1
|
Chen G, Wu X, Zhu H, Li K, Zhang J, Sun S, Wang H, Wang M, Shao B, Li H, Zhang Y, Du S. Multisample lipidomic profiles of irritable bowel syndrome and irritable bowel syndrome-like symptoms in patients with inflammatory bowel disease: new insight into the recognition of the same symptoms in different diseases. J Gastroenterol 2024; 59:1000-1010. [PMID: 39254836 PMCID: PMC11496327 DOI: 10.1007/s00535-024-02148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Overlapping clinical manifestations of irritable bowel syndrome (IBS) and IBS-like symptoms in patients with inflammatory bowel disease (IBD-IBS) present challenges in diagnosis and management. Both conditions are associated with alterations in metabolites, but few studies have described the lipid profiles. Our aim was to pinpoint specific lipids that contribute to the pathogenesis of IBS and IBD-IBS by analyzing multiple biologic samples. METHODS Diarrhea-predominant IBS (IBS-D) patients (n = 39), ulcerative colitis in remission with IBS-like symptoms patients (UCR-IBS) (n = 21), and healthy volunteers (n = 35) were recruited. IBS-D patients meet the Rome IV diagnostic criteria, and UCR-IBS patients matched mayo scores ≤ two points and Rome IV diagnostic criteria. Serum, feces, and mucosa were collected for further analysis. Lipid extraction was carried out by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). RESULTS Lipidomics of mucosa and serum samples significantly differed among the three groups. Feces showed the most altered lipid species, and the enrichment analysis of 347 differentially abundant metabolites via KEGG pathway analysis revealed that alpha-linolenic acid metabolism was significantly altered in the two groups (P < 0.01). The ratio of omega-6/omega-3 fatty acid were imbalance in serum samples. CONCLUSIONS This study revealed a comprehensive lipid composition pattern between IBS-D patients and UCR-IBS patients. We found several distinctive lipids involved in alpha-linolenic acid metabolism, reflecting an imbalance in the omega-6/omega-3 fatty acid ratio. Compared to mucosa and serum samples, fecal samples might have more advantages in lipidomics studies due to the convenience of sample collection and effectiveness in reflecting metabolic information.
Collapse
Affiliation(s)
- Guorong Chen
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Xuan Wu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Huiting Zhu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kemin Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Junhai Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Shijie Sun
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
2
|
Chang CJ, Ma QW, Li TL, Liu JA, Hsieh CH, Chen L. Metabolomics identifies metabolite markers in plasma and extracellular vesicles within plasma in patients with asthma. Clin Chim Acta 2024; 565:120010. [PMID: 39433232 DOI: 10.1016/j.cca.2024.120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Plasma and extracellular vesicles (EVs) derived from plasma are important sources of information regarding individual health. Metabolomic analysis of plasma and EVs may provide new methods for predicting disease occurrence. This study aims to analyze the metabolomic characteristics of plasma and plasma EVs in asthma patients. METHODS Plasma samples were collected from healthy individuals and asthma patients. EVs were isolated from the plasma using ultracentrifugation. The isolated EVs were characterized by nanoparticle tracking analysis and flow cytometry. Metabolomic analysis was performed using a liquid chromatography-mass spectrometry platform. RESULTS This study successfully extracted EVs from plasma samples. Metabolomic analysis revealed that the composition of differential metabolites in the plasma and EVs of asthma patients was similar. KEGG pathway analysis indicated that the number of upregulated metabolic pathways enriched with differential metabolites in the plasma EVs of asthma patients was significantly greater than that in the plasma samples. Pathways associated with the onset of asthma included asthma, systemic lupus erythematosus, glycerophospholipid metabolism, and autophagy - other, primarily involving the following five metabolites: PS(18:1(9Z)/18:2(9Z,12Z)), PC(18:1(9Z)e/2:0), PS(24:1(15Z)/22:2(13Z,16Z)), PE(22:4(7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), and PE(16:0/20:3(8Z,11Z,14Z)). Receiver operating characteristic analysis results suggested that these five differential metabolites may serve as potential biomarkers for asthma. CONCLUSION We identified the metabolic characteristics of plasma and EVs in asthma patients, confirming that the metabolites in plasma EVs may serve as potential biomarkers for asthma. This finding not only enhances our understanding of the pathogenesis of asthma but also opens new avenues for targeted therapy.
Collapse
Affiliation(s)
- Chih-Jung Chang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China; Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
| | - Qi-Wen Ma
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Tian-Lin Li
- Pulmonary and Critical Care Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Jun-An Liu
- Pulmonary and Critical Care Medicine, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.
| | - Liang Chen
- Allergy Department, Shuazhong University of Science and Technology Union Shenzhen Hospital, Guangdong, China.
| |
Collapse
|
3
|
Kumar A, Mitra JB, Khatoon E, Pramanik A, Sharma RK, Chandak A, Rakshit S, Mukherjee A. Exploring the potential of radiolabeled duramycin as an infection imaging probe. Drug Dev Res 2024; 85:e22138. [PMID: 38078492 DOI: 10.1002/ddr.22138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 02/15/2024]
Abstract
The continuous pursuit of designing an ideal infection imaging agent is a crucial and ongoing endeavor in the field of biomedical research. Duramycin, an antimicrobial peptide exerts its antimicrobial action on bacteria by specific recognition of phosphatidylethanolamine (PE) moiety present on most bacterial membranes, particularly Escherichia coli (E. coli). E. coli membranes contain more than 60% PE. Therefore, duramycin is an attractive candidate for the formulation of probes for in situ visualization of E. coli driven focal infections. The aim of the present study is to develop 99m Tc labeled duramycin as a single-photon emission computed tomography (SPECT)-based agent to image such infections. Duramycin was successfully conjugated with a bifunctional chelator, hydrazinonicotinamide (HYNIC). PE specificity of HYNIC-duramycin was confirmed by a dye release assay on PE-containing model membranes. Radiolabeling of HYNIC-duramycin with 99m Tc was performed with consistently high radiochemical yield (>90%) and radiochemical purity (>90%). [99m Tc]Tc-HYNIC-duramycin retained its specificity for E. coli, in vitro. SPECT and biodistribution studies showed that the tracer could specifically identify E. coli driven infection at 3 h post injection. While 99m Tc-labeled duramycin is employed for monitoring early response to cancer therapy and cardiotoxicity, the current studies have confirmed, for the first time, the potential of utilizing 99m Tc labeled duramycin as an imaging agent for detecting bacteria. Its application in imaging PE-positive bacteria represents a novel and promising advancement.
Collapse
Affiliation(s)
- Anuj Kumar
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Jyotsna Bhatt Mitra
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Elina Khatoon
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aparna Pramanik
- Department of Chemistry, Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Rohit K Sharma
- Department of Chemistry, Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Ashok Chandak
- Board of Radiation and Isotope Technology, Navi Mumbai, India
| | | | - Archana Mukherjee
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Tlatelpa-Romero B, Contreras-Cruz DA, Guerrero-Luna G, Hernández-Linares MG, Ruiz-Salgado S, Mendoza-Milla C, Romero Y, de-la-Rosa Paredes R, Oyarzábal LF, Mendoza-Sámano DA, Galván-León JA, Vázquez-de-Lara LG. Organic synthesis of 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine and its effect on the induction of apoptosis in normal human lung fibroblasts. Chem Phys Lipids 2023; 257:105349. [PMID: 37838345 DOI: 10.1016/j.chemphyslip.2023.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND /OBJECTIVE The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF). METHODOLOGY The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h. RESULTS The PE obtained by organic synthesis presented a melting point of 190-192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%- 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69-32.16%, 12.59-18.84%, and 10.91-12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03-16-42%, 11.04-15.94%, and 49.23-51.28%. Statistical analysis showed a significance P < 0.05 compared to the control. CONCLUSION The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.
Collapse
Affiliation(s)
- Beatriz Tlatelpa-Romero
- Programa de Maestría y Doctorado en Ciencias Médicas, Ondotológicas y de la Salud, División de Estudios de Posgrado e Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Gabriel Guerrero-Luna
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias. Herbario y Jardín Botánico Universitario. Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Sinuhé Ruiz-Salgado
- Área Académica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184, Mexico
| | - Criselda Mendoza-Milla
- Laboratorio de Transducción de Señales, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis F Oyarzábal
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico
| | | | - Jiovani Alfredo Galván-León
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Luis G Vázquez-de-Lara
- Laboratorio de Medicina Experimental, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72420, Mexico.
| |
Collapse
|
5
|
Li J, Zheng H, Vega AA, Beverly LJ, Gray BD, Pak KY, Ng CK. Evaluation of 2-deoxy-2-[ 18F]fluoro glucaric acid (FGA) as a potential PET tracer for tumor necrosis. Appl Radiat Isot 2023; 200:110988. [PMID: 37633190 DOI: 10.1016/j.apradiso.2023.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
In this study, [18F]FGA was obtained by a one-step oxidation of [18F]FDG using sodium hypochlorite. The conversion from [18F]FDG to [18F]FGA was confirmed by HPLC to be over 95% using the optimal condition. A549-luciferase NSCLC xenografted mice was used for in vivo PET imaging. Prior to either saline or cisplatin treatment, there was no significant difference on tumor uptake of [18F]FGA in all mice, with an average uptake of (0.21 ± 0.16) %ID/g. After treatment, tumor uptake of [18F]FGA was not changed significantly for saline-treated mice, whereas the tumor uptake of [18F]FGA drastically increased for cisplatin-treated mice, with an average uptake of (1.63 ± 0.16) %ID/g. The ratio of tumor uptake between cisplatin-treated vs. saline-treated mice was 7.8 ± 0.2 within one week of treatment. PET imaging results were consistent with ex vivo biodistribution data. BLI showed significant light intensity suppression after treatment, indicating necrosis. Our data indicate that [18F]FGA uptake was related to tumor necrosis. [18F]FGA PET/CT imaging might be a useful tool to monitor treatment response to chemotherapy by imaging tumor necrosis.
Collapse
Affiliation(s)
- Junling Li
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA; Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA
| | - Levi J Beverly
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Chin K Ng
- Department of Radiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
Bulat F, Hesse F, Attili B, Solanki C, Mendichovszky IA, Aigbirhio F, Leeper FJ, Brindle KM, Neves AA. Preclinical PET Imaging of Tumor Cell Death following Therapy Using Gallium-68-Labeled C2Am. Cancers (Basel) 2023; 15:1564. [PMID: 36900353 PMCID: PMC10001225 DOI: 10.3390/cancers15051564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
There is an unmet clinical need for imaging agents capable of detecting early evidence of tumor cell death, since the timing, extent, and distribution of cell death in tumors following treatment can give an indication of treatment outcome. We describe here 68Ga-labeled C2Am, which is a phosphatidylserine-binding protein, for imaging tumor cell death in vivo using positron emission tomography (PET). A one-pot synthesis of 68Ga-C2Am (20 min, 25 °C, >95% radiochemical purity) has been developed, using a NODAGA-maleimide chelator. The binding of 68Ga-C2Am to apoptotic and necrotic tumor cells was assessed in vitro using human breast and colorectal cancer cell lines, and in vivo, using dynamic PET measurements in mice implanted subcutaneously with the colorectal tumor cells and treated with a TRAIL-R2 agonist. 68Ga-C2Am showed predominantly renal clearance and low retention in the liver, spleen, small intestine, and bone and generated a tumor-to-muscle (T/m) ratio of 2.3 ± 0.4, at 2 h post probe administration and at 24 h following treatment. 68Ga-C2Am has the potential to be used in the clinic as a PET tracer for assessing early treatment response in tumors.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Bala Attili
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Chandra Solanki
- Addenbrooke’s Hospital Radiopharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iosif A. Mendichovszky
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Radiology, University of Cambridge, Cambridge CB2 1EW, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - André A. Neves
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
7
|
Exploration of Lipid Metabolism Alterations in Children with Active Tuberculosis Using UHPLC-MS/MS. J Immunol Res 2023; 2023:8111355. [PMID: 36815950 PMCID: PMC9936505 DOI: 10.1155/2023/8111355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 02/11/2023] Open
Abstract
Metabolic profiling using nonsputum samples has demonstrated excellent performance in diagnosing infectious diseases. But little is known about the lipid metabolism alternation in children with tuberculosis (TB). Therefore, the study was performed to explore lipid metabolic changes caused by Mycobacterium tuberculosis infection and identify specific lipids as diagnostic biomarkers in children with TB using UHPLC-MS/MS. Plasma samples obtained from 70 active TB children, 21 non-TB infectious disease children, and 21 healthy controls were analyzed by a partial least-squares discriminant analysis model in the training set, and 12 metabolites were identified that can separate children with TB from non-TB controls. In the independent testing cohort with 49 subjects, three of the markers, PC (15:0/17:1), PC (17:1/18:2), and PE (18:1/20:3), presented with high diagnostic values. The areas under the curve of the three metabolites were 0.904, 0.833, and 0.895, respectively. The levels of the altered lipid metabolites were found to be associated with the severity of the TB disease. Taken together, plasma lipid metabolites are potentially useful for diagnosis of active TB in children and would provide insights into the pathogenesis of the disease.
Collapse
|
8
|
Kurokawa GA, Hamamoto Filho PT, Delafiori J, Galvani AF, de Oliveira AN, Dias-Audibert FL, Catharino RR, Pardini MIMC, Zanini MA, Lima EDO, Ferrasi AC. Differential Plasma Metabolites between High- and Low-Grade Meningioma Cases. Int J Mol Sci 2022; 24:ijms24010394. [PMID: 36613836 PMCID: PMC9820229 DOI: 10.3390/ijms24010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Meningiomas (MGMs) are currently classified into grades I, II, and III. High-grade tumors are correlated with decreased survival rates and increased recurrence rates. The current grading classification is based on histological criteria and determined only after surgical tumor sampling. This study aimed to identify plasma metabolic alterations in meningiomas of different grades, which would aid surgeons in predefining the ideal surgical strategy. Plasma samples were collected from 51 patients with meningioma and classified into low-grade (LG) (grade I; n = 43), and high-grade (HG) samples (grade II, n = 5; grade III, n = 3). An untargeted metabolomic approach was used to analyze plasma metabolites. Statistical analyses were performed to select differential biomarkers among HG and LG groups. Metabolites were identified using tandem mass spectrometry along with database verification. Five and four differential biomarkers were identified for HG and LG meningiomas, respectively. To evaluate the potential of HG MGM metabolites to differentiate between HG and LG tumors, a receiving operating characteristic curve was constructed, which revealed an area under the curve of 95.7%. This indicates that the five HG MGM metabolites represent metabolic alterations that can differentiate between LG and HG meningiomas. These metabolites may indicate tumor grade even before the appearance of histological features.
Collapse
Affiliation(s)
- Gabriel A. Kurokawa
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Pedro T. Hamamoto Filho
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Aline F. Galvani
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Arthur N. de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Maria Inês M. C. Pardini
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Marco A. Zanini
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Estela de O. Lima
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Correspondence: ; Tel.: +55-14-3880-1453
| | - Adriana C. Ferrasi
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| |
Collapse
|
9
|
Zhao H, Wang W, Lin T, Gong L. Serum Metabolomics of Benign Essential Blepharospasm Using Liquid Chromatography and Orbitrap Mass Spectrometry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6876327. [PMID: 36452462 PMCID: PMC9704060 DOI: 10.1155/2022/6876327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2024]
Abstract
Background Benign essential blepharospasm (BEB) is a form of focal dystonia that causes excessive involuntary spasms of the eyelids. Currently, the pathogenesis of BEB remains unclear. This study is aimed at investigating the serum metabolites profiles in patients with BEB and healthy control and to identify the mechanism and biomarkers of this disease. Methods 30 patients with BEB and 33 healthy controls were recruited for this study. We conducted the quantitative and nontargeted metabolomics analysis of the serum samples from 63 subjects by using liquid chromatography and Orbitrap mass spectrometry (LC-Orbitrap MS). Multivariate statistical analysis was performed to detect and identify different metabolites between the two groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and receiver operating characteristic (ROC) curve analysis of the altered metabolites were performed. Results A total of 134 metabolites were found and identified. The metabolites belonged to several metabolic pathways including phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, linoleic acid metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, sphingolipid metabolism, glycosphingolipid biosynthesis, leucine and isoleucine biosynthesis, and vitamin B6 metabolism. Eight metabolites were identified as the potential biomarkers. Conclusions These results demonstrated that serum metabolic profiling of BEB patients was significantly different from healthy controls based on LC-Orbitrap MS. Besides, metabolomics might provide useful information for a better understanding of BEB.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| |
Collapse
|
10
|
Haider T, Soni V. “Response surface methodology and artificial neural network-based modeling and optimization of phosphatidylserine targeted nanocarriers for effective treatment of cancer: In vitro and in silico studies”. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Coras R, Murillo-Saich JD, Singh AG, Kavanaugh A, Guma M. Lipidomic Profiling in Synovial Tissue. Front Med (Lausanne) 2022; 9:857135. [PMID: 35492314 PMCID: PMC9051397 DOI: 10.3389/fmed.2022.857135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The analysis of synovial tissue offers the potential for the comprehensive characterization of cell types involved in arthritis pathogenesis. The studies performed to date in synovial tissue have made it possible to define synovial pathotypes, which relate to disease severity and response to treatment. Lipidomics is the branch of metabolomics that allows the quantification and identification of lipids in different biological samples. Studies in animal models of arthritis and in serum/plasma from patients with arthritis suggest the involvement of different types of lipids (glycerophospholipids, glycerolipids, sphingolipids, oxylipins, fatty acids) in the pathogenesis of arthritis. We reviewed studies that quantified lipids in different types of tissues and their relationship with inflammation. We propose that combining lipidomics with currently used “omics” techniques can improve the information obtained from the analysis of synovial tissue, for a better understanding of pathogenesis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Abha G. Singh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Arthur Kavanaugh
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, United States
- *Correspondence: Monica Guma
| |
Collapse
|
12
|
Zhang D, Gao M, Jin Q, Ni Y, Li H, Jiang C, Zhang J. Development of Duramycin-Based Molecular Probes for Cell Death Imaging. Mol Imaging Biol 2022; 24:612-629. [PMID: 35142992 DOI: 10.1007/s11307-022-01707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cell death is involved in numerous pathological conditions such as cardiovascular disorders, ischemic stroke and organ transplant rejection, and plays a critical role in the treatment of cancer. Cell death imaging can serve as a noninvasive means to detect the severity of tissue damage, monitor the progression of diseases, and evaluate the effectiveness of treatments, which help to provide prognostic information and guide the formulation of individualized treatment plans. The high abundance of phosphatidylethanolamine (PE), which is predominantly confined to the inner leaflet of the lipid bilayer membrane in healthy mammalian cells, becomes exposed on the cell surface in the early stages of apoptosis or accessible to the extracellular milieu when the cell suffers from necrosis, thus representing an attractive target for cell death imaging. Duramycin is a tetracyclic polypeptide that contains 19 amino acids and can bind to PE with excellent affinity and specificity. Additionally, this peptide has several favorable structural traits including relatively low molecular weight, stability to enzymatic hydrolysis, and ease of conjugation and labeling. All these highlight the potential of duramycin as a candidate ligand for developing PE-specific molecular probes. By far, a couple of duramycin-based molecular probes such as Tc-99 m-, F-18-, or Ga-68-labeled duramycin have been developed to target exposed PE for in vivo noninvasive imaging of cell death in different animal models. In this review article, we describe the state of the art with respect to in vivo imaging of cell death using duramycin-based molecular probes, as validated by immunohistopathology.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, 3000, Leuven, Leuven, KU, Belgium
| | - Huailiang Li
- Department of General Surgery, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, Jiangsu Province, People's Republic of China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| |
Collapse
|
13
|
