1
|
Konwar AN, Basak S, Saikia K, Gurumayum S, Panthi N, Borah JC, Thakur D. Antimicrobial potential of Streptomyces sp. NP73 isolated from the forest soil of Northeast India against multi-drug resistant Escherichia coli. Lett Appl Microbiol 2024; 77:ovae086. [PMID: 39264087 DOI: 10.1093/lambio/ovae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surajit Basak
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Shalini Gurumayum
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Nitya Panthi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Jagat Chandra Borah
- Chemical Biology Laboratory-1, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Annamalai J, Kasilingam H. BIO-PROSPECTING FOR ACTIVE COMPOUNDS: FTIR AND GCMS PROFILING OF ETHYL ACETATE-EXTRACTED SECONDARY METABOLITES FROM SEA WATER-ORIGIN ACINETOBACTER BAUMANNII MP-1. INDIAN DRUGS 2024; 61:59-68. [DOI: 10.53879/id.61.07.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
It is alarming and concerning that, as time progresses, due to lifestyle modifications and the emergence of resistant microbial strains, the need to explore novel drugs against them is escalating and becoming a trend. Natural products are versatile substances with remarkable qualities that could be manipulated to reap beneficial outcomes, if managed rigorously. Among the natural troves, the marine environment is one of the most jubilant environments as it harbors diverse ecosystems where organisms adapt various mechanisms and possess many complex molecules to tackle the harsh conditions around them. Bacteria are an omnipresent entity, and it has been proven previously that the bacteria from marine environments can produce secondary metabolites or marine natural products with many crucial biological applications. This study investigated the bioactive compounds present in the secondary metabolite (ethyl acetate extracted crude- EAEC) extracted from the antagonistic bacteria Acinetobacter baumannii (MP-1) isolated from seawater; concurrently, it also explored the possible pharmaceutical applications of the EAEC. FTIR analysis showed the presence of variety of functional groups and GC-MS spectroscopy unraveled the existence of a wide range of bioactive compounds, including the derivatives of oxazine, pentanoic acid, butanoic acid, dehydromevalonic lactone, etc. The identified compounds from the EAEC have all been previously recorded for their valuable (antibacterial, anticancer, antimalarial, and herbicidal) biological activities. It could be suggested that the EAEC from antagonistic bacterial strain MP-1 can be utilized as a drug after ascertaining its potential through further in vivo and in vitro trials.
Collapse
|
3
|
Mandodan S, Gangmei K, Vijayakumar A, Kunnikuruvan A, Lukose J, Padmanaban H, Bora B, Ashokkumar M, Irudayaraj G, Subbiah P. Molecular identification and GC-MS analysis of a newly isolated novel bacterium (Lysinibacillus sp. VCRC B655) for mosquito control. Mol Biol Rep 2024; 51:800. [PMID: 39001994 DOI: 10.1007/s11033-024-09734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Mosquitoes are widespread globally and have contributed to transmitting pathogens to humans and the burden of vector-borne diseases. They are effectively controlled at their larval stages by biocontrol agents. Unravelling natural sources for microbial agents can lead us to novel potential candidates for managing mosquito-borne diseases. In the present study, an attempt was made to isolate a novel bacterium from the field-collected agricultural soil for larvicidal activity and promising bacterial metabolites for human healthcare. METHODS AND RESULTS Field-collected soil samples from the Union territory of Puducherry, India, have been used as the source of bacteria. Isolate VCRC B655 belonging to the genus Lysinibacillus was identified by 16S rRNA gene sequencing and exhibited promising larvicidal activity against different mosquito species, including Culex (Cx.) quinquefasciatus, Anopheles (An.) stephensi, and Aedes (Ae.) aegypti. The lethal concentration (LC) of Lysinibacillus sp. VCRCB655 was observed to be high for Cx. quiquefasciatus: LC50 at 0.047 mg/l, LC90 at 0.086 mg/l, followed by An. stephensi and Ae. aegypti (LC50: 0.6952 mg/l and 0.795 mg/l) respectively. Additionally, metabolic profiling of the culture supernatant was carried out through Gas chromatography and Mass spectrophotometry (GC/MS) and identified 15 major secondary metabolites of different metabolic classes. Diketopiperazine (DKPs), notably pyro lo [1, 2-a] pyrazine1, 4-dione, are the abundant compounds reported for antioxidant activity, and an insecticide compound benzeneacetic acid was also identified. CONCLUSIONS A new bacterial isolate, Lysinibacillus sp. VCRC B655 has been identified with significant larvicidal activity against mosquito larvae with no observed in non-target organisms. GC-MS analysis revealed diverse bioactive compounds with substantial biological applications. In conclusion, Lysinibacillus sp. VCRC B655 showed promise as an alternative biocontrol agent for mosquito vector control, with additional biological applications further enhancing its significance.
Collapse
Affiliation(s)
- Sahadiya Mandodan
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Kakhuangailiu Gangmei
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Abhisubesh Vijayakumar
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Aneha Kunnikuruvan
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Jibi Lukose
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Hemaladkshmi Padmanaban
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Bhagyashree Bora
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Mathivanan Ashokkumar
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Geetha Irudayaraj
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India
| | - Poopathi Subbiah
- Unit of Microbiology and Immunology (UMI), Department of Health Research (Ministry of Health & Family Welfare, Govt. of India), ICMR-Vector Control Research Centre (VCRC), Medical Complex Indira Nagar, Puducherry, 605006, India.
| |
Collapse
|
4
|
Jiang Z, Ni J, Zhou S, Yang L, Huang X, Bao J, Liu J. NiWo4- RGO composite exerts cytotoxic effects on pancreatic carcinoma cells via a cross-talk between reactive oxygen species-independent canonical autophagy of the mitochondria and epithelial-mesenchymal transition. J Drug Deliv Sci Technol 2024; 95:105584. [DOI: 10.1016/j.jddst.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
5
|
Kuppusamy KM, Selvaraj S, Singaravelu P, John CM, Racheal K, Varghese K, Kaliyamoorthy D, Perumal E, Gunasekaran K. Anti-microbial and anti-cancer efficacy of acetone extract of Rosa chinensis against resistant strain and lung cancer cell line. BMC Complement Med Ther 2023; 23:406. [PMID: 37950173 PMCID: PMC10636979 DOI: 10.1186/s12906-023-04222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Screening of herbal plants for various therapeutic properties is the hour as it shows promising activity. Scientific evidence of the pharmacological activity of the plant strengthens the traditional application of plants. METHODS Rose flowers (Rosa chinensis) were procured and grounded into a coarse powder. The DNA was isolated from rose flower and molecular identification was performed by rbcL-BF and rbcL-724R primers. Antibacterial activity was evaluated by using disc and agar diffusion methods and the anti-cancer effect of the rose flower extract (RE) was examined using MTT assay in lung cancer cell line. The mechanism of cell death induced by RE was qualitatively measured using Acridine orange/Ethidium bromide staining and Hoechst staining. GC-MS analysis was performed using GC-MS-5975C. RESULT The RE showed potent antimicrobial activity against various ATCC cultures. The rose extract strongly inhibits the growth of ESBL resistant organism along with inhibition of biofilm formation in the ESBL resistant organism. The extract caused apoptotic and necrotic cell death in lung cancer cells. GC-MS analysis demonstrated the presence of several biologically active compounds such as Clindamycin, Phytol, Octanoic acid, and Stigmasterol which might be the reason for the therapeutic properties of the plant. CONCLUSION This study shows the antimicrobial and biofilm inhibition activity against the clinical isolates of Klebsiella pneumonia. The study shows the cytotoxic and apoptotic activity in A549 cancer cell line. Thus, the plant may act as a potent antimicrobial drug against resistant strains.
