1
|
Li Z, Ning K, Zhao D, Zhou Z, Zhao J, Long X, Yang Z, Chen D, Cai X, Hong L, Zhang L, Zhou F, Wang J, Li Y. Targeting the Metabolic Enzyme PGAM2 Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer by Inhibiting BCL2 Signaling. Cancer Res 2023; 83:3753-3766. [PMID: 37676279 DOI: 10.1158/0008-5472.can-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The next-generation androgen receptor (AR) inhibitor enzalutamide is the mainstay treatment for metastatic prostate cancer. Unfortunately, resistance occurs rapidly in most patients, and once resistance occurs, treatment options are limited. Therefore, there is an urgent need to identify effective targets to overcome enzalutamide resistance. Here, using a genome-wide CRISPR-Cas9 library screen, we found that targeting a glycolytic enzyme, phosphoglycerate mutase PGAM2, significantly enhanced the sensitivity of enzalutamide-resistant prostate cancer cells to enzalutamide both in vivo and in vitro. Inhibition of PGAM2 together with enzalutamide treatment triggered apoptosis by decreasing levels of the antiapoptotic protein BCL-xL and increasing activity of the proapoptotic protein BAD. Mechanistically, PGAM2 bound to 14-3-3ζ and promoted its interaction with phosphorylated BAD, resulting in activation of BCL-xL and subsequent resistance to enzalutamide-induced apoptosis. In addition, high PGAM2 expression, which is transcriptionally regulated by AR, was associated with shorter survival and rapid development of enzalutamide resistance in patients with prostate cancer. Together, these findings provide evidence of a nonmetabolic function of PGAM2 in promoting enzalutamide resistance and identify PGAM2 inhibition as a promising therapeutic strategy for enzalutamide-resistant prostate cancer. SIGNIFICANCE PGAM2 promotes resistance to enzalutamide by activating antiapoptotic BCL-xL and suppressing apoptosis, indicating that PGAM2 is a potential target for overcoming enzalutamide resistance in prostate cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Kang Ning
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Diwei Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhaohui Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junliang Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xingbo Long
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhenyu Yang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - XinYang Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lexuan Hong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghong Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
2
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Hashemi M, abbasiazam A, Oraee-Yazdani S, Lenzer J. Response of human glioblastoma cells to hyperthermia: Cellular apoptosis and molecular events. Tissue Cell 2022; 75:101751. [DOI: 10.1016/j.tice.2022.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
4
|
Intracellular translocation of HMGB1 is important for Zika virus replication in Huh7 cells. Sci Rep 2022; 12:1054. [PMID: 35058496 PMCID: PMC8776752 DOI: 10.1038/s41598-022-04955-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Neonatal microcephaly and adult Guillain-Barré syndrome are severe complications of Zika virus (ZIKV) infection. The robustly induced inflammatory cytokine expressions in ZIKV-infected patients may constitute a hallmark for severe disease. In the present study, the potential role of high mobility group box 1 protein (HMGB1) in ZIKV infection was investigated. HMGB1 protein expression was determined by the enzyme-linked immunosorbent assay (ELISA) and immunoblot assay. HMGB1's role in ZIKV infection was also explored using treatment with dexamethasone, an immunomodulatory drug, and HMGB1-knockdown (shHMGB1) Huh7 cells. Results showed that the Huh7 cells were highly susceptible to ZIKV infection. The infection was found to induce HMGB1 nuclear-to-cytoplasmic translocation, resulting in a > 99% increase in the cytosolic HMGB1 expression at 72-h post-infection (h.p.i). The extracellular HMGB1 level was elevated in a time- and multiplicity of infection (MOI)-dependent manner. Treatment of the ZIKV-infected cells with dexamethasone (150 µM) reduced HMGB1 extracellular release in a dose-dependent manner, with a maximum reduction of 71 ± 5.84% (P < 0.01). The treatment also reduced virus titers by over 83 ± 0.50% (P < 0.01). The antiviral effects, however, were not observed in the dexamethasone-treated shHMGB1 cells. These results suggest that translocation of HMGB1 occurred during ZIKV infection and inhibition of the translocation by dexamethasone coincided with a reduction in ZIKV replication. These findings highlight the potential of targeting the localization of HMGB1 in affecting ZIKV infection.
