1
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
2
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
3
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Wang XL, Wang YT, Guo ZY, Zhang NN, Wang YY, Hu D, Wang ZZ, Zhang Y. Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115067. [PMID: 35143936 DOI: 10.1016/j.jep.2022.115067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin, a bioactive compound extracted from the traditional Chinese herb, Paeonia lactiflora Pall, has been demonstrated to possess efficient antidepressant activity in previous studies. AIM OF THE STUDY Our systematic review and meta-analysis aimed to assess the effectiveness of paeoniflorin in relieving depressive-like behaviors in animal models. MATERIALS AND METHODS We searched for in vivo studies on the antidepressant effects of paeoniflorin in rodents using electronic databases from their inception to April 2021. The measurements of animal behavioral tests, including the sucrose consumption, forced swimming, tail suspension, and open field tests, were regarded as the outcomes. RESULTS Fourteen studies involving 416 animals met the inclusion criteria and were included in the meta-analysis. Statistical analysis revealed remarkable differences between the paeoniflorin and control groups. Furthermore, the paeoniflorin group showed great efficiency in improving depressive-like symptoms of animals in the sucrose consumption, forced swimming, tail suspension, and open field tests. CONCLUSIONS Our meta-analysis demonstrates that paeoniflorin can significantly improve depressive-like symptoms in animals and suggests that it can be a potential therapy for patients with depression in the future.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan-Yuan Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Wang L, An H, Yu F, Yang J, Ding H, Bao Y, Xie H, Huang D. The Neuroprotective Effects of Paeoniflorin Against MPP +-induced Damage to Dopaminergic Neurons via the Akt/Nrf2/GPX4 Pathway. J Chem Neuroanat 2022; 122:102103. [PMID: 35489613 DOI: 10.1016/j.jchemneu.2022.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
Paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from the root of Paeonia lactiflora Pall, has been shown to exert neuroprotective effects against neurodegenerative diseases such as Parkinson's disease (PD). However, its underlying mechanisms remain unknown. Our results showed that at certain concentrations, PF alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced morphological damage and inhibited neuronal ferroptosis. Moreover, our research indicated that the neuroprotective effect of PF could be partially blocked by ML385 (a nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor) and LY29400 (an Akt inhibitor). These findings suggest that PF protects against MPP+-induced neurotoxicity by preventing ferroptosis via activation of the Akt/Nrf2/Gpx4 pathway in vitro.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hedi An
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Ding
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Peng W, Chen Y, Tumilty S, Liu L, Luo L, Yin H, Xie Y. Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca 2+ and ROS homeostasis. Curr Opin Pharmacol 2021; 62:97-102. [PMID: 34959127 DOI: 10.1016/j.coph.2021.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases (NDDs) are a range of neurological disorders featured by neuronal degeneration and apoptosis. Cellular Calcium (Ca2+) and reactive oxygen species (ROS) dyshomeostasis are the earliest and important events in the development of NDDs and may yield promising therapeutic targets for NDDs. Paeoniflorin, a water-soluble monoterpene glucoside, is the major bioactive monomer extracted from the root of Paeonia lactiflora pall. Increasing evidence has suggested that this natural compound might be used to treat various NDDs, and its potential molecular mechanisms are related to the modulation of Ca2+/ROS homeostasis in cells. In addition, paeoniflorin accounts for more than 40% of the total glucosides of herbaceous peonies with abundant herbaceous sources. Furthermore, it has also been validated as a safe extraction in clinical pharmacological research with a wide therapeutic window. Hence, it is rational to anticipate paeoniflorin being a promising candidate for the treatment of NDDs via regulating Ca2+/ROS dyshomeostasis.
Collapse
Affiliation(s)
- Wei Peng
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yunhui Chen
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China.