Collapse
Affiliation(s)
- Kalaivani Madhavaram Kuppusamy
- Research Centre for Cellular Genomics and Cancer Research, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Sivakumar Selvaraj
- Molecular Biology section, Consultant Molecular Biologist, Medall Healthcare Private Limited, Chennai, India
| | - Pujithaa Singaravelu
- Research Centre for Cellular Genomics and Cancer Research, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Cordelia Mano John
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Kalaiselvan Racheal
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Keziaann Varghese
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Dinesh Kaliyamoorthy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, 600044, India
| | - Elumalai Perumal
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Krishnamoorthy Gunasekaran
- Department of Medical Biochemistry, College of Health Sciences, Dambi Dollo University, KelamWelega Zone, Dembidolo, P.O. Box: 360, Oromia Region, Ethiopia.
| |
Collapse
|
6
|
Coon A, Musah RA. Investigation of Small-Molecule Constituents in Voacanga africana Seeds and Mapping of Their Spatial Distributions Using Laser Ablation Direct Analysis in Real-Time Imaging-Mass Spectrometry (LADI-MS). ACS OMEGA 2023; 8:27190-27205. [PMID: 37546641 PMCID: PMC10399170 DOI: 10.1021/acsomega.3c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023]
Abstract
Plant seeds are a renewable resource that can furnish access to medicinal natural products that can only otherwise be isolated from aerial or root parts, the harvest of which may be destructive to the plant or threaten its viability. However, optimization of the isolation of such compounds from seeds would be greatly assisted if the spatial distribution of the molecules of interest within the plant tissue were known. For example, iboga alkaloids that hold promise for the treatment of opioid use disorder are typically isolated from the leaves, bark, or roots of Tabernanthe or Voacanga spp. trees, but it would be more environmentally sustainable to isolate such compounds from their seeds. Here, we leveraged the unique capabilities of the ambient mass spectral imaging technique termed laser ablation direct analysis in real-time imaging-mass spectrometry (LADI-MS) to reveal the spatial distributions of a range of molecules, including alkaloids within V. africana seeds. In addition to six compounds previously reported in these seeds, namely, tetradecanoic acid, n-hexadecanoic acid, (Z,Z)-9,12-octadecadienoic acid, (Z)-9-octadecenoic acid, octadecanoic acid, and Δ14-vincamine, an additional 31 compounds were newly identified in V. africana seeds. The compound classes included alkaloids, terpenes, and fatty acids. The ion images showed that the fatty acids were localized in the embryo of the seed. The alkaloids, which were mainly localized in the seed endosperm, included strictamine, akuammidine, polyneruidine, vobasine, and Δ14-vincamine. This information can be exploited to enhance the efficiency of secondary metabolite isolation from V. africana seeds while eliminating the destruction of other plant parts.
Collapse
|
7
|
Parthiban A, Sachithanandam V, Lalitha P, Muthukumaran J, Misra R, Jain M, Sridhar R, Mageswaran T, Purvaja R, Ramesh R. Isolation, characterisation, anticancer and anti-oxidant activities of 2-methoxy mucic acid from Rhizophora apiculata: an in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:1424-1436. [PMID: 34963406 DOI: 10.1080/07391102.2021.2020688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main objective of the present study is to isolate and characterise the novel bioactive molecule, 2-methoxy mucic acid (4) from Rhizophora apiculate Blume under the Rhizophoraceae family. In this study, the 2-methoxy mucic acid (4) was isolated for the first time from the methanolic extract of the leaves of R. apiculata. Anticancer activity of 2-methoxy mucic acid (4) was evaluated against HeLa and MDA-MB-231 cancer cell lines and they displayed promising activity with IC50 values of 22.88283 ± 0.72 µg/ml in HeLa and 2.91925 ± 0.52 µg/ml in the case of MDA-MB-231, respectively. Furthermore, the antioxidant property of 2-methoxy mucic acid (4) was found to be (IC50) 21.361 ± 0.41 µg/ml. Apart from in vitro studies, we also performed extensive in silico studies (molecular docking and molecular dynamics simulation) on four critical antiapoptotic Bcl-2 family members (Bcl-2, Bcl-w, Bcl-xL and Bcl-B) towards 2-methoxy mucic acid (4). The results revealed that this molecule showed higher binding affinity towards Bcl-B protein (ΔG = -5.8 kcal/mol) and the structural stability of this protein was significantly improved upon binding of this molecule. The present study affords vital insights into the importance of 2-methoxy mucic acid (4) from R. apiculata. Furthermore, it opens the therapeutic route for the discovery of anticancer drugs. Research HighlightsThis is a first report on a bioactive compound identified and characterised; a novel 2-methoxy mucic acid derived from methanolic crude extract from the leaves of R. apiculata from ANI.Estimated binding free energy of 2-methoxy mucic acid is found to be -5.8 kcal/mol to the anti-apoptotic Bcl-B protein.2-methoxy mucic acid showed both significant anti-cancer and anti-oxidant activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramachandran Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramachandran Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
8
|
Identification of Secondary Metabolites of Interest in Pleurotus djamor Using Agave tequilana Bagasse. Molecules 2023; 28:molecules28020557. [PMID: 36677617 PMCID: PMC9863222 DOI: 10.3390/molecules28020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Agro-industrial residues represent more than 60% of organic wastes worldwide, which could be used to generate other by-products or to be incorporated into other production chains. For example, bagasse is a waste from the tequila industry in Mexico that could be implemented for mushroom cultivation. Additionally, the substrate influences the growth, development, and production of secondary metabolites of fungi. This work presents a comparative experiment that studies the metabolite production in Pleurotus djamor mushrooms on agave bagasse and barley straw (traditional substrate). The biological efficiency (BE), yield, phenolics and flavonoids, antioxidant capacity, tannins, and the identification of low molecular weight metabolites were evaluated. Five treatments were proposed according to the following mixtures of agave bagasse: barley straw: T1 (1:0), T2 (3:1), T3 (1:1), T4 (1:3), and T5 (0:1). T2 had the highest yield (13.39 ± 3.23%), BE (56.7 ± 13.71%), and flavonoids (44.25 mg rutin equivalent (RE)/g); T3 obtained the highest phenol content (230.27 mg GAE/g); and T1 the highest tannins content (0.23 mg (+) catechin equivalent (CE)/g). Finally, T1 and T5 are the ones that present the greatest number of primary metabolites, including hydroxycitric acid, 2-deoxy-D-galactose, D-mannose, paromomycin, palmitic acid, pyrrole, mannitol, and DL arabinose, while in T2, T3, and T4 only two chemical compounds were found present (palmitic acid and pyrrole in T2, silicic acid and pyrrole in T3 and 2-deoxy-D-galactose and quinoline in T4). The cultivation substrate influences the concentration of bioactive molecules in the fruiting bodies of P. djamor. Additionally, P. djamor's degradation of agave bagasse residue generates a potential application for agro-industrial residue management at a low cost.
Collapse
|
9
|
Divya D, Govindarajan R, Nagarajaprakash R, Fayzullin RR, Vidhyapriya P, Sakthivel N, Manimaran B. Multicomponent Self-Assembly of Diaminobenzoquinonato-Bridged Manganese(I) Metallosupramolecular Rectangles: Host–Guest Interactions, Anticancer Activity, and Visible-Light-Induced CO Releasing Studies. Inorg Chem 2022; 61:15377-15391. [DOI: 10.1021/acs.inorgchem.2c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanaraj Divya
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Ramamurthy Nagarajaprakash
- Chemical Sciences Research Group, Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala. Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
10
|
Hasan AEZ, Julistiono H, Bermawie N, Riyanti EI, Arifni FR. Soursop leaves (Annona muricata L.) endophytic fungi anticancer activity against HeLa cells. Saudi J Biol Sci 2022; 29:103354. [PMID: 35813114 PMCID: PMC9256652 DOI: 10.1016/j.sjbs.2022.103354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
|
11
|
Parthiban A, Sachithanandam V, Lalitha P, Elumalai D, Asha RN, Jeyakumar TC, Muthukumaran J, Jain M, Jayabal K, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. Isolation and biological evaluation 7-hydroxy flavone from Avicennia officinalis L: insights from extensive in vitro, DFT, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 41:2848-2860. [PMID: 35193476 DOI: 10.1080/07391102.2022.2039771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The flavonoid based 7-hydroxy flavone (PubChem CID: 5281894; molecular formula: C15H10O3) molecule has been isolated for the first time from the methanolic extract from the leaves of Avicennia officinalis L. in the tropical mangrove ecosystem of Andaman and Nicobar Islands (ANI), India. The molecular structure of bioactive compound was characterized by spectroscopic analysis, including FT-IR, 1H, 13C NMR spectroscopy and ESI-HRMS and elucidated as 7-hydroxy flavone. An anticancer activity of isolated 7-hydroxy flavone was evaluated by in vitro study against two different human cancer cell lines namely, HeLa (cervical cells) and MDA-MB231 (breast cells) and they exhibited promising anticancer activity with IC50 values are 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL, respectively. The antioxidant property of 7-hydroxy flavone at a standard concentration of 50 µg, was found to be (IC50) 5.5486 ± 0.81 µg/mL. In summary, this investigation provides evidence that 7-hydroxy flavone exhibits both anticancer and antioxidant properties. Meanwhile, the antimicrobial activity ability of 7-hydroxy flavone were also evaluated using three Gram positive and two Gram negative strain exhibited no antimicrobial activities. Density-functional theory (DFT) studies confirm the structure is global minima in the PES, from the optimized geometry FMO and MESP map analyzed. Further, the molecular docking and molecular dynamics simulation studies result shows that 7-hydroxy flavone has the better binding ability with anti-apoptotic Bcl-2 protein with the estimated free energy of binding of -6.3 kcal/mol. This bioactive compound may be act as drug candidate for treating various kinds of cancers. HighlightsA 7-hydroxy flavone molecule has been isolated from Avicennia officinalis.The isolated pure compound was subjected to spectral analysis such as FT-IR, 1H NMR, 13C NMR spectral data and HRMS analysis for skeleton of the molecule.The anticancer activity of 7-hydroxy flavone studied against Cervical (HeLa) cancer cell lines and breast (MDA-MB231) cancer cell lines with the IC50 values of 22.5602 ± 0.21 µg/mL and 3.86474 ± 0.35 µg/mL), respectively.The antioxidant properties of 7-hydroxy flavone were found to be (IC50) 5.5486 ± 0.81 µg/mL at a standard concentration of 50 µg.DFT, molecular docking and MD simulation results explained that 7-hydroxy flavone could be the most promising candidate to inhibit the function of anti-apoptotic Bcl-2 protein in cancerous cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | | | - Radhakrishnan Nandini Asha
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, Pope's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Thayalaraj Christopher Jeyakumar
- Department of Chemistry, Pondicherry University, Puducherry, India.,Department of Chemistry, The American College, Madurai, Tamil Nadu, India
| | - J Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, P.C, India
| | | | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Appl Microbiol Biotechnol 2022; 106:1633-1649. [PMID: 35141868 DOI: 10.1007/s00253-022-11788-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
Abstract
Most commercial banana cultivars are highly susceptible to Fusarium wilt caused by soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4). Biological control using antagonistic microorganism has been considered as an alternative method to fungicide. Our previous study showed that Streptomyces sp. SCA3-4 T had a broad-spectrum antifungal activity from the rhizosphere soil of Opuntia stricta in a dry hot valley. Here, the sequenced genome of strain SCA3-4 T contained 6614 predicted genes with 72.38% of G + C content. A polymorphic tree was constructed using the multilocus sequence analysis (MLSA) of five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). Strain SCA3-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T with 71% of bootstrap. Average nucleotide identity (ANI) values between genomes of strain SCA3-4 T and S. mobaraensis NBRC 13819 T was 85.83% below 95-96% of the novel species threshold, and named after Streptomyces sichuanensis sp. nov. The type strain is SCA3-4 T (= GDMCC 4.214 T = JCM 34964 T). Genomic analysis revealed that strain SCA3-4 T contained 36 known biosynthetic gene clusters of secondary metabolites. Antifungal activity of strain SCA3-4 T was closely associated with the production of siderophore and its extracts induced the apoptosis of Foc TR4 cells. A total of 12 potential antifungal metabolites including terpenoids, esters, acid, macrolides etc. were obtained by the gas chromatography-mass spectrometry (GC-MS). Greenhouse experiment indicated that strain SCA3-4 T could significantly inhibit infection of Foc TR4 in the roots and corms of banana seedlings and reduce disease index. Therefore, strain SCA3-4 T is an important microbial resource for exploring novel natural compounds and developing biopesticides to manage Foc TR4. KEY POINTS: • Strain SCA3-4 T was identified as a novel species of Streptomyces. • Siderophore participates in the antifungal regulation. • Secondary metabolites of strain SCA3-4 T improves the plant resistance to Foc TR4.
Collapse
|
13
|
Acharyya S, Saha S, Majumder S, Bhattacharya M. Characterization of a mercury tolerant strain of Staphylococcus arlettae from Darjeeling hills with an account of its antibiotic resistance pattern and metabolome. Arch Microbiol 2021; 203:5745-5754. [PMID: 34494142 DOI: 10.1007/s00203-021-02563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022]
Abstract
Mercury (Hg) is a ubiquitous heavy metal grouped with the top ten most toxic pollutants affecting both human and environmental health. Consequently, mercury contamination due to anthropogenic interference has become a rising global concern. The bacterial strain MTD10A was isolated from soil samples collected over the Darjeeling hills. Heavy metal tolerance study conducted exhibited considerable tolerance to mercury by this bacterial isolate at unprecedented concentrations of up to 0.1 mg/mL of HgCl2. Biochemical characterization and molecular identification via 16S rRNA sequencing identified this highly tolerant bacteria as a strain of a Coagulase Negative Staphylococcus arlettae. This study also maps the resistance pattern of MTD10A against clinically relevant antibiotics and contains a broad assessment of the metabolomic profile of the bacteria achieved via GC-MS. Tolerance of MTD10A to such excessive levels of mercury shown in our study suggests the possibility of a promising candidate for bioremediation in heavily mercury contaminated areas.
Collapse
Affiliation(s)
- Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Dist. Darjeeling, Siliguri, West Bengal, 734014, India
| | - Sumedha Saha
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Dist. Darjeeling, Siliguri, West Bengal, 734014, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Dist. Darjeeling, Siliguri, West Bengal, 734014, India
| | - Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Dist. Darjeeling, Siliguri, West Bengal, 734014, India.
| |
Collapse
|
14
|
Valença CAS, Barbosa AAT, Souto EB, Caramão EB, Jain S. Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. Chem Biodivers 2021; 18:e2100549. [PMID: 34643327 DOI: 10.1002/cbdv.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.
Collapse
Affiliation(s)
- Camilla A S Valença
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- CEB - Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elina B Caramão
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil.,Instituto Nacional de Ciência e Tecnologia - Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
15
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
16
|
Paopradit P, Tansila N, Surachat K, Mittraparp-arthorn P. Vibrio alginolyticus influences quorum sensing-controlled phenotypes of acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. PeerJ 2021; 9:e11567. [PMID: 34141494 PMCID: PMC8176930 DOI: 10.7717/peerj.11567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute hepatopancreatic necrosis syndrome (AHPND) caused by Vibrio parahaemolyticus strain (VPAHPND) impacts the shrimp industry worldwide. With the increasing problem of antibiotic abuse, studies on quorum sensing (QS) system and anti-QS compounds bring potential breakthroughs for disease prevention and treatment. METHODS In this study, the cell-free culture supernatant (CFCS) and its extract of V. alginolyticus BC25 were investigated for anti-QS activity against a reporter bacteria, Chromobacterium violaceum DMST46846. The effects of CFCS and/ or extract on motility, biofilm formation and extracellular polymeric substances (EPSs) of VPAHPND PSU5591 were evaluated. Moreover, the effects of V. alginolyticus BC25 on virulence of VPAHPND PSU5591 were investigated by shrimp challenge test. The potentially active anti-QS compounds presented in the extract and effect on gene expression of VPAHPND PSU5591 were identified. RESULTS The CFCS of V. alginolyticus BC25 and its extract showed a significant anti-QS activity against the reporter bacteria as well as swimming and swarming motilities, biofilms, and EPSs production by VPAHPND PSU5591. Transcriptome analysis revealed that V. alginolyticus BC25 extract significantly reduced the flagella genes involved in biofilm formation and iron-controlled virulence regulatory gene of VPAHPND PSU5591. Whereas, the LuxR family transcriptional regulator gene, c-factor, a cell-cell signaling gene, and capsular polysaccharide were up-regulated. The potentially active anti-QS compounds identified in extract were Cyclo-(L-Leu-L-Pro), and Cyclo-(L-Phe-L-Pro). Furthermore, V. alginolyticus BC25 enhanced disease resistance against VPAHPND PSU5591 in tested shrimp larvae. CONCLUSION These findings suggest that V. alginolyticus BC25 could provide natural anti-QS and anti-biofilms compounds and has great ability to be used as biocontrol agent against VPAHPND infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Panida Paopradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
17
|
Sachithanandam V, Lalitha P, Parthiban A, Muthukumaran J, Jain M, Misra R, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. A comprehensive in silico and in vitro studies on quinizarin: a promising phytochemical derived from Rhizophora mucronata Lam. J Biomol Struct Dyn 2021; 40:7218-7229. [PMID: 33682626 DOI: 10.1080/07391102.2021.1894983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mangrove plants are a great source of phytomedicines, since from the beginning of human civilization and the origin of traditional medicines. In the present study, ten different mangrove leaf methanolic extracts were screened for the type of phytochemicals followed by assessing antimicrobial, anti-oxidant and anti-cancer activities. The efficient methanolic crude extract of Rhizospora mucornata was further purified and characterized for the presence of the bioactive compound. Based on UV-visible spectroscopy, FTIR, NMR and HRMS analysis, the bioactive compound was 1,4-dihydroanthraquinone; also termed as Quinizarin. This identified compound was potential in exhibiting antimicrobial, antioxidant, and cytotoxic activity. Quinizarin inhibited the growth of Bacillus cereus and Klebsiella aerogenes with minimum inhibitory concentration (MIC) of 0.78 and 1.5 mg/ml. The DPPH free radical scavenging assay revealed the maximum activity of 99.8% at the concentration of 200 µg/ml with an IC50 value of 12.67 ± 0.41 µg/ml. Cytotoxic assay against HeLa (cervical) and MDA-MB231(breast) cancer cell lines revealed IC50 values to be 4.60 ± 0.26 and 3.89 ± 0.15 µg/ml. Together the results of molecular docking and molecular dynamics simulation studies explained that Quinizarin molecule showed stronger binding affinity (-6.2 kcal/mol) and significant structural stability towards anti-apoptotic Bcl-2 protein. Thus, the study put forth the promising role of the natural molecule - Quinizarin isolated from R. mucornata in the formulation of therapeutic drugs against bacterial infections and cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, India
| | - Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - T Mageswaran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
18
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
19
|
Lucas JH, Muthumalage T, Wang Q, Friedman MR, Friedman AE, Rahman I. E-Liquid Containing a Mixture of Coconut, Vanilla, and Cookie Flavors Causes Cellular Senescence and Dysregulated Repair in Pulmonary Fibroblasts: Implications on Premature Aging. Front Physiol 2020; 11:924. [PMID: 33013432 PMCID: PMC7500211 DOI: 10.3389/fphys.2020.00924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Electronic cigarette (e-cig) usage has risen dramatically worldwide over the past decade. While they are touted as a safe alternative to cigarettes, recent studies indicate that high levels of nicotine and flavoring chemicals present in e-cigs may still cause adverse health effects. We hypothesized that an e-liquid containing a mixture of tobacco, coconut, vanilla, and cookie flavors would induce senescence and disrupt wound healing processes in pulmonary fibroblasts. To test this hypothesis, we exposed pulmonary fibroblasts (HFL-1) to e-liquid at varying doses and assessed cytotoxicity, inflammation, senescence, and myofibroblast differentiation. We found that e-liquid exposure caused cytotoxicity, which was accompanied by an increase in IL-8 release in the conditioned media. E-liquid exposure resulted in elevated senescence-associated beta-galactosidase (SA-β-gal) activity. Transforming growth factor-β1 (TGF-β1) induced myofibroblast differentiation was inhibited by e-liquid exposure, resulting in decreased α-smooth muscle actin and fibronectin protein levels. Together, our data suggest that an e-liquid containing a mixture of flavors induces inflammation, senescence and dysregulated wound healing responses.