Collapse
|
5
|
Rajendra J, Ghorai A, Dutt S. 14-3-3ζ negatively regulates mitochondrial biogenesis in GBM residual cells. Heliyon 2021; 7:e08371. [PMID: 34825085 PMCID: PMC8605068 DOI: 10.1016/j.heliyon.2021.e08371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/25/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumour with a median survival of only 15 months. We have previously demonstrated the generation of an in vitro therapy resistance model that captures the residual resistant (RR) disease cells of GBM post-radiation. We also reported the proteomic landscape of parent, residual, and relapse cells using iTRAQ based quantitative proteomics of glioma cells. The proteomics data revealed significant up-regulation (fold change >1.5) of 14-3-3ζ, specifically in GBM RR cells. This was further confirmed by western blots in residual cells generated from GBM cell lines and patient sample-derived short-term primary culture. ShRNA-mediated knockdown of 14-3-3ζ radio-sensitized GBM cells and further stimulated therapy-induced senescence (TIS) and multinucleated giant cells (MNGCs) phenotype in RR cells. Intriguingly, 14-3-3ζ knockdown residual cells also showed a significantly higher number of mitochondria and increased mtDNA content. Indeed, in vitro GST pull-down mass spectrometry analysis of GST tagged 14-3-3ζ from RR cells identified novel interacting partners of 14-3-3ζ involved in cellular metabolism. Taken together, here we identified novel interacting partners of 14-3-3ζ and proposed an unconventional function of 14-3-3ζ as a negative regulator of TIS and mitochondrial biogenesis in residual resistant cells and loss of which also radio-sensitize GBM cells. 14-3-3ζ is up-regulated in residual disease cells of GBM. 14-3-3ζ knockdown radiosensitizes GBM cells. 14-3-3ζ knockdown increases MNGCs formation and senescence in residual cells. 14-3-3ζ negatively regulates mitochondrial biogenesis of residual disease cells. Novel interacting partners of 14-3-3ζ from residual cells are involved in cellular metabolism.
Collapse
Affiliation(s)
- Jacinth Rajendra
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| |
Collapse
|
6
|
Xue R, Yang D, Han Y, Deng Q, Wang X, Liu X, Zhao J. 14-3-3ζ and 14-3-3ε are involved in innate immune responses in Pacific abalone (Haliotis discus hannai). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104176. [PMID: 34153282 DOI: 10.1016/j.dci.2021.104176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins play important roles in various cellular processes by binding to different ligands, but little is known about these proteins in mollusks. In this study, two 14-3-3 cDNAs were identified from the Pacific abalone Haliotis discus hannai (designated 14-3-3ζ and 14-3-3ε), possessing 59.40% identity with each other. Both genes were predominantly expressed in the gills of unchallenged abalones, and their mRNA signals could also be detected in several other tissues, including the mantle, hepatopancreas and ovary. However, after Vibrio harveyi challenge, hemocytes were induced significantly (p < 0.01). Meanwhile, phagocytosis was inhibited, but apoptosis, reactive oxygen species formation, and caspase 3 expression were significantly induced (p < 0.01), and they were all suppressed with 14-3-3ζ knockdown (p < 0.01). The differences were that silencing 14-3-3ε reverted the decline in the phagocytic rate derived from bacterial infection, while ROS formation was not influenced significantly. In addition, the expression levels of several antimicrobial peptide and proinflammatory cytokine genes were also decreased with the silencing of 14-3-3 genes. However, with the knockdown of 14-3-3ζ, the expression of 14-3-3ε was further significantly increased (p < 0.01), and vice versa. Overall, our results suggested that 14-3-3ζ and 14-3-3ε should play important roles in innate immunity against V. harveyi infection.
Collapse
Affiliation(s)
- Rui Xue
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China.
| | - Yijing Han
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qinyou Deng
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangquan Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Yantai Shandong, 264117, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong, 264003, PR China.
| |
Collapse
|
7
|
Atalay S, Gęgotek A, Domingues P, Skrzydlewska E. Protective effects of cannabidiol on the membrane proteins of skin keratinocytes exposed to hydrogen peroxide via participation in the proteostasis network. Redox Biol 2021; 46:102074. [PMID: 34298466 PMCID: PMC8321952 DOI: 10.1016/j.redox.2021.102074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen peroxide (H2O2) is widely used in clinical practice due to its antiseptic properties and its ability to heal wounds. However, due to its involvement in the formation of ROS, H2O2 causes several side effects, including disorders of the metabolism of skin cells and the development of chronic inflammation mediated by oxidative stress. Therefore, this study evaluated the effects of cannabidiol (CBD), a phytocannabinoid known for its antioxidant and anti-inflammatory properties, on the proteome of keratinocyte membranes exposed to H2O2. Overall, the hydrogen peroxide caused the levels of several proteins to increase, while the treatment with CBD prevented these changes. Analysis of the protein-protein interaction network showed that the significant changes mainly involved proteins with important roles in the proteasomal activity, protein folding processes (regulatory subunit of the proteasome 26S 6A, beta proteasome subunit type 1, chaperonin 60 kDa), protein biosynthesis (40S ribosomal proteins S16, