredoxin reductase. Finally, M. avium has several oxidant sensors that induce transcription of antioxidant enzymes, oxidation repair enzymes and biofilm- promoting genes. These expressions induce physiological changes that allow M. avium to survive in the face of leukocyte-generated oxidative stress. We will discuss the strategies used by M. avium to infect human macrophages that evolved during its evolution from free-living amoeba. The more insight we gain about M. avium's mode of pathogenicity, the more targets we can have to direct new anti-virulence therapies toward.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Sabrina Islam
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Robert Ndzeidze
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (N.A.); (S.I.); (R.N.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Lee KI, Choi S, Choi HG, Gurmessa SK, Dang TB, Back YW, Park HS, Kim HJ. Recombinant Rv1654 protein of Mycobacterium tuberculosis induces mitochondria-mediated apoptosis in macrophage. Microbiol Immunol 2021; 65:178-188. [PMID: 33565648 DOI: 10.1111/1348-0421.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/10/2021] [Accepted: 02/08/2021] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis contains diverse immunologically active components. This study investigated the biological function of a newly identified component, Rv1654, with the potential to induce apoptosis in macrophages. Recombinant Rv1654 induced macrophage apoptosis in a caspase-9/3-dependent manner through the production of reactive oxygen species (ROS) and interaction with Toll-like receptor 4. In addition, Rv1654 induced the production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 through the mitogen-activated protein kinase pathway. Furthermore, Rv1654-induced c-Jun N-terminal kinase (JNK) activation was inhibited by the ROS scavenger and Rv1654-induced apoptosis was inhibited by the JNK inhibitor. Moreover, it was found that treatment of macrophages with Rv1654 led to the loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, and translocation of Bax into the mitochondria. Finally, Rv1654-mediated apoptosis was inhibited in macrophages transfected with Bax siRNA. These results suggest that Rv1654 induces macrophage apoptosis through a mitochondrial-dependent pathway and ROS-mediated JNK activation.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sintayehu Kebede Gurmessa
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Thi Binh Dang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Translational Immunology Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.,Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
9
|
Shin MK, Shin SJ. Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int J Mol Sci 2021; 22:ijms22063011. [PMID: 33809463 PMCID: PMC8000623 DOI: 10.3390/ijms22063011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium complex (MAC), a collection of mycobacterial species representing nontuberculous mycobacteria, are characterized as ubiquitous and opportunistic pathogens. The incidence and prevalence of infectious diseases caused by MAC have been emerging globally due to complications in the treatment of MAC-pulmonary disease (PD) in humans and the lack of understating individual differences in genetic traits and pathogenesis of MAC species or subspecies. Despite genetically close one to another, mycobacteria species belonging to the MAC cause diseases to different host range along with a distinct spectrum of disease. In addition, unlike Mycobacterium tuberculosis, the underlying mechanisms for the pathogenesis of MAC infection from environmental sources of infection to their survival strategies within host cells have not been fully elucidated. In this review, we highlight unique genetic and genotypic differences in MAC species and the virulence factors conferring the ability to MAC for the tactics evading innate immune attacks of host cells based on the recent advances in genetic analysis by exemplifying M. avium subsp. hominissuis, a major representative pathogen causing MAC-PD in humans. Further understanding of the genetic link between host and MAC may contribute to enhance host anti-MAC immunity, but also provide novel therapeutic approaches targeting the pangenesis-associated genes of MAC.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1813
| |
Collapse
|
10
|
Dubey RK, Dhamija E, Kumar Mishra A, Soam D, Mohanrao Yabaji S, Srivastava K, Srivastava KK. Mycobacterial origin protein Rv0674 localizes into mitochondria, interacts with D-loop and regulates OXPHOS for intracellular persistence of Mycobacterium tuberculosis. Mitochondrion 2020; 57:241-256. [PMID: 33279599 DOI: 10.1016/j.mito.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) employs diverse strategies to survive inside the host macrophages. In this study, we have identified a conserved hypothetical protein of Mtb; Rv0674, which is present in the mitochondria of the host cell. The genetic knock-out of rv0674 (Mtb-KO) showed increased growth of Mtb. The intracellular infection with recombinant Mycobacterium smegmatis (MSMEG) expressing Rv0674 (MS_Rv0674), established that the protein is involved in promoting the apoptotic cell death of the macrophage. To investigate the mechanism incurred in mitochondria, we observed that the protein physically interacts with the control region (D-loop) of the mitochondrial DNA (LSP and HSP promoters of the loop) of the macrophages and facilitates the increased expression of mRNA in all the complexes of mitochondrial encoded OXPHOS subunits. The changes in OXPHOS levels corroborated with the ATP synthesis, mitochondrial membrane potential and superoxide production. The infection with MS_Rv0674 confirmed the role of this protein in effecting the intracellular infection. The fluorescent and confocal microscopy confirmed that the protein is localized in the mitochondria of infected macrophages and in the cells of BAL of TB patients. Together these findings indicate towards the novel function of the protein which is unlike to the earlier established mechanisms of mycobacterial physiology.