Collapse
Affiliation(s)
- Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Michelle R Friedman
- Department of Chemistry & Biochemistry, The College of Brockport, The State University of New York, New York, NY, United States
| | - Alan E Friedman
- Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
Rocha KC, Alonso CG, Leal WGO, Schultz EL, Andrade LA, Ostroski IC. Slow pyrolysis of Spirulina platensis for the production of nitrogenous compounds and potential routes for their separation. BIORESOURCE TECHNOLOGY 2020; 313:123709. [PMID: 32593145 DOI: 10.1016/j.biortech.2020.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The potential of microalgae Spirulina platensis to the production of nitrogenous compounds in liquid fraction via slow pyrolysis was evaluated. Aiming to identify the best condition which maximized liquid yield, the effects of operational conditions mass load, temperature, and heating rate were evaluated using Experimental Design and Response Surface Methodology techniques and optimized with Differential Evolution methodology. The composition of liquid fraction was analyzed by GC-MS and the effect of the same operational conditions in nitrogenous compounds formation was analyzed. The separation of nitrogenous compounds was evaluated by extraction and adsorption techniques. The results indicated that the heating rate significantly impacted both the liquid yield and the formation of the nitrogenous compounds. At optimal conditions, a maximum liquid yield of 64.59% was obtained. The extraction and adsorption processes showed to be promising routes for the purification of nitrogenous compounds, however, extraction was more selective to separate them.
Collapse
Affiliation(s)
- K C Rocha
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| | - C G Alonso
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| | - W G O Leal
- Embrapa Agroenergia, CEP 70770 901 Brasília, DF, Brazil
| | - E L Schultz
- Embrapa Agroenergia, CEP 70770 901 Brasília, DF, Brazil
| | - L A Andrade
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil.
| | - I C Ostroski
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| |
Collapse
|
21
|
Sachithanandam V, Parthiban A, Lalitha P, Muthukumaran J, Jain M, Elumalai D, Jayabal K, Sridhar R, Ramachandran P, Ramachandran R. Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies. J Biomol Struct Dyn 2020; 40:1490-1502. [PMID: 32996435 DOI: 10.1080/07391102.2020.1828173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gallic acid (PubChem CID: 370) and quercetin (PubChem CID: 5280343) are major phenolic compounds in many mangrove plants that have been related to health cure. In the present study, the active fractions namely gallic acid (1) and quercetin (2) were isolated from the methanolic extract of leaves of Ceriops tagal in a Tropical mangrove ecosystem of Andaman and Nicobar Island (ANI), India. The chemical structures were determined by spectroscopic analysis: Fourier-Transform Infrared spectroscopy (FT-IR), 1H, 13C Nuclear Magnetic Resonance (NMR) spectroscopy, and High-resolution mass spectrometry (HRMS). The anticancer activity of isolated compounds (1) and (2) were evaluated by in vitro assays against two human cancer cell lines namely, HeLa (Cervical) and MDA-MB231 (Breast) cancer cells revealed that IC50 values of gallic acid (HeLa: 4.179197 ± 0.45 µg/ml; MDA-MB231: 80.0427 ± 0.19 µg/ml at 24 h) and quercetin (HeLa: 99.914 ± 0.18 µg/ml; MDA-MB231: 18.288382 ± 0.12 µg/ml at 24 h), respectively. Antioxidant properties of gallic acid (1) and quercetin (2) are found to be IC50 value of 0.77 ± 0.41 µg/ml and 1.897 ± 0.81 µg/ml, respectively. Molecular docking results explained that gallic acid (1) and quercetin (2) showed estimated binding free energy (ΔG) of -5.4 and -6.9 kcal/mol towards drug target Bcl-B protein, respectively. The estimated inhibition constant (Ki) for these two molecules are 110 and 8.75 μM, respectively. The MD simulation additionally supported that quercetin molecule is significantly improved the structural stability of Bcl-B protein. The present study provides key insights about the importance of polyphenols, and thus leads to open the therapeutic route for anti-cancer drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | | | | | - R Sridhar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| | - Ramesh Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Anna University Campus, Chennai, India
| |
Collapse
|
22
|
Staphylococcus xylosus VITURAJ10: Pyrrolo [1,2α] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity. Microb Pathog 2020; 147:104259. [PMID: 32446871 DOI: 10.1016/j.micpath.2020.104259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/24/2020] [Accepted: 05/11/2020] [Indexed: 01/19/2023]
Abstract
In the present study bacterial strain (VITURAJ10), isolated from goat milk was characterised for its probiotic potential. The various probiotic traits included tolerance to acidic pH (up to pH 3), bile salts (0.3%) and transit gut environment (simulated with digestive juices such as pepsin, Oxgall and pancreatin). The isolate could withstand high NaCl concentrations in the growth medium, showed inability to produce hemolysin and did not hydrolyse mucin. VITURAJ10 was capable of forming biofilm and produced exopolysachharide. The bioactive metabolites produced by the isolate were extracted and they showed growth suppressing activity towards pathogenic strains such as Escherichia coli, Salmonella enterica and Staphylococcus aureus. The crude extract was fractionated with solid phase extraction (SPE) chromatography and the fractions 10 and 12 were found to be effective against the bacterial pathogens. The fractions were further gauged for cytotoxic activity against MCF-7 cell line by MTT assay. The biologically significant compounds identified through GC-MS and FT-IR analysis in the fractions were, Actinomycin D, Pyrrolo [1,2α] Pyrazine-1,4-Dione, Hexahydro-3-(2-Methylpropyl)- (PPDHMP) and Didemnin B. The phylogenetic taxonomy of the isolate revealed the isolate to be the closest neighbour of Staphylococcus xylosus VITURAJ10 (GenBank accession no. KX770743.1) as per the16S rRNA gene sequencing and subsequent phylogenetic tree analysis.
Collapse
|
23
|
Mazumder K, Nabila A, Aktar A, Farahnaky A. Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian lupin Species: A Comprehensive Substantiation. Antioxidants (Basel) 2020; 9:E282. [PMID: 32230703 PMCID: PMC7222189 DOI: 10.3390/antiox9040282] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this present investigation was to analyze bioactive compounds, as well as demonstrate the antioxidant activities of nine cultivars of Australian lupin species accompanied by observing the effect of domestic heat processing on their antioxidant activities adopting in vivo and in vitro approaches. Gas chromatography mass spectroscopy (GC-MS) analysis was performed for profiling bioactive compounds present in lupin cultivars. Multiple assay techniques involving quantification of polyphenolics, flavonoids and flavonol, electron transfer (ET) based assay, hydrogen atom transfer (HAT)-based assay and in vivo assays were performed. The major compounds found were hexadecanoic acid methyl ester, 9,12-octadecadienoic acid methyl ester, methyl stearate, lupanine,13-docosenamide and 11-octadecenoic acid (Z)- methyl ester. Mandelup was found to show excellent antioxidant activity. Moreover, Jurien, Gunyidi and Barlock had strong antioxidant activity. Both positive and negative impacts of heat processing were observed on antioxidant activity. Heating and usage of excess water during processing were the key determinants of loss of antioxidants. Negligible loss of antioxidant activity was observed in most of the assays whereas inhibition of both lipid peroxidation (33.53%) and hemolysis of erythrocytes (37.75%) were increased after processing. In addition, in vitro and in vivo antioxidant assays are found to show statistically significant (* p < 0.05 and ** p < 0.01) results, which are supported by the presence of a number of antioxidant compounds in GC-MS analysis.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
| | - Afia Nabila
- Department of Pharmacy, Faculty of Basic Medicine and Health Sciences, University of Science and Technology Chittagong, Foy's Lake, Chittagong 4202, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Asgar Farahnaky
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne VIC 3083, Australia
| |
Collapse
|
24
|
Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase. J Biosci 2020. [DOI: 10.1007/s12038-020-0011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Sagitova EF, Sobenina LN, Trofimov BA. From Acylethynylpyrroles to Pyrrolo[1,2-a]pyrazines in One Step. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Köse A, Kaya M, Kishalı NH, Akdemir A, Şahin E, Kara Y, Şanlı-Mohamed G. Synthesis and biological evaluation of new chloro/acetoxy substituted isoindole analogues as new tyrosine kinase inhibitors. Bioorg Chem 2019; 94:103421. [PMID: 31759659 DOI: 10.1016/j.bioorg.2019.103421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022]
Abstract
We have developed a versatile synthetic approach for the synthesis of new isoindole derivatives via the cleavage of ethers from tricyclic imide skeleton compounds. An exo-cycloadduct prepared from the Diels-Alder reaction of furan and maleic anhydride furnished imide derivatives. The epoxide ring was opened with Ac2O or Ac2O/AcCl in the presence of a catalytic amount of H2SO4 in order to yield new isoindole derivatives 8a-d and 9a-d. The anticancer activity of these compounds was evaluated against the HeLa cell lines. The synthesized compounds showed inhibitory effects on the viability of HeLa cells and the degree of cytotoxicity was increased with the level of bigger branched isoindole derivatives. To better understand the acting mechanism of these molecules, western blot analysis was performed with using mTOR and its downstream substrates. In addition, human mTOR and ribozomal S6 kinase β1 (RS6Kβ1) have been investigated with molecular modelling studies as possible targets for compound series 8 and 9.
Collapse
Affiliation(s)
- Aytekin Köse
- Department of Chemistry, Faculty of Sciences and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Meltem Kaya
- Department of Chemistry, Faculty of Sciences, İzmir Institute of Technology, 35430 İzmir, Turkey
| | - Nurhan H Kishalı
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Yunus Kara
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey.
| | - Gülşah Şanlı-Mohamed
- Department of Chemistry, Faculty of Sciences, İzmir Institute of Technology, 35430 İzmir, Turkey.
| |
Collapse
|
27
|
Kgk D, Kumari S, G S, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem Biol Interact 2019; 315:108872. [PMID: 31669320 DOI: 10.1016/j.cbi.2019.108872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Cyclo (L-Leucyl-L-Prolyl) peptide/CLP is a marine natural metabolite and well recognized as an antimicrobial and antioxidant agent with limited studies on anticancer activity. The current study aims to determine the effect of CLP on migration and growth of triple negative breast cancer cell lines. The anti-growth potential was evaluated by MTT, BrdU and TUNEL assays; DNA damage by γH2AX and Dead green assays; antimigration activity by Boyden chamber invasion and wound healing assays. Interaction of CLP with CD151 was resolved by PatchDock. Effect of CLP on the expression of transmembrane CD151 was evaluated by cell-based ELISA assay. The interaction between CD151 and EGFR was predicted by using FireDoc Web server. Impact of CLP on the interaction of CD151 with EGFR was evaluated by co-immunoprecipitation assay. The effect of CLP on the cell cycle and its controlling proteins was determined by Western blotting. CLP reduced the viability of MDA-MB-231 and MDA-MB-468 TNBC cell lines but not human breast healthy epithelial cell line (MCF-12A) similar to eribulin, standard. CLP also inhibited proliferation; cell cycle and migration. It induced DNA strand breaks, DNA damage, and cell death. It showed the most favorable interactions with CD151 in in silico docking and significantly reduced the expression of membrane-bound CD151 proteins. FireDoc Web study predicted the association between CD151 and EGFR with -29.13 kcal/mol of binding energy. CLP reduced the interaction of CD151 with EGFR along with the expression of cyclin D, CDK4, PAK, RAC1, and P27kiP1. This study concludes that CLP suppresses growth and migration by attenuating cell cycle of TNBC cell lines via EGFR and CD151 signaling. Thus, exploring the EGFR and CD151 signaling pathway targeted by CLP may provide a new approach in the treatment of TNBC.
Collapse
Affiliation(s)
- Deepak Kgk
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Shailender G
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
28
|
Liu N, Lin L, Wang JQ, Zhang FK, Wang JP. Tetramethylpyrazine supplementation reduced Salmonella Typhimurium load and inflammatory response in broilers. Poult Sci 2019; 98:3158-3164. [PMID: 30895324 DOI: 10.3382/ps/pez128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
The present study tested whether tetramethylpyrazine (TMP) supplementation could influence the growth performance, Salmonella Typhimurium (S. Typhimurium) load, inflammasomes, cytokines, and chemokines in broilers. Treatments were a 2 × 2 factorial design, including negative control (NC), S. Typhimurium challenge (SC), and NC/SC + TMP (150 mg/kg of diet). The trial lasted for 28 D, and S. Typhimurium subclinical challenge was occurred on day 8. The results showed that S. Typhimurium challenge worsened (P < 0.05) growth performance, S. Typhimurium load in intestinal digesta and visceral tissues, intestinal inflammatory responses, and permeability compared to the NC treatment. TMP supplementation increased (P < 0.05) feed intake, weight gain, and feed efficiency by 4.3 to 12.0%, but decreased (P < 0.05) S. Typhimurium load by 5.4 to 45.8%, inflammasomes (caspase-1/3/9, gasdermin A/E, and nod-like receptor protein 3) by 25.0 to 59.0%, chemokines (C-C motif ligand 2 and C-X-C motif 10) by 40.2 to 47.2%, intestinal permeability by 28.2% compared to the SC treatment. The TMP also reduced inflammatory response by influencing tumor necrosis factor α, interleukin 1β/4/6. Factorial analysis indicated that TMP and SC were interactive (P < 0.05) on most parameters due to the more pronounced TMP effect in S. Typhimurium challenge groups. It is concluded that TMP can promote growth and mitigate S. Typhimurium infection by reducing the S. Typhimurium load and inflammatory response in broilers.
Collapse
Affiliation(s)
- N Liu
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - L Lin
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - J Q Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - F K Zhang
- Luoyang Xintai Agro-pastoral Technology Co., Ltd, Luoyang 471400, China
| | - J P Wang
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
29
|
Senthil Kumar V, Kumaresan S, Tamizh MM, Hairul Islam MI, Thirugnanasambantham K. Anticancer potential of NF-κB targeting apoptotic molecule "flavipin" isolated from endophytic Chaetomium globosum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152830. [PMID: 31048125 DOI: 10.1016/j.phymed.2019.152830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Anticancer compounds from natural sources have drawn attention due to their structural diversity and relatively lesser side effects. Endophytic fungi are one such natural resource from, which plethoras of anticancerous compounds have been isolated. PURPOSE The objective of the study was to isolate and characterize the bioactive metabolite from Chaetomium globosum that exhibits astonishing antiproliferative activity against cancerous cell lines. METHODS Flavipin was isolated by bioassay-guided fractionation and identified using FT-IR, EI-MS and NMR studies. MTT assay was used to determine the cytotoxicity. Fluorescent staining (AO/EB) and DNA fragmentation studies confirmed the occurrence of apoptosis. Real time PCR and Western blotting were used to analyze the expression of apoptosis related genes and its proteins, respectively. RESULTS Flavipin inhibited proliferation of A549, HT-29 and MCF-7 cancer cells in dose dependent manner with an IC50 concentration of 9.89 µg/ml, 18 µg/ml and 54 µg/ml, respectively, whereas it was comparatively less sensitive (IC50 = 78.89 µg/ml) against normal cell line (CCD-18Co). At IC50 concentration cancerous cells exhibited cell shrinkage and fragmentation of DNA, which indicated that flavipin induced apoptotic cell death. In treated cells there is an up-regulation of p53 gene and its associated protein, whereas reciprocal expression was observed in BCL-2 gene and its protein. Furthermore, western blotting results also showed down-regulation of NFκB. CONCLUSION This is the first report on the antiproliferative activity of flavipin isolated from endophytic C. globosum and also proposed that interaction of flavipin with NFкB could be a possible mechanism for this activity. Flavipin induced apoptosis at low concentrations in cancer cell lines (A549, HT-29) and exhibited itself as a potential anticancer agent.
Collapse
Affiliation(s)
- Venugopal Senthil Kumar
- Department of Plant Biology and Plant Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, Tamil Nadu 600 004, India; Pondicherry Centre for Biological Science and Educational Trust, Jawahar Nagar, Pondicherry 605 005, India
| | - Subramanian Kumaresan
- Department of Plant Biology and Plant Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, Tamil Nadu 600 004, India.
| | - Manoharan Muthu Tamizh
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Mohamed Ibrahim Hairul Islam
- Pondicherry Centre for Biological Science and Educational Trust, Jawahar Nagar, Pondicherry 605 005, India; Biological Sciences Department, College of Science, King Faisal University, Hofuf 31982 Al Hassa, Saudi Arabia
| | | |
Collapse
|
30
|
Divya D, Nagarajaprakash R, Vidhyapriya P, Sakthivel N, Manimaran B. Single-Pot Self-Assembly of Heteroleptic Mn(I)-Based Aminoquinonato-Bridged Ester/Amide-Functionalized Dinuclear Metallastirrups: Potential Anticancer and Visible-Light-Triggered CORMs. ACS OMEGA 2019; 4:12790-12802. [PMID: 31460403 PMCID: PMC6682026 DOI: 10.1021/acsomega.9b01438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 05/23/2023]
Abstract
Multicomponent self-assembly of Mn2(CO)10, a bis-chelating aminoquinonato (ON∩ON) bridge (L), and an ester/amide-functionalized flexible neutral ditopic linker (L') has resulted into the formation of M2LL'-type manganese(I)-based dinuclear metallastirrups of general formula [{(CO)3Mn(μ-η4-L)Mn(CO)3}(μ-L')] (1-10). Compounds 1-10 were accomplished via orthogonal bonding of the aminoquinone ligand (2,5-bis(n-butylamino)-1,4-benzoquinone/2,5-bis(phenethylamino)-1,4-benzoquinone) and ditopic pyridyl ligand to manganese carbonyl. The resultant metallastirrups were characterized using elemental analyses and IR, UV-vis, 1H NMR, and electrospray ionization-mass spectroscopic techniques. The molecular structure of 6 was confirmed by single-crystal X-ray diffraction methods. Furthermore, molecular recognition capabilities of 1, 5, 7, and 9 were evaluated with aromatic compounds containing hydroxy/amine functionalities. Anticancer activities of compounds 1-3, 5-7, 9, and 10 were investigated against three cancer cell lines, that is, lung (A549), colon (HCT-15), and cervical (HeLa) as well as on normal cells (HEK 293). Compound 9 showed a broad-spectrum inhibition toward these cancer cells upon exposure to visible light. The myoglobin assay was performed using UV-vis absorption spectroscopy to investigate the visible-light-triggered CO release from 5 and 9 that could be related to their ability to effectively inhibit cancer cells. In addition, morphological studies confirmed the induction of autophagy due to the treatment of cancer cells using compound 9.
Collapse
Affiliation(s)
- Dhanaraj Divya
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Ramamurthy Nagarajaprakash
- Chemical
Sciences Research Group, Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pitchavel Vidhyapriya
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Natarajan Sakthivel
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Bala. Manimaran
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| |
Collapse
|
31
|
Velayutham K, Madhava AK, Pushparaj M, Thanarasu A, Devaraj T, Periyasamy K, Subramanian S. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). ENVIRONMENTAL TECHNOLOGY 2018; 39:2900-2907. [PMID: 28820042 DOI: 10.1080/09593330.2017.1369579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Staphylococcus sp. K2204, a bacterial isolate, was employed in this work to decolorize Remazol Brilliant Blue R (RBBR), which belongs to the anthraquinone class of textile dye. Staphylococcus sp. K2204 biodegraded 100 mg/L RBBR at 37°C under static condition with the help of extracellular laccase and peroxidases. The products of RBBR degradation were characterized using analytical tools including mass spectral technique. The phytotoxicity tests evaluated the toxicity of RBBR and the products of biodegradation. The research outlined here is the first attempt to utilize Staphylococcus sp. K2204 for remediating the wastewater containing anthraquinone textile dye.
Collapse
Affiliation(s)
- Karthikeyan Velayutham
- a Department of Applied Science and Technology, Alagappa College of Technology , Anna University , Chennai , India
| | - Anil Kumar Madhava
- b Department of Biotechnology , Madha Engineering College , Chennai , India
| | | | - Amudha Thanarasu
- a Department of Applied Science and Technology, Alagappa College of Technology , Anna University , Chennai , India
| | - Thiruselvi Devaraj
- a Department of Applied Science and Technology, Alagappa College of Technology , Anna University , Chennai , India
| | - Karthik Periyasamy
- a Department of Applied Science and Technology, Alagappa College of Technology , Anna University , Chennai , India
| | - Sivanesan Subramanian
- a Department of Applied Science and Technology, Alagappa College of Technology , Anna University , Chennai , India
| |
Collapse
|
32
|
Antimycobacterial activity of an anthracycline produced by an endophyte isolated from Amphipterygium adstringens. Mol Biol Rep 2018; 45:2563-2570. [PMID: 30311126 DOI: 10.1007/s11033-018-4424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
The search for new compounds effective against Mycobacterium tuberculosis is still a priority in medicine. The evaluation of microorganisms isolated from non-conventional locations offers an alternative to look for new compounds with antimicrobial activity. Endophytes have been successfully explored as source of bioactive compounds. In the present work we studied the nature and antimycobacterial activity of a compound produced by Streptomyces scabrisporus, an endophyte isolated from the medicinal plant Amphipterygium adstringens. The active compound was detected as the main secondary metabolite present in organic extracts of the streptomycete and identified by NMR spectroscopic data as steffimycin B (StefB). This anthracycline displayed a good activity against M. tuberculosis H37Rv ATCC 27294 strain, with MIC100 and SI values of 7.8 µg/mL and 6.42, respectively. When tested against the rifampin mono resistant M. tuberculosis Mtb-209 pathogen strain, a better activity was observed (MIC100 of 3.9 µg/mL), suggesting a different action mechanism of StefB from that of rifampin. Our results supported the endophyte Streptomyces scabrisporus as a good source of StefB for tuberculosis treatment, as this anthracycline displayed a strong bactericidal effect against M. tuberculosis, one of the oldest and more dangerous human pathogens causing human mortality.
Collapse
|
33
|
Rajivgandhi G, Muneeswaran T, Maruthupandy M, Ramakritinan CM, Saravanan K, Ravikumar V, Manoharan N. Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microb Pathog 2018; 125:325-335. [PMID: 30243551 DOI: 10.1016/j.micpath.2018.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/21/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
The aim of the current study is to identify bioactive compound from marine endophytic actinomycetes (MEA) isolated from Gulf of Mannar region, Southeast coast of India. Among the isolated actinomycetes, strain GRG 4 exhibited excellent ability to inhibit isolated colistin resistant (CR) Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae), which is a emerging threat to the world. The strain was identified as Streptomyces coeruleorubidus GRG 4 (KY457708), based on morphological, biochemical, phenotypic and genotypic characters. The bioactive metabolites present in the methanolic extract were partially purified by TLC and preparative HPLC. The active HPLC fraction 2 showed 15, 20 mm zone of inhibition against both CR P. aeruginosa and K. pneumoniae respectively. Analytical HPLC and FT-IR results of fraction 2 showed with carbonyl group. Both GC-MS and LC-MS results confirmed that the fraction 2 contained chemical constituents of Bis (2-Ethylhexyl) Phthalate (BEP). The compromised structure with loosely integrated and ruptured cell wall of BEP treated CR bacteria were observed by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) at 75 μg/mL of minimum inhibitory concentration (MIC) dose. Further, cytotoxic effect of BEP against A549 human lung cancer cells revealed complete inhibition by cell proliferation and apoptosis was observed at 100 μg/mL in 24 h treatment. In addition, irreversible ROS dependent oxidative damage was clearly observed at the IC50 concentration of BEP. The toxicity of BEP was also studied against Vibrio fischeri (V. fischeri) and found to be highly toxic after 15 and 30 min of treatment. Based on the results it could be concluded that the identified compound BEP is a potent inhibitor for CR bacteria and A549 lung cancer cells.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- Microbiology & Pharmacology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Muthuchamy Maruthupandy
- School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | | | - Kandasamy Saravanan
- Molecular, Cell & Cancer Biology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Vilwanathan Ravikumar
- Molecular, Cell & Cancer Biology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Natesan Manoharan
- Microbiology & Pharmacology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
34
|
Photoactivated [Mn(CO) 3Br(μ-bpcpd)] 2 induces apoptosis in cancer cells via intrinsic pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:28-41. [PMID: 30195977 DOI: 10.1016/j.jphotobiol.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Carbon monoxide releasing molecules (CORMs) are organometallic/organic compounds that release carbon monoxide (CO) spontaneously or upon activation. PhotoCORMs are capable of releasing CO on light based activation. This group of molecules is used in photodynamic therapy due to their ability to release CO in a controlled manner. In the present investigation, the release of CO from [Mn(CO)3Br(μ-bpcpd)]2 (MnCORM) upon irradiation at λmax 365 nm was assessed spectrophotometrically using myoglobin assay and confirmed by liquid FT-IR spectroscopic analysis. Further, the cytotoxic potential of MnCORM on normal cells (HEK 293) and cancer cell lines such as lung (A549), cervical (HeLa), breast (MDA MB-231) and colon (HCT-15) was evaluated. The IC50 values of MnCORM were found to be 21.37 ± 1.72, 24.12 ± 1.03, 21.89 ± 0.59 and 13.69 ± 0.91 μM on cervical (HeLa), lung (A549), colon (HCT-15) and breast (MDA MB-231) cancer cells respectively. An inquest into the nature of cell death was confirmed based on the nuclear and cytological examinations, flow cytometric analyses and protein expression studies. The AO/EB dual staining and cytological evaluation of the treated cells revealed that the cell death might be due to apoptosis. The flow cytometric analysis of propidium iodide (PI) stained cells showed a significant amount of sub-G1 hypodiploid cells due to MnCORM treatment. The MnCORM-induced apoptosis was mediated through the generation of reactive oxygen species (ROS), specifically superoxide radicals leading to loss of mitochondrial membrane potential. The intrinsic pathway of apoptosis was elucidated based on the expression studies of pro-apoptotic and apoptotic proteins such as bcl-2, bax, cyt c, cleaved caspase-3, cleaved caspase-9 and cleaved PARP. Due to its innate potential to release CO upon photoactivation and its ability to induce apoptosis via intrinsic pathway, the MnCORM molecule could be exploited for controlled release and photodynamic cancer therapy.
Collapse
|
35
|
Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derivedStreptomycessp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 2018; 125:1370-1382. [DOI: 10.1111/jam.14043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- F. Almasi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| | - F. Mohammadipanah
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
| | - H.-R. Adhami
- Department of Pharmacognosy; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - J. Hamedi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| |
Collapse
|
36
|
Galaviz-Silva L, Iracheta-Villarreal JM, Molina-Garza ZJ. Bacillus and Virgibacillus strains isolated from three Mexican coasts antagonize Staphylococcus aureus and Vibrio parahaemolyticus. FEMS Microbiol Lett 2018; 365:5075581. [DOI: 10.1093/femsle/fny202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lucio Galaviz-Silva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Jesús Mario Iracheta-Villarreal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Zinnia Judith Molina-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas. Laboratorio de Patología Molecular y Experimental. Facultad de Ciencias Biológicas, Unidad B, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| |
Collapse
|
37
|
Siddharth S, Vittal RR. Evaluation of Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Activities of Partially Purified Volatile Metabolites of Marine Streptomyces sp.S2A. Microorganisms 2018; 6:E72. [PMID: 30021990 PMCID: PMC6163298 DOI: 10.3390/microorganisms6030072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
In the present study, marine actinobacteria Streptomyces sp.S2A was isolated from the Gulf of Mannar, India. Identification was carried out by 16S rRNA analysis. Bioactive metabolites were extracted by solvent extraction method. The metabolites were assayed for antagonistic activity against bacterial and fungal pathogens, inhibition of α-glucosidase and α-amylase enzymes, antioxidant activity and cytotoxic activity against various cell lines. The actinobacterial extract showed significant antagonistic activity against four gram-positive and two gram-negative pathogens. Excellent reduction in the growth of fungal pathogens was also observed. The minimum inhibitory concentration of the partially purified extract (PPE) was determined as 31.25 μg/mL against Klebsiella pneumoniae, 15.62 μg/mL against Staphylococcus epidermidis, Staphylococcus aureus and Bacillus cereus. The lowest MIC was observed against Micrococcus luteus as 7.8 μg/mL. MIC against fungal pathogens was determined as 62.5 μg/mL against Bipolaris maydis and 15.62 μg/mL against Fusarium moniliforme. The α-glucosidase and α-amylase inhibitory potential of the fractions were carried out by microtiter plate method. IC50 value of active fraction for α-glucosidase and α-amylase inhibition was found to be 21.17 μg/mL and 20.46 μg/mL respectively. The antioxidant activity of partially purified extract (PPE) (DPPH, ABTS, FRAP and Metal chelating activity) were observed and were also found to have significant cytotoxic activity against HT-29, MDA and U-87MG cell lines. The compound analysis was performed using gas chromatography-mass spectrometry (GC-MS) and resulted in three constituents; pyrrolo[1⁻a]pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl)-, being the main component (80%). Overall, the strain possesses a wide spectrum of antimicrobial, enzyme inhibitory, antioxidant and cytotoxic activities which affords the production of significant bioactive metabolites as potential pharmacological agents.
Collapse
Affiliation(s)
- Saket Siddharth
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India.
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India.
| |
Collapse
|