Wong HY, Langlotz M, Gan-Schreier H, Xu W, Staffer S, Tuma-Kellner S, Liebisch G, Merle U, Chamulitrat W. Constitutive oxidants from hepatocytes of male iPLA2β-null mice increases the externalization of phosphatidylethanolamine on plasma membrane. Free Radic Res 2021; 55:625-633. [PMID: 34696671 DOI: 10.1080/10715762.2021.1987426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We have found that group VIA calcium-independent phospholipase A2 (iPLA2β) has specificity for hydrolysis of phosphatidylethanolamine (PE) in mouse livers. Phospholipids (PLs) are transported to plasma membrane and some PLs including PE are externalized to maintain membrane PL asymmetry. Here we demonstrated that hepatocytes of iPLA2β-null (KO) mice showed an increase in PE containing palmitate and oleate. We aimed to examine whether externalization of PE on the outer leaflets could be affected by iPLA2β deficiency and its modulation by reactive oxygen species (ROS) or apoptosis. As duramycin has high affinity to PE, we used duramycin conjugated with biotin (DLB) and streptavidin 488 as a probe for detection of externalized PE. Compared to WT, naïve KO hepatocytes showed an increase in both PE externalization and ROS generation. These events were observed in male but not in female KO mice. Hydrogen peroxide or menadione treatment enhanced PE externalization to the same extent for both male/female WT and KO hepatocytes. By indirect immunofluorescence, DLB-streptavidin staining was observed as small punctuated spots on the cell surface of menadione-treated KO hepatocytes. Unlike the reported PS externalization, CD95/FasL treatment did not lead to any increase in PE externalization, and iPLA2β deficiency-dependent PE externalization was also not correlated with apoptosis. Thus, constitutive (but not induced) ROS generation in iPLA2β-deficient hepatocytes leads to PE externalization observed only in male mice. Such PE externalization may imply detrimental effects regarding further oxidation of PE fatty acids and the binding with pathogens on the outer leaflets of hepatocyte plasma membrane.
Collapse
Affiliation(s)
| | - Monika Langlotz
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | | | - Weihong Xu
- Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Regensburg, Germany
| | - Uta Merle
- Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
14
|
Gammon ST, Engel BJ, Gores GJ, Cressman E, Piwnica-Worms D, Millward SW. Mistiming Death: Modeling the Time-Domain Variability of Tumor Apoptosis and Implications for Molecular Imaging of Cell Death. Mol Imaging Biol 2021; 22:1310-1323. [PMID: 32519246 DOI: 10.1007/s11307-020-01509-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Apoptosis, in the context of cancer, is a form of programmed cell death induced by chemotherapy, radiotherapy, and immunotherapy. As this is a central pathway in treatment response, considerable effort has been expended on the development of molecular imaging agents to non-invasively measure tumor apoptosis prior to quantitative changes in tumor dimensions. Despite these efforts, clinical trials directed at imaging apoptosis by PET, SPECT, and MRI have failed to robustly predict response to treatment with high sensitivity and specificity. Although these shortcomings may be linked to probe design, we propose that the combination of variability in the timing of maximal in vivo tumor apoptosis and sub-optimal sampling times fundamentally limits the predictive power of PET/SPECT apoptosis imaging. PROCEDURES Herein, we surveyed the literature describing the time course of therapy-induced tumor apoptosis in vivo and used these data to construct a mathematical model describing the onset, duration, amplitude, and variability of the apoptotic response. Uncertainty in the underlying time of initiation of tumor apoptosis was simulated by Gaussian, uniform, and Landau distributions centered at the median time-to-maximum apoptotic rate derived from the literature. We then computationally sampled these models for various durations to simulate PET/SPECT imaging agents with variable effective half-lives. RESULTS Models with a narrow Gaussian distribution of initiation times for tumor apoptosis predicted high contrast ratios and strong predictive values for all effective tracer half-lives. However, when uncertainty in apoptosis initiation times were simulated with uniform and Landau distributions, high contrast ratios and predictive values were only obtained with extremely long imaging windows (days). The imaging contrast ratios predicted in these models were consistent with those seen in pre-clinical apoptosis PET/SPECT imaging studies and suggest that uncertainty in the timing of tumor cell death plays a significant role in the maximal contrast obtainable. Moreover, when uncertainty in both apoptosis initiation and imaging start times were simulated, the predicted contrast ratios were dramatically reduced for all tracer half-lives. CONCLUSIONS These studies illustrate the effect of uncertainty of apoptosis initiation on the predictive power of PET/SPECT apoptosis imaging agents and suggest that long integration times are required to surmount uncertainty in the time domain of this biological process.
Collapse
Affiliation(s)
- Seth T Gammon
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian J Engel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Erik Cressman
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Steven W Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Su S, Xiang X, Lin L, Xiong Y, Ma H, Yuan G, Zhao J, Zhang Z, Liu S, Nie D, Tang G. Cell death PET/CT imaging of rat hepatic fibrosis with 18F-labeled small molecule tracer. Nucl Med Biol 2021; 98-99:76-83. [PMID: 34062322 DOI: 10.1016/j.nucmedbio.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the potential feasibility of Al[18F]F-1,4,7-triazacyclononane-1,4,7-triaceticacid (NOTA)-tripolyethylene glycol (PEG3)-Duramycin (Al[18F]F-NOTA-PEG3-Duramycin) positron emission tomography (PET) for imaging of rat hepatic fibrosis. PROCEDURES Hepatic fibrosis rat models were injected with thioacetamide (TAA), control rats received saline (n = 12 per group). Rats in the two groups underwent PET imaging using Al[18F]F-NOTA-PEG3-Duramycin and [18F]FDG at multiple time points (2, 4, 6, and 8 weeks after TAA or saline treatment). Between-group differences in the apoptosis rate, fibrotic activity, and liver uptake of Al[18F]F-NOTA-PEG3-Duramycin or [18F]FDG were assessed using Student's t-test. Imaging results were cross-validated using histopathology detection and Pearson's correlation test was used to assess the association relationships between radioactive uptake value and quantified histopathological data. RESULTS Compared with control group at multiple time points, each TAA group showed a higher radioactive liver uptake of Al[18F]F-NOTA-PEG3-Duramycin (each P < 0.05). Furthermore, the increase in the liver uptake of Al[18F]F-NOTA-PEG3-Duramycin was proportional to the progression of fibrosis (R2 = 0.8846, P < 0.001) and apoptosis rate (R2 = 0.9208, P < 0.001) in the TAA group. Meanwhile, there were also between-group differences in [18F]FDG uptake in each phase (P < 0.05), however, no relationship between [18F]FDG uptake and the fibrotic activity was observed. CONCLUSIONS Al[18F]F-NOTA-PEG3-Duramycin PET/CT could be applied to monitor the progression of liver fibrosis, whereas [18F]FDG PET/CT could not. Implications of this work for noninvasive diagnosis of liver fibrosis, assessment of fibrotic activity, and evaluation of antifibrotic therapy are expected.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Xianhong Xiang
- Department of Interventional Radiology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Liping Lin
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Ying Xiong
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Hui Ma
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Gongjun Yuan
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Jing Zhao
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Zhanwen Zhang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Shaoyu Liu
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China
| | - Dahong Nie
- Department of Radiation Oncology, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| | - Ganghua Tang
- Department of Radiology and Nuclear Medicine, Sun Yat-sen University, Guangzhou 510080, China; The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, ,Department of Medical Imaging, China.
| |
Collapse
|
16
|
Abstract
PURPOSE Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity. PROCEDURES Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters. RESULTS In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology. CONCLUSION [68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
Collapse
|
17
|
Mathermycin, an anti-cancer molecule that targets cell surface phospholipids. Toxicol Appl Pharmacol 2021; 413:115410. [PMID: 33476679 DOI: 10.1016/j.taap.2021.115410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Mathermycin, a lantipeptide isolated from marine actinomycete Marinactinospora thermotolerans, is an antibiotic that has been shown to disrupt bacterial plasma membrane. We now provide evidences that mathermycin can also disrupt cancer, but not normal, cell plasma membranes through targeting phosphatidylethanolamine (PE), which is located only in the inner leaflet of the plasma membrane in normal cells but in both the inner and outer leaflets of the membrane in tumor cells. Our data shows that mathermycin inhibits the metabolic activity and induces mainly necrotic death of all cancer cell lines with EC50 between 4.2 and 16.9 μM, while normal cell lines have EC50 between 113 and 129 μM. The cytotoxicity of mathermycin could be inhibited by exogenous PE, but not phosphoserine and phosphocholine. The formation of mathermycin-PE complexes was confirmed by in silico analysis, HPLC and MS spectrometer. Furthermore, mathermycin exhibited similar cytotoxicity toward cancer and multidrug resistant cancer cells, which could be due to its ability to inhibit mitochondrial function, as shown by our data from the Seahorse™ metabolic analyzer. This study demonstrates that mathermycin is a potentially effective class of anti-tumor chemotherapeutics that do not easily develop resistance due to a mechanism of action targeting PE.
Collapse
|
18
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
19
|
Bulat F, Hesse F, Hu DE, Ros S, Willminton-Holmes C, Xie B, Attili B, Soloviev D, Aigbirhio F, Leeper FJ, Brindle KM, Neves AA. 18F-C2Am: a targeted imaging agent for detecting tumor cell death in vivo using positron emission tomography. EJNMMI Res 2020; 10:151. [PMID: 33296043 PMCID: PMC7726082 DOI: 10.1186/s13550-020-00738-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an 18F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET. METHODS A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide (60 min synthesis time, > 98% radiochemical purity) has been developed, which was used to label the single cysteine residue in C2Am within 30 min at room temperature. Binding of 18F-C2Am to apoptotic and necrotic tumor cells was assessed in vitro, and also in vivo, by dynamic PET and biodistribution measurements in mice bearing human tumor xenografts treated with a TRAILR2 agonist or with conventional chemotherapy. C2Am detection of tumor cell death was validated by correlation of probe binding with histological markers of cell death in tumor sections obtained immediately after imaging. RESULTS 18F-C2Am showed a favorable biodistribution profile, with predominantly renal clearance and minimal retention in spleen, liver, small intestine, bone and kidney, at 2 h following probe administration. 18F-C2Am generated tumor-to-muscle (T/m) ratios of 6.1 ± 2.1 and 10.7 ± 2.4 within 2 h of probe administration in colorectal and breast tumor models, respectively, following treatment with the TRAILR2 agonist. The levels of cell death (CC3 positivity) following treatment were 12.9-58.8% and 11.3-79.7% in the breast and colorectal xenografts, respectively. Overall, a 20% increase in CC3 positivity generated a one unit increase in the post/pre-treatment tumor contrast. Significant correlations were found between tracer uptake post-treatment, at 2 h post-probe administration, and histological markers of cell death (CC3: Pearson R = 0.733, P = 0.0005; TUNEL: Pearson R = 0.532, P = 0.023). CONCLUSION The rapid clearance of 18F-C2Am from the blood pool and low kidney retention allowed the spatial distribution of cell death in a tumor to be imaged during the course of therapy, providing a rapid assessment of tumor treatment response. 18F-C2Am has the potential to be used in the clinic to assess early treatment response in tumors.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Susana Ros
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Bangwen Xie
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Bala Attili
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Finian J Leeper
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - André A Neves
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
20
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: Development, optimization and in vitro studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158853. [PMID: 33160078 DOI: 10.1016/j.bbalip.2020.158853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lipids participate in many important biological functions through energy storage, material transport, signal transduction, and molecular recognition processes. Studies have reported that asthmatic patients have abnormal lipid metabolism. However, there are limited studies on the characterization of lipid metabolism in asthmatic patients by lipidomics. METHODS We characterized the plasma lipid profile of 28 healthy controls and 33 outpatients with asthma (18 mild, 15 moderate) by liquid chromatography mass spectrometry/mass spectrometry-based lipidomics. RESULTS We determined 1338 individual lipid species in the plasma. Significant changes were identified in ten lipid species in asthmatic patients than in healthy controls (all P < 0.05). Phosphatidylethanolamine (PE) (18:1p/22:6), PE (20:0/18:1), PE (38:1), sphingomyelin (SM) (d18:1/18:1), and triglyceride (TG) (16:0/16:0/18:1) positively correlated with the severity of asthma (all P < 0.05). Phosphatidylinositol (PI) (16:0/20:4), TG (17:0/18:1/18:1), phosphatidylglycerol (PG) (44:0), ceramide (Cer) (d16:0/27:2), and lysophosphatidylcholine (LPC) (22:4) negatively correlated with the severity of asthma (all P < 0.05). Correlation analysis showed a significant correlation between all ten lipid species (all P < 0.05). From the area under the curve of the receiver operating characteristic curve analysis, PE (38:1) was the major lipid metabolite that distinguished asthmatic patients from healthy controls, and may be considered a potential lipid biomarker. PE (20:0/18:1) and TG (16:0/16:0/18:1) might be related to IgE levels in asthmatic patients. CONCLUSIONS Our results indicated the presence of abnormal lipid metabolism, which correlated with the severity and IgE levels in asthmatic patients.
Collapse
|
22
|
Pipiya SO, Terekhov SS, Mokrushina YA, Knorre VD, Smirnov IV, Gabibov AG. Engineering Artificial Biodiversity of Lantibiotics to Expand Chemical Space of DNA-Encoded Antibiotics. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1319-1334. [PMID: 33280576 DOI: 10.1134/s0006297920110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.
Collapse
Affiliation(s)
- S O Pipiya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S S Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yu A Mokrushina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V D Knorre
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Haider SH, Veerappan A, Crowley G, Caraher EJ, Ostrofsky D, Mikhail M, Lam R, Wang Y, Sunseri M, Kwon S, Prezant DJ, Liu M, Schmidt AM, Nolan A. Multiomics of World Trade Center Particulate Matter-induced Persistent Airway Hyperreactivity. Role of Receptor for Advanced Glycation End Products. Am J Respir Cell Mol Biol 2020; 63:219-233. [PMID: 32315541 DOI: 10.1165/rcmb.2019-0064oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary disease after World Trade Center particulate matter (WTC-PM) exposure is associated with dyslipidemia and the receptor for advanced glycation end products (RAGE); however, the mechanisms are not well understood. We used a murine model and a multiomics assessment to understand the role of RAGE in the pulmonary long-term effects of a single high-intensity exposure to WTC-PM. After 1 month, WTC-PM-exposed wild-type (WT) mice had airway hyperreactivity, whereas RAGE-deficient (Ager-/-) mice were protected. PM-exposed WT mice also had histologic evidence of airspace disease, whereas Ager-/- mice remained unchanged. Inflammatory mediators such as G-CSF (granulocyte colony-stimulating factor), IP-10 (IFN-γ-induced protein 10), and KC (keratinocyte chemoattractant) were differentially expressed after WTC-PM exposure. WTC-PM induced α-SMA, DIAPH1 (protein diaphanous homolog 1), RAGE, and significant lung collagen deposition in WT compared with Ager-/- mice. Compared with WT mice with PM exposure, relative expression of phosphorylated to total CREB (cAMP response element-binding protein) and JNK (c-Jun N-terminal kinase) was significantly increased in the lung of PM-exposed Ager-/- mice, whereas Akt (protein kinase B) was decreased. Random forests of the refined lung metabolomic profile classified subjects with 92% accuracy; principal component analysis captured 86.7% of the variance in three components and demonstrated prominent subpathway involvement, including known mediators of lung disease such as vitamin B6 metabolites, sphingolipids, fatty acids, and phosphatidylcholines. Treatment with a partial RAGE antagonist, pioglitazone, yielded similar fold-change expression of metabolites (N6-carboxymethyllysine, 1-methylnicotinamide, N1+N8-acetylspermidine, and succinylcarnitine [C4-DC]) between WT and Ager-/- mice exposed to WTC-PM. RAGE can mediate WTC-PM-induced airway hyperreactivity and warrants further investigation.
Collapse
Affiliation(s)
- Syed H Haider
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Arul Veerappan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - George Crowley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Erin J Caraher
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Dean Ostrofsky
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Mena Mikhail
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Rachel Lam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Yuyan Wang
- Division of Biostatistics, Department of Population Health
| | - Maria Sunseri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - David J Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York; and.,Division of Pulmonary Medicine, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health.,Department of Environmental Medicine, and
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Anna Nolan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Department of Environmental Medicine, and.,Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York; and
| |
Collapse
|
24
|
Tan H, Abudupataer M, Qiu L, Mao W, Xiao J, Cheng D, Shi H. 99m Tc-labeled Duramycin for detecting and monitoring cardiomyocyte death and assessing atorvastatin cardioprotection in acute myocardial infarction. Chem Biol Drug Des 2020; 97:210-220. [PMID: 32881342 DOI: 10.1111/cbdd.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to dynamically monitor myocardial cell death using 99m Tc-Duramycin single-photon emission computed tomography/computed tomography (micro-SPECT/CT) imaging in acute myocardial infarction (AMI) and the anti-apoptosis effect of atorvastatin for cardioprotection. Mice were randomized into three groups: AMI group, AMI with atorvastatin treatment (T-AMI) group, and sham group. Three groups of model mice were randomly selected at day 1 (D1), day 3 (D3), and day 7 (D7) day after surgery with 99m Tc-Duramycin micro-SPECT/CT imaging. The lesion-to-normal myocardial tissue ratio (L/N) average values were 2.62 on D1, 3.89 on D3, and 1.20 on D7 for the uptake of 99m Tc-duramycin in the infarcted region in the AMI group. The sham group presented no positive imaging in myocardium, and the L/N average values were 1.09, 1.14, and 1.10 on D1, D3, and D7, respectively. Meanwhile, 99m Tc-linear-duramycin imaging showed no radioactive uptake in the infarction region. The T-AMI group imaging showed tracer uptake decreased obviously compared to the uptake in the infarcted region in AMI mice. 99m Tc-Duramycin SPECT/CT imaging allowed non-invasive monitoring of myocardial cell death in a mouse model of AMI and an assessment of atorvastatin anti-apoptosis effect for cardioprotection by in vivo molecular imaging.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
25
|
Fazeli G, Beer KB, Geisenhof M, Tröger S, König J, Müller-Reichert T, Wehman AM. Loss of the Major Phosphatidylserine or Phosphatidylethanolamine Flippases Differentially Affect Phagocytosis. Front Cell Dev Biol 2020; 8:648. [PMID: 32793595 PMCID: PMC7385141 DOI: 10.3389/fcell.2020.00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
The lipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth) are normally asymmetrically localized to the cytosolic face of membrane bilayers, but can both be externalized during diverse biological processes, including cell division, cell fusion, and cell death. Externalized lipids in the plasma membrane are recognized by lipid-binding proteins to regulate the clearance of cell corpses and other cell debris. However, it is unclear whether PtdSer and PtdEth contribute in similar or distinct ways to these processes. We discovered that disruption of the lipid flippases that maintain PtdSer or PtdEth asymmetry in the plasma membrane have opposite effects on phagocytosis in Caenorhabditis elegans embryos. Constitutive PtdSer externalization caused by disruption of the major PtdSer flippase TAT-1 led to increased phagocytosis of cell debris, sometimes leading to two cells engulfing the same debris. In contrast, PtdEth externalization caused by depletion of the major PtdEth flippase TAT-5 or its activator PAD-1 disrupted phagocytosis. These data suggest that PtdSer and PtdEth externalization have opposite effects on phagocytosis. Furthermore, externalizing PtdEth is associated with increased extracellular vesicle release, and we present evidence that the extent of extracellular vesicle accumulation correlates with the extent of phagocytic defects. Thus, a general loss of lipid asymmetry can have opposing impacts through different lipid subtypes simultaneously exerting disparate effects.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.,Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina B Beer
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - Sarah Tröger
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julia König
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.,Department of Biological Sciences, University of Denver, Denver, CO, United States
| |
Collapse
|
26
|
Woitok MM, Zoubek ME, Doleschel D, Bartneck M, Mohamed MR, Kießling F, Lederle W, Trautwein C, Cubero FJ. Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease. Cell Death Dis 2020; 11:343. [PMID: 32393755 PMCID: PMC7214425 DOI: 10.1038/s41419-020-2571-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
Abstract
Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.