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand
| | - Lizhou Liu
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, Otago, 9054, New Zealand; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), University of Otago, Dunedin, Otago, 9054, New Zealand; Ageing Well National Science Challenge, University of Otago, Dunedin, 9054, New Zealand
| | - Ling Luo
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Haiyan Yin
- School of Pharmacy/Basic Medicine/Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; China-New Zealand Collaboration Centre for Integrative Medicine (CHINZIM), Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, South Renmin Road, Wu Hou District, Chengdu, Sichuan, 610044, China
| |
Collapse
|
7
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
8
|
Yang L, Friedemann T, Pan J. Ecdysterone Attenuates the Development of Radiation-Induced Oral Mucositis in Rats at Early Stage. Radiat Res 2021; 196:366-374. [PMID: 34237140 DOI: 10.1667/rade-21-00042.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/15/2021] [Indexed: 11/03/2022]
Abstract
Oral mucositis is a common adverse reaction of radiotherapy used for head and neck cancers. Our research investigates the therapeutic effect and potential mechanisms of ecdysterone, a compound which was used as a functional food additive, isolated from the root of medicine-food herbs Achyranthes bidentata (Blume), on radiation-induced oral mucositis in rats during the early development stages of mucositis. In this study, male Sprague-Dawley rats received a single 20 Gy X-ray dose to the head and neck after placement of each animal in a specially-constructed 5-mm lead jig. At 24 h postirradiation, ecdysterone was administrated orally. Therapeutic effects of ecdysterone were investigated by observing weight changes and development of mucositis on days 5 and 10 after treatment. Determination of superoxide dismutase and malondialdehyde concentration was performed 5 days after treatment. H&E and leukocyte common antigen staining and TUNEL assays were performed 10 days after treatment. After 10 days of treatment, total protein from the tongue samples was extracted and Western blot analysis was performed to evaluate changes in protein expression. The results of this study showed that ecdysterone prevented the development of radiation-induced oral mucositis in rats during the early stages. Ecdysterone significantly attenuated radiation-induced decrease in cellular superoxide dismutase concentration and increase in malondialdehyde concentration. Ecdysterone was also linked to up-regulation of anti-apoptotic protein Bcl-2 and down-regulation of pro-apoptotic proteins Bax and cleaved caspase-3. In conclusion, these findings suggest that orally administrated ecdysterone alleviates the development of radiation-induced oral mucositis in rats with remarkable anti-oxidant and anti-apoptotic activities at early stages after irradiation.
Collapse
Affiliation(s)
- Li Yang
- Hefei University of Technology, Anhui Hefei, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jian Pan
- Hefei University of Technology, Anhui Hefei, China
| |
Collapse
|
9
|
Momordica Charantia Polysaccharides Attenuates MPP+-Induced Injury in Parkinson’s Disease Mice and Cell Models by Regulating TLR4/MyD88/NF-κB Pathway. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5575636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective. To investigate the potential role of Momordica charantia polysaccharides (MCPs) in Parkinson’s disease (PD) and reveal the molecular mechanism of its function. Method. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (1-methyl-4-phenylpyridinium, MPP+) were used to establish PD mice and cell models. The mice and cells were divided into 4 groups: Control group, Control+MCPs group, PD group, and PD+MCPs group. Pole climbing experiment and Rotarod experiment were used to observe the coordination ability of mice. High-performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA) were used to determine neurotransmitters and metabolites, inflammatory factors TNF-α and IL-1β, oxidative stress-related markers SOD, MDA, and GSH in striatum tissues. Western blot was used to determine the protein levels of tyrosine hydroxylase (TH), oxidative stress-related protein Cytochrome C (Cytochrome C), and apoptosis-related proteins Bcl-2, Bax, and cleaved Caspase-3 in tissues and cells. Moreover, flow cytometry, PI staining, and fluorescence were used to observe cell apoptosis. Finally, the activation effect of MCPs on TLR4/MyD88/NF-κB signaling pathway was observed and verified. Results. Compared with the Control group, MPTP treatment can induce brain damage in mice (all
), change the metabolic state of neurotransmitters (all
), induce inflammation (all
), and induce apoptosis and the occurrence of oxidation reaction (all
); however, MCPs treatment can significantly reverse the above changes (all
). In cell models, studies have found that MCPs can play a protective role by regulating the activation state of TLR4/MyD88/NF-κB pathway. Conclusion. This study found that the application of MCPs therapy can play anti-inflammatory, antioxidative stress, and antiapoptotic effects in PD by regulating the activation of the TLR4/MyD88/NF-κB pathway.