Collapse
Affiliation(s)
- Rikesh Kumar Dubey
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Alok Kumar Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dheeraj Soam
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivraj Mohanrao Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
11
|
Kirubakar G, Schäfer H, Rickerts V, Schwarz C, Lewin A. Mutation on lysX from Mycobacterium avium hominissuis impacts the host-pathogen interaction and virulence phenotype. Virulence 2020; 11:132-144. [PMID: 31996090 PMCID: PMC6999840 DOI: 10.1080/21505594.2020.1713690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
The lysX gene from Mycobacterium avium hominissuis (MAH) is not only involved in cationic antimicrobial resistance but also regulates metabolic activity. An MAH lysX deficient mutant was shown to exhibit a metabolic shift at the extracellular state preadapting the bacteria to the conditions inside host-cells. It further showed stronger growth in human monocytes. In the present study, the LysX activity on host-pathogen interactions were analyzed. The lysX mutant from MAH proved to be more sensitive toward host-mediated stresses such as reactive oxygen species. Further, the lysX mutant exhibited increased inflammatory response in PBMC and multinucleated giant cell (MGC) formation in human macrophages during infection studies. Coincidentally, the lysX mutant strain revealed to be more reproductive in the Galleria mellonella infection model. Together, these data demonstrate that LysX plays a role in regulating the bacillary load in host organisms and the lack of lysX gene facilitates MAH adaptation to intracellular host-habitat, thereby suggesting an essential role of LysX in the modulation of host-pathogen interaction.
Collapse
Affiliation(s)
- Greana Kirubakar
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Volker Rickerts
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Prasla Z, Sutliff RL, Sadikot RT. Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. Am J Respir Cell Mol Biol 2020; 63:144-151. [PMID: 32160017 DOI: 10.1165/rcmb.2019-0241tr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.
Collapse
Affiliation(s)
- Zohra Prasla
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Ruxana T Sadikot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
13
|
Lee KI, Choi S, Choi HG, Kebede SG, Dang TB, Back YW, Park HS, Kim HJ. Recombinant Rv3261 protein of Mycobacterium tuberculosis induces apoptosis through a mitochondrion-dependent pathway in macrophages and inhibits intracellular bacterial growth. Cell Immunol 2020; 354:104145. [DOI: 10.1016/j.cellimm.2020.104145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/08/2023]
|
14
|
The ESX-1 Virulence Factors Downregulate miR-147-3p in Mycobacterium marinum-Infected Macrophages. Infect Immun 2020; 88:IAI.00088-20. [PMID: 32253249 DOI: 10.1128/iai.00088-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
As important virulence factors of Mycobacterium tuberculosis, EsxA and EsxB not only play a role in phagosome rupture and M. tuberculosis cytosolic translocation but also function as modulators of host immune responses by modulating numerous microRNAs (miRNAs). Recently, we have found that mycobacterial infection downregulated miR-148a-3p (now termed miR-148) in macrophages in an ESX-1-dependent manner. The upregulation of miR-148 reduced mycobacterial intracellular survival. Here, we investigated miR-147-3p (now termed miR-147), a negative regulator of inflammatory cytokines (e.g., interleukin-6 [IL-6] and IL-10), in mycobacterial infection. We infected murine RAW264.7 macrophages with Mycobacterium marinum, a surrogate model organism for M. tuberculosis, and found that the esxBA-knockout strain (M. marinum ΔesxBA) upregulated miR-147 to a level that was significantly higher than that induced by the M. marinum wild-type (WT) strain or by the M. marinum ΔesxBA complemented strain, M. marinum ΔesxBA/pesxBA, suggesting that the ESX-1 system (potentially EsxBA and/or other codependently secreted factors) is the negative regulator of miR-147. miR-147 was also downregulated by directly incubating the macrophages with the purified recombinant EsxA or EsxB protein or the EsxBA heterodimer, which further confirms the role of the EsxBA proteins in the downregulation of miR-147. The upregulation of miR-147 inhibited the production of IL-6 and IL-10 and significantly reduced M. marinum intracellular survival. Interestingly, inhibitors of either miR-147 or miR-148 reciprocally compromised the effects of the mimics of their counterparts on M. marinum intracellular survival. This suggests that miR-147 and miR-148 share converged downstream pathways in response to mycobacterial infection, which was supported by data indicating that miR-147 upregulation inhibits the Toll-like receptor 4/NF-κB pathway.
Collapse
|
15
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
16
|
Interleukin 23/interleukin 17 axis activated by Mycobacterium avium complex (MAC) is attenuated in patients with MAC-lung disease. Tuberculosis (Edinb) 2018; 110:7-14. [PMID: 29779777 DOI: 10.1016/j.tube.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 02/03/2018] [Accepted: 03/01/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mycobacterium avium complex (MAC)-lung disease (LD) is increasing in patients without human immunodeficiency virus infection. However, data on host vulnerability to MAC-related immune responses, and in particular the interleukin (IL)-23/IL-17 axis, are lacking. METHODS We enrolled 50 patients with MAC-LD, 25 age-matched patients with tuberculosis (TB) and 25 controls. We measured levels of plasma cytokines, and studied IL-12/IL-17 responses in macrophage and lymphocyte activation to MAC. RESULTS The plasma level of IL-17 in the MAC group was higher than in the TB and control groups. In in-vitro macrophage stimulation, the expression of IL-23 in macrophages was similar in the patients with MAC-LD and controls, although the expression of IL-12 p40 was lower in the patients with MAC-LD. In assays of lymphocyte activation, IL-17 was induced by MAC-primed macrophages, but its level was lower in the patients with MAC-LD and TB than in the controls. The expression of programmed death (PD)-1 receptor was higher in CD4+IL17A+ lymphocytes in the patients with MAC-LD, and the production of IL-17 was significantly increased by blockade of PD-1 and PD-ligand 1. CONCLUSIONS MAC induced a similar expression of IL-23 from macrophages in the patients with MAC-LD compared to the controls, but a lower expression of IL-17 from lymphocytes, which may be through an increased expression of PD-1. The macrophage response of IL-12 p40 was stronger than that of IL-12 p70, and higher in the controls during MAC disease, which may suggest another kind of MAC-related immune evasion.
Collapse
|
17
|
Matsuzawa A. Physiological roles of ASK family members in innate immunity and their involvement in pathogenesis of immune diseases. Adv Biol Regul 2017; 66:46-53. [PMID: 29122554 DOI: 10.1016/j.jbior.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Cells are always exposed to various types of stress, including physical, chemical, and biological stresses, and are required to sense immediately and respond appropriately to these stresses. The apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases, which are activated by not only physicochemical stresses, such as oxidative stress, osmotic pressure, calcium overload, and anti-cancer drugs, but also biological stresses, such as inflammatory cytokines and pathogen infection. Recently, we found that ASK1, a member of ASK family, is activated by bacterial components, such as lipopolysaccharide, in a reactive oxygen species (ROS)-dependent manner, demonstrating that ASK1 is required for the innate immune response and plays a critical role in the regulation of innate immune signaling. Moreover, our findings indicate that ROS are common mediators in physicochemical stress signaling, including redox signaling, and biological stress signaling, including innate immune signaling. This review especially focuses on the roles of ASK family in innate immunity and provides recent progress in our knowledge on activation mechanisms and physiological functions of ASK family kinases in innate immune responses.
Collapse
Affiliation(s)
- Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
18
|
Bugueno IM, Batool F, Korah L, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis Differentially Modulates Apoptosome Apoptotic Peptidase Activating Factor 1 in Epithelial Cells and Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:404-416. [PMID: 29154960 DOI: 10.1016/j.ajpath.2017.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Porphyromonas gingivalis is able to invade and modulate host-immune response to promote its survival. This bacterium modulates the cell cycle and programed cell death, contributing to periodontal lesion worsening. Several molecular pathways have been identified as key triggers of apoptosis, including apoptosome apoptotic peptidase activating factor 1 (APAF-1). Apaf-1 and X-linked inhibitor of apoptosis protein (Xiap) mRNA were differentially expressed between gingival samples harvested from human healthy and chronic periodontitis tissues (Apaf-1, 19.2-fold; caspase-9, 14.5-fold; caspase-3, 6.8-fold; Xiap: 2.5-fold in chronic periodontitis) (P < 0.05), highlighting their potential role in periodontitis. An increased proteic expression of APAF-1 was also observed in a murine experimental periodontitis model induced by P. gingivalis-soaked ligatures. In vitro, it was observed that P. gingivalis targets APAF-1, XIAP, caspase-3, and caspase-9, to inhibit epithelial cell death at both mRNA and protein levels. Opposite effect was observed in fibroblasts in which P. gingivalis increased cell death and apoptosis. To assess if the observed effects were associated to APAF-1, epithelial cells and fibroblasts were transfected with siRNA targeting Apaf-1. Herein, we confirmed that APAF-1 is targeted by P. gingivalis in both cell types. This study identified APAF-1 apoptosome and XIAP as intracellular targets of P. gingivalis, contributing to the deterioration of periodontal lesion through an increased persistence of the bacteria within tissues and the subversion of host-immune response.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fareeha Batool
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Linda Korah
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculty of Dental Surgery, Periodontology, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
19
|
Lee KI, Whang J, Choi HG, Son YJ, Jeon HS, Back YW, Park HS, Paik S, Park JK, Choi CH, Kim HJ. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep 2016; 6:37804. [PMID: 27901051 PMCID: PMC5129020 DOI: 10.1038/srep37804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jake Whang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Haet Sal Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|