Collapse
Affiliation(s)
| | - Miguel Eugenio Zoubek
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Department of Toxicology and Pharmacology, School of Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre Maastricht University, Maastricht, The Netherlands
| | - Dennis Doleschel
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Matthias Bartneck
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Department of Therapeutic Chemistry, National Research Centre, 12622, Cairo, Egypt
| | - Fabian Kießling
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental and Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany. .,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain. .,12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
27
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
28
|
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Yang HM, Zhou JL, Cui Y. Effect of simulated microgravity on metabolism of HGC-27 gastric cancer cells. Oncol Lett 2020; 19:3439-3450. [PMID: 32269617 PMCID: PMC7115135 DOI: 10.3892/ol.2020.11451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC-27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography-mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC-27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L-proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid-like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China
| | - Nan Jiang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Clinical Hospital of Anhui Medical University, Beijing 100101, P.R. China
| | - Jia-Qi Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Shao-Bin Chai
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Pei-Ming Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Tao Zhang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Wei Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| |
Collapse
|
29
|
Li J, Gray BD, Pak KY, Ng CK. Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol 2019; 78-79:23-30. [PMID: 31678784 DOI: 10.1016/j.nucmedbio.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Both phosphatidylethanolamine (PE) and phosphatidylserine (PS) can be externalized to the outer cell membrane in apoptosis. Thus the objective was to determine whether PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be used for imaging apoptosis. METHODS Duramycin and Zn-DPA were labeled with either 18F-Al or 18F-SFB. U937 cells were incubated with four different concentrations of camptothecin (CPT). For assessing the effect of incubation time on uptake, 37 MBq of radiotracer was added to cells incubated for 15, 30, 60, and 120 min at 37 °C. For blocking experiments, 150 μg duramycin and 40 μg Zn-DPA were added to cells for 15 min prior to the addition of either duramycin or Zn-DPA labeled with 18F. Apoptosis was measured by flow cytometry using an annexin-V/PI kit. Cells were co-stained with Hoechst, Cy5-duramycin, and PSVue480 (FITC-Zn-DPA) to localize fluorescent dye uptake in cells. RESULTS Apoptosis in cells increased proportionally with CTP as confirmed by both flow cytometry and fluorescent staining. Both FITC-Zn-DPA and FITC-duramycin localized mainly on the cell membrane during early apoptosis and then translocated to the inside during late apoptosis. Uptake of FITC-duramycin, however, was higher than that of FITC-Zn-DPA. Cellular uptake of four different radiotracers was also proportional to the degree of apoptosis, increasing slightly over time and reaching a plateau at about 1 h. The blocking experiments demonstrated that uptake in all the control groups was predominantly non-specific, whereas the specific uptake in all the treated groups was at least 50% for both 18F labeled duramycin and Zn-DPA. CONCLUSION Both PE-targeting 18F-duramycin and PS-targeting 18F-Zn-DPA could be considered as potential radiotracers for imaging cellular apoptosis. Advances in knowledge and implications for patient care: Cellular data support the further development of radiotracers targeting either PE or PS for imaging apoptosis, which can associate with clinical outcome for cancer patients.
Collapse
Affiliation(s)
- Junling Li
- University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, United States of America
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, United States of America
| | - Chin K Ng
- University of Louisville School of Medicine, Louisville, KY, United States of America.
| |
Collapse
|
30
|
Diab J, Hansen T, Goll R, Stenlund H, Ahnlund M, Jensen E, Moritz T, Florholmen J, Forsdahl G. Lipidomics in Ulcerative Colitis Reveal Alteration in Mucosal Lipid Composition Associated With the Disease State. Inflamm Bowel Dis 2019; 25:1780-1787. [PMID: 31077307 DOI: 10.1093/ibd/izz098] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The onset of ulcerative colitis (UC) is associated with alterations in lipid metabolism and a disruption of the balance between pro- and anti-inflammatory molecules. Only a few studies describe the mucosal lipid biosignatures during active UC. Moreover, the dynamics of lipid metabolism in the remission state is poorly defined. Therefore, this study aims to characterize mucosal lipid profiles in treatment-naïve UC patients and deep remission UC patients compared with healthy subjects. METHODS Treatment-naïve UC patients (n = 21), UC patients in deep remission (n = 12), and healthy volunteers (n = 14) were recruited. The state of deep remission was defined by histological and immunological remission defined by a normalized TNF-α gene expression. Mucosa biopsies were collected by colonoscopy. Lipid analysis was performed by means of ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS-MS). In total, 220 lipids from 11 lipid classes were identified. RESULTS The relative concentration of 122 and 36 lipids was altered in UC treatment-naïve patients and UC remission patients, respectively, compared with healthy controls. The highest number of significant variations was in the phosphatidylcholine (PC), ceramide (Cer), and sphingomyelin (SM) composition. Multivariate analysis revealed discrimination among the study groups based on the lipid profile. Furthermore, changes in phosphatidylethanolamine(38:3), Cer(d18:1/24:0), and Cer(d18:1/24:2) were most distinctive between the groups. CONCLUSION This study revealed a discriminant mucosal lipid composition pattern between treatment-naïve UC patients, deep remission UC patients, and healthy controls. We report several distinctive lipids, which might be involved in the inflammatory response in UC, and could reflect the disease state.
Collapse
Affiliation(s)
- Joseph Diab
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Rasmus Goll
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Hans Stenlund
- Swedish Metabolomics Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria Ahnlund
- Swedish Metabolomics Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Einar Jensen
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Thomas Moritz
- Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Guro Forsdahl
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
31
|
Synthesis and Evaluation of Diindole-Based MRI Contrast Agent for In Vivo Visualization of Necrosis. Mol Imaging Biol 2019; 22:593-601. [PMID: 31332630 DOI: 10.1007/s11307-019-01399-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Noninvasive imaging of cell necrosis can provide an early evaluation of tumor response to treatments. Here, we aimed to design and synthesize a novel diindole-based magnetic resonance imaging (MRI) contrast agent (Gd-bis-DOTA-diindolylmethane, Gd-DIM) for assessment of tumor response to therapy at an early stage. PROCEDURES The oil-water partition coefficient (Log P) and relaxivity of Gd-DIM were determined in vitro. Then, its necrosis avidity was examined in necrotic cells in vitro and in rat models with microwave ablation-induced muscle necrosis (MAMN) and ischemia reperfusion-induced liver necrosis (IRLN) by MRI. Visualization of tumor necrosis induced by combretastatin A-4 disodium phosphate (CA4P) was evaluated in rats bearing W256 orthotopic liver tumor by MRI. Finally, DNA binding assay was performed to explore the possible necrosis-avidity mechanism of Gd-DIM. RESULTS The Log P value and T1 relaxivity of Gd-DIM is - 2.15 ± 0.01 and 6.61 mM-1 s-1, respectively. Gd-DIM showed predominant necrosis avidity in vitro and in vivo. Clear visualization of the tumor necrosis induced by CA4P was achieved at 60 min after administration of Gd-DIM. DNA binding study indicated that the necrosis-avidity mechanism of Gd-DIM may be due to its binding to exposed DNA in necrotic cells. CONCLUSION Gd-DIM may serve as a promising necrosis-avid MRI contrast agent for early assessment of tumor response to therapy.
Collapse
|
32
|
Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Compositional Changes Among Triglycerides and Phospholipids During FATP4 Sensitization with Palmitate Lead to ER Stress in Cultured Cells. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Wolfgang Stremmel
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Walee Chamulitrat
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|
33
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
34
|
[99mTc]Tc-duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy. Nucl Med Biol 2018; 66:18-25. [DOI: 10.1016/j.nucmedbio.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
|
35
|
Delvaeye T, Wyffels L, Deleye S, Lemeire K, Gonçalves A, Decrock E, Staelens S, Leybaert L, Vandenabeele P, Krysko DV. Noninvasive Whole-Body Imaging of Phosphatidylethanolamine as a Cell Death Marker Using 99mTc-Duramycin During TNF-Induced SIRS. J Nucl Med 2018; 59:1140-1145. [PMID: 29419481 DOI: 10.2967/jnumed.117.205815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/16/2018] [Indexed: 01/30/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is an inflammatory state affecting the whole body. It is associated with the presence of pro- and antiinflammatory cytokines in serum, including tumor necrosis factor (TNF). TNF has multiple effects and leads to cytokine production, leukocyte infiltration, and blood pressure reduction and coagulation, thereby contributing to tissue damage and organ failure. A sterile mouse model of sepsis, TNF-induced SIRS, was used to visualize the temporal and spatial distribution of damage in susceptible tissues during SIRS. For this, a radiopharmaceutical agent, 99mTc-duramycin, that binds to exposed phosphatidylethanolamine on dying cells was longitudinally visualized using SPECT/CT imaging. Methods: C57BL/6J mice were challenged with intravenous injections of murine TNF or vehicle, and necrostatin-1 was used to interfere with cell death. Two hours after vehicle or TNF treatment, mice received 99mTc-duramycin intravenously (35.44 ± 3.80 MBq). Static whole-body 99mTc-duramycin SPECT/CT imaging was performed 2, 4, and 6 h after tracer injection. Tracer uptake in different organs was quantified by volume-of-interest analysis using PMOD software and expressed as SUVmean After the last scan, ex vivo biodistribution was performed to validate the SPECT imaging data. Lastly, terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining was performed to correlate the obtained results to cell death. Results: An increased 99mTc-duramycin uptake was detected in mice injected with TNF, when compared with control mice, in lungs (0.55 ± 0.1 vs. 0.34 ± 0.05), intestine (0.75 ± 0.13 vs. 0.56 ± 0.1), and liver (1.03 ± 0.14 vs. 0.64 ± 0.04) 4 h after TNF and remained significantly elevated until 8 h after TNF. The imaging results were consistent with ex vivo γ-counting results. Significantly increased levels of tissue damage were detected via TUNEL staining in the lungs and intestine of mice injected with TNF. Interestingly, necrostatin-1 pretreatment conferred protection against lethal SIRS and reduced the 99mTc-duramycin uptake in the lungs 8 h after TNF (SUV, 0.32 ± 0.1 vs. 0.51 ± 0.15). Conclusion: This study demonstrated that noninvasive 99mTc-duramycin SPECT imaging can be used to characterize temporal and spatial kinetics of injury and cell death in susceptible tissues during TNF-induced SIRS, making it useful for global, whole-body assessment of tissue damage during diseases associated with inflammation and injury.
Collapse
Affiliation(s)
- Tinneke Delvaeye
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Physiology Group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Kelly Lemeire
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core, Ghent, Belgium; and
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Anatomy and Embryology Group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Perales-Patón J, Piñeiro-Yañez E, Tejero H, López-Casas PP, Hidalgo M, Gómez-López G, Al-Shahrour F. Pancreas Cancer Precision Treatment Using Avatar Mice from a Bioinformatics Perspective. Public Health Genomics 2017; 20:81-91. [PMID: 28858862 DOI: 10.1159/000479812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death among solid malignancies. Unfortunately, PDAC lethality has not substantially decreased over the past 20 years. This aggressiveness is related to the genomic complexity and heterogeneity of PDAC, but also to the absence of an effective screening for the detection of early-stage tumors and a lack of efficient therapeutic options. Therefore, there is an urgent need to improve the arsenal of anti-PDAC drugs for an effective treatment of these patients. Patient-derived xenograft (PDX) mouse models represent a promising strategy to personalize PDAC treatment, offering a bench testing of candidate treatments and helping to select empirical treatments in PDAC patients with no therapeutic targets. Moreover, bioinformatics-based approaches have the potential to offer systematic insights into PDAC etiology predicting putatively actionable tumor-specific genomic alterations, identifying novel biomarkers and generating disease-associated gene expression signatures. This review focuses on recent efforts to individualize PDAC treatments using PDX models. Additionally, we discuss the current understanding of the PDAC genomic landscape and the putative druggable targets derived from mutational studies. PDAC molecular subclassifications and gene expression profiling studies are reviewed as well. Finally, latest bioinformatics methodologies based on somatic variant detection and prioritization, in silico drug response prediction, and drug repositioning to improve the treatment of advanced PDAC tumors are also covered.
Collapse
Affiliation(s)
- Javier Perales-Patón
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|