Collapse
|
10
|
Zhang Z, Yang W. Paeoniflorin protects PC12 cells from oxygen-glucose deprivation/reoxygenation-induced injury via activating JAK2/STAT3 signaling. Exp Ther Med 2021; 21:572. [PMID: 33850544 PMCID: PMC8027733 DOI: 10.3892/etm.2021.10004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke is the most common type of stroke, and it has become a major health issue as it is characterized by high mortality and morbidity rates. Paeoniflorin (PF) is a natural compound and the main active ingredient of Radix Paeoniae. The aim of the present study was to investigate the role of PF in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of PC12 cells and its association with the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. An in vitro model of OGD/R injury was established in PC12 cells. Subsequently, Cell Counting Kit-8 assay and ELISA were used to evaluate cell viability and the secretion of inflammatory factors, respectively, in PC12 cells subjected to OGD/R and treated with PF. The levels of oxidative stress indicators and inflammatory factors were measured using corresponding commercial kits. In addition, the apoptosis rate of PC12 cells subjected to OGD/R and treated with PF was determined by flow cytometry, and the expression of apoptosis-related proteins was analyzed by western blotting. Additionally, the expression levels of JAK2/STAT3 pathway-related proteins were also evaluated. The cell viability, levels of oxidative stress, inflammation and apoptosis were also measured in OGD/R-induced PC12 cell injury models following co-treatment of cells with PF and FLLL32, a specific inhibitor of JAK2/STAT3 signaling. Cell viability was reduced, while oxidative stress and inflammation were increased after OGD/R-induced injury. However, the treatment of cells with PF significantly enhanced cell viability, and alleviated oxidative stress, inflammation and apoptosis of OGD/R-treated PC12 cells. Furthermore, PF activated the JAK2/STAT3 signaling pathway. Following FLLL32 intervention, the effects of PF on oxidative stress, inflammation and apoptosis of OGD/R-treated PC12 cells were reversed. In conclusion, the findings of the present study suggested that PF may protect PC12 cells from OGD/R-induced injury via activating the JAK2/STAT3 signaling pathway, thus providing novel insight into the mechanism through which PF may alleviate ischemic stroke and indicating a potential strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Weimin Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
11
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
12
|
Paeoniflorin attenuates chronic constriction injury-induced neuropathic pain by suppressing spinal NLRP3 inflammasome activation. Inflammopharmacology 2020; 28:1495-1508. [DOI: 10.1007/s10787-020-00737-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
|
13
|
Yamada EF, Olin LC, Pontel CL, da Rosa HS, Folmer V, da Silva MD. Sida tuberculata reduces oxidative stress and pain caused by the knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112277. [PMID: 31606533 DOI: 10.1016/j.jep.2019.112277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (OA) cause pain and edema, as well as unbalance between the production of reactive oxygen species and antioxidant activity. These problems interfere with the articular function, leading to a significant loss of life quality. Sida tuberculata R.E.Fr. is an herbaceous plant belonging to the Malvaceae family found in southern Brazil. This plant has traditionally been consumed as an aqueous extract and popularly used in the treatment of many diseases, with antioxidant and antimicrobial activity, reducing pain and inflammation. AIM OF THE STUDY To verify the effects of S. tuberculata extract obtained from leaves on oxidative, toxic and nociceptive parameters induced by knee OA in rats. MATERIALS AND METHODS Aqueous extracts of S. tuberculata were evaluated under phytochemical analyses. Knee Osteoarthritis was induced in rats with monosodium iodoacetate (1.5 mg/50 μl) and treated with S. tuberculata extract. The animals were treated orally with 3 doses of S. tuberculata extract (STE): 1.5, 5 and 15 mg/ml, for 14 days. For biochemical analyses, the following tests were performed: lipid peroxidation, carbonylated protein content, superoxide dismutase activity, non-protein thiol levels and myeloperoxidase activity. For the evaluation of pain and edema we verify mechanical and thermal hyperalgesia, spontaneous pain observation and measurement of knee edema with a caliper. For histological evaluations, the animal knee joints were removed. For toxicity evaluation, the levels of aspartate aminotransferase, alanine aminotransferase and urea, as well as the relative weight of the organs were analyzed. RESULTS The S. tuberculata phytochemical analyses showed the majority peak corresponding to 20-hydroxyecdysone (20HE). The plant extract decreased damages related to oxidative stress in the blood serum (lipid peroxidation and carbonyl content) Overall, the STE 5 mg Group presented the greater statistical significance, in the blood serum samples, in relation to the other groups, being the most relevant result. The S. tuberculata groups presented pain decrease, lower neutrophil activity in the knee, and increased blood serum activity. The animals of S. tuberculata groups showed a decrease in mechanical hyperalgesia. The animals treated also presented lower scores for spontaneous pain. It was observed that the dose of 5 mg presented, once again, more expressive results, since the animals of this group had a higher frequency (greater number of days) with significant decrease of pain. In the histological analysis, in the STE 5 mg group, the articular cartilage lesions were observed at an intermediate point between the damage found in the MIA and Diclofenac groups. Besides that, the STE did not show significant changes in oxidative stress damage in liver and kidney samples. Blood serum samples did not indicate significant differences in liver and renal function. As well as, there were no differences in mean relative body weights in relation to control groups (Salina and MIA). CONCLUSION S. tuberculata reduced the damage due to oxidative stress and pain caused by knee osteoarthritis in rats. In addition, the extract presented no toxicity. Our results suggest that S. tuberculata seems to have a therapeutic potential in the osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanderlei Folmer
- Universidade Federal do Pampa (Unipampa), Uruguaiana, RS, Brazil
| | | |
Collapse
|
14
|
Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9741369. [PMID: 31998447 PMCID: PMC6969994 DOI: 10.1155/2020/9741369] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease that may lead to lifelong disability. Thus, seeking for valid drugs that are beneficial to promoting axonal regrowth and elongation after SCI has gained wide attention. Metformin, a glucose-lowering agent, has been demonstrated to play roles in various central nervous system (CNS) disorders. However, the potential protective effect of metformin on nerve regeneration after SCI is still unclear. In this study, we found that the administration of metformin improved functional recovery after SCI through reducing neuronal cell apoptosis and repairing neurites by stabilizing microtubules via PI3K/Akt signaling pathway. Inhibiting the PI3K/Akt pathway with LY294002 partly reversed the therapeutic effects of metformin on SCI in vitro and vivo. Furthermore, metformin treatment weakened the excessive activation of oxidative stress and improved the mitochondrial function by activating the nuclear factor erythroid-related factor 2 (Nrf2) transcription and binding to the antioxidant response element (ARE). Moreover, treatment with Nrf2 inhibitor ML385 partially abolished its antioxidant effect. We also found that the Nrf2 transcription was partially reduced by LY294002 in vitro. Taken together, these results revealed that the role of metformin in nerve regeneration after SCI was probably related to stabilization of microtubules and inhibition of the excessive activation of Akt-mediated Nrf2/ARE pathway-regulated oxidative stress and mitochondrial dysfunction. Overall, our present study suggests that metformin administration may provide a potential therapy for SCI.
Collapse
|
15
|
Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:1-8. [PMID: 30878547 DOI: 10.1016/j.jep.2019.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) exerts a significant protective effect against neurotoxicity and mitochondrial damage in neurons. However, the mechanisms underlying PF-mediated rescue remain elusive. Therefore, we endeavored to further research the molecular mechanisms underlying PF-mediated inhibition of tributyltin chloride (TBTC)-induced apoptosis of neurons. AIM OF THE STUDY To investigate the influence and possible mechanism of action of PF in TBTC-induced neurodegenerative disease. MATERIALS AND METHODS First, primary hypothalamic neurons were treated with tributyltin chloride (150 μg/L) and PF (25, 50, and 100 μM). 17β-estradiol (1 nM) was used as a positive control. Subsequently, CCK-8 assay was performed. The level of apoptosis was examined by flow cytometry and the function of mitochondria was reflected by MMP levels. The mRNA expression levels of B-cell lymphoma-2 (Bcl-2), together with Bax, were examined using qRT-PCR. The protein levels of mitogen-activated protein kinase kinase 4 (MKK4), c-Jun N-terminal kinase (JNK), Bcl-2, Bax, and Caspase-3 were examined using western blotting. Finally, pretreatment with JNK agonist, anisomycin, was done to observe the change in expressions of MKK4 and JNK. RESULTS Paeoniflorin treatment reduced TBTC-induced damage and neuron loss in a dose-dependent manner. Decrease in mitogen-activated protein kinase (MAPK) as well as JNK levels were reversed by treatment with paeoniflorin via inhibition of JNK activation. Furthermore, ratio of levels of Bcl-2/Bax increased while the activation of caspase-3 was suppressed. In addition, pretreatment with JNK agonist, anisomycin effectively suppressed TBTC-induced cytotoxicity in hypothalamic neuron. CONCLUSIONS PF can potentially be used to prevent and/or treat neurodegenerative diseases and neural injury by inhibiting MKK4-JNK signaling pathway.
Collapse
Affiliation(s)
- Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Xiaofei Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Huicong Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Wenjia Gui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Te Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 20032, China.
| |
Collapse
|
16
|
Liu H, Chen S, Guo C, Tang W, Liu W, Liu Y. Astragalus Polysaccharide Protects Neurons and Stabilizes Mitochondrial in a Mouse Model of Parkinson Disease. Med Sci Monit 2018; 24:5192-5199. [PMID: 30048421 PMCID: PMC6074062 DOI: 10.12659/msm.908021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Astragalus polysaccharides (APS) have a very good therapeutic effect in the treatment of neurodegenerative diseases and nerve injury disease. However, research on Parkinson disease (PD) treatment with APS is lacking. MATERIAL AND METHODS The present study was designed to explore the effects of APS on the protection of neurons and mitochondrial in a mouse model of PD using behavioral experiments, and observations of mitochondrial structure and transmembrane potential. RESULTS It was shown that APS could attenuate 1-methyl-4-pheyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction (P<0.01), increase the proportion of TH-positive cells (P<0.01), reverse MPTP-induced mitochondrial structural damage, and reduce MPTP-induced high levels of reactive oxygen species (ROS) and increase MPTP-induced decrease in mitochondrial membrane potential. In addition, APS also decreased the bax/bcl2 ratio, and cytochrome-c and caspase-3 protein content (P<0.01) in substantia nigra in our mouse PD model. CONCLUSIONS APS provided a protective effect on neurons and mitochondrial in a mouse PD model.
Collapse
Affiliation(s)
- Hong Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- Department of Neurology, People’s Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, P.R. China
- Department of Neurology, First Hospital of Liaocheng University, Liaocheng, Shandong, P.R. China
| | - Si Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Cunju Guo
- Department of Neurology, People’s Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, P.R. China
- Department of Neurology, First Hospital of Liaocheng University, Liaocheng, Shandong, P.R. China
| | - Wenqiang Tang
- Department of Central Laboratory, People’s Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, P.R. China
| | - Wei Liu
- Department of Central Laboratory, People’s Hospital of Liaocheng Affiliated to Taishan Medical College, Liaocheng, Shandong, P.R. China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
17
|
Li R, Zhang JF, Wu YZ, Li YC, Xia GY, Wang LY, Qiu BL, Ma M, Lin S. Structures and Biological Evaluation of Monoterpenoid Glycosides from the Roots of Paeonia lactiflora. JOURNAL OF NATURAL PRODUCTS 2018; 81:1252-1259. [PMID: 29741372 DOI: 10.1021/acs.jnatprod.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fractionation of an aqueous extract of the air-dried roots of a traditional Chinese medicinal plant, Paeonia lactiflora, yielded the new monoterpenoid glycosides 1-10. Their structures were assigned via spectroscopic techniques, and the absolute configurations of 1, 4-6, and 8 were verified via chemical methods, specific rotation, and electronic circular dichroism data. Compounds 1-4 are rare compared to the reported cage-like paeoniflorin derivatives; that is, they comprised two monoterpenoidal moieties. In the in vitro assay, compounds 5, 8, and 9 showed weak inhibitions against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages, with IC50 values of 64.8, 60.1, and 97.5 μM, respectively.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jing-Fang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yu-Zhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yan-Cheng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Gui-Yang Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Ling-Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Bo-Lin Qiu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Min Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
18
|
Ma XH, Duan WJ, Mo YS, Chen JL, Li S, Zhao W, Yang L, Mi SQ, Mao XL, Wang H, Wang Q. Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3β pathway in SH-SY5Y cells. Brain Res 2018; 1690:1-11. [PMID: 29596798 DOI: 10.1016/j.brainres.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Abnormal phosphorylation of tau, one of the most common symptoms of dementia, has become increasingly important in the study of the etiology and development of Alzheimer's disease. Paeoniflorin, the main bioactive component of herbaceous peony, is a monoterpene glycoside, which has been reported to exert beneficial effects on neurodegenerative disease. However, the effect of paeoniflorin on tauopathies remains ambiguous. SH-SY5Y cells were treated with okadaic acid (OA) for 8 h to induce tau phosphorylation and no cell death was observed. Optical microscopy results showed that paeoniflorin ameliorated okadaic acid induced morphological changes, including cell swelling and synapsis shortening. Western blotting data illustrated that paeoniflorin reversed okadaic acid induced tau hyperphosphorylation, which was enhanced by inhibiting the activities of calpain, Akt and GSK-3β. Transmission electron microscopy results showed that paeoniflorin alone can reduce the number of autophagosomes and stabilize the microtubule structure. In addition, calpastain and paeoniflorin enhance the effect of paeoniflorin on stabilizing microtubules. In addition, calpastain markedly enhanced the effect of paeoniflorin on reversing okadaic acid-lowered fluorescence intensity of both MAP-2 and β III-tubulin, two microtubule-associated proteins. This study shows that paeoniflorin protected SH-SY5Y cells against okadaic acid assault by interfering with the calpain/Akt/GSK-3β-related pathways, in which autophagy might be involved. Besides, paeoniflorin is found to relieve the stress response of the microtubule structure system caused by okadaic acid treatment. The results presented in this study suggest that paeoniflorin potentially plays an important role in tauopathies.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wen-Jun Duan
- College of Pharmacy, Jinan University, Guangzhou 510080, China
| | - You-Sheng Mo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun-Li Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shi Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sui-Qing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-Liang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
19
|
Li Q, Niu C, Zhang X, Dong M. Gastrodin and Isorhynchophylline Synergistically Inhibit MPP +-Induced Oxidative Stress in SH-SY5Y Cells by Targeting ERK1/2 and GSK-3β Pathways: Involvement of Nrf2 Nuclear Translocation. ACS Chem Neurosci 2018; 9:482-493. [PMID: 29115830 DOI: 10.1021/acschemneuro.7b00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is multifactorial event. Combination therapies might be more effective in controlling the disease. Thus, the studies reported were designed to test the hypothesis that gastrodin (GAS)-induced de novo synthesis of nuclear factor E2-related factor 2 (Nrf2) and isorhynchophylline (IRN) inhibition of Nrf2 nuclear export contribute to their additive or synergistic neuroprotective effect. Here, we have demonstrated that the combination of GAS and IRN (GAS/IRN) protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium (MPP+) toxicity in a synergistic manner. Concomitantly, GAS/IRN led to a statistically significant reduction of oxidative stress, as assessed by reactive oxygen species (ROS) and lipid hydroperoxides (LPO), and enhancement of both glutathione (GSH) and thioredoxin (Trx) systems compared with treatment with either agent alone in MPP+-challenged SH-SY5Y cells. Interestingly, GAS but not IRN activated extracellular signal-regulated kinases 1 and 2 (ERK1/2), leading to a increase in de novo synthesis of Nrf2 and nuclear import of Nrf2. Simultaneously, IRN but not GAS suppressed both constitutive glycogen synthase kinase (GSK)-3β and Fyn activation, which inhibited nuclear export of Nrf2. Importantly, simultaneous inhibition of GSK-3β pathway by IRN and activation of ERK1/2 pathway by GAS synergistically induced accumulation of Nrf2 in the nucleus in SH-SY5Y cells challenged with MPP+. Furthermore, the activation of the ERK1/2 pathway and inhibition of GSK-3β pathway by GAS/IRN are mediated by independent mechanisms. Collectively, these novel findings suggest an in vitro model of synergism between IRN and GAS in the induction of neuroprotection warrant further investigations in vivo.
Collapse
Affiliation(s)
- Qiang Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Chengu Niu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
20
|
The Chinese herbal formula Free and Easy Wanderer ameliorates oxidative stress through KEAP1-NRF2/HO-1 pathway. Sci Rep 2017; 7:11551. [PMID: 28912423 PMCID: PMC5599498 DOI: 10.1038/s41598-017-10443-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) gains a lot of attention due to high prevalence and strong psychological upset, but the etiology remains undefined and effective treatment is quite limited. Growing studies demonstrated the involvement of oxidative stress in various psychiatry diseases, suggesting anti-oxidation therapy might be a strategy for PTSD treatment. Free and Easy Wanderer (FAEW) is a poly-herbal drug clinically used in China for hundreds of years in the treatment of psychiatric disorder. We hypothesized that FAEW exerts clinical effects through the activity against oxidative stress with fluoxetine as antidepressant control drug. Our results revealed that FAEW significantly reduced both endogenous and H2O2-induced exogenous ROS levels in the human glioblastoma T98G and neuroblastoma SH-SY5Y cell lines. Transcriptome-wide microarray analysis indicated NRF2/HO-1 as the common target of FAEW and fluoxetine. Western blotting assay proved that the two drugs promoted NRF2 release from KEAP1 in the cytoplasm and translocation to the nuclei in a KEAP1-dependent manner, the expression of the protein HO-1 increased accordingly, suggesting the participation of KEAP1-NRF2/HO-1 pathway. The chemical constituents of FAEW (i.e. paeoniflorin, baicalin) bound to KEAP1 in silico, which hence might be the effective substances of FAEW. In conclusion, FAEW counteracted H2O2-induced oxidative stress through KEAP1-NRF2/HO-1 pathway.
Collapse
|
21
|
Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 2017. [DOI: 10.1016/j.neuint.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Hong C, Schüffler A, Kauhl U, Cao J, Wu CF, Opatz T, Thines E, Efferth T. Identification of NF-κB as Determinant of Posttraumatic Stress Disorder and Its Inhibition by the Chinese Herbal Remedy Free and Easy Wanderer. Front Pharmacol 2017; 8:181. [PMID: 28428751 PMCID: PMC5382210 DOI: 10.3389/fphar.2017.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure to traumatic events. Although psychotherapy reveals some therapeutic effectiveness, clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported to work well clinically against mental diseases in Asian countries, but the safety and their mode of action are still unclear. In this study, we investigated the mechanisms of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse pharmacology approach combining clinical data to search for mechanisms of PTSD with subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2) by investigating the effect of FAEW and the antidepressant control drug fluoxetine on the transcription factor NF-κB using reporter cell assays and western blotting; (3) by performing molecular docking and literature data mining based on phytochemical constituents of FAEW. The results suggest an involvement of inflammatory processes mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro and inhibited NF-κB activity and p65 protein expression. FAEW's anti-inflammatory compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin, baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in clinical trials, which might be the active ingredients for FAEW against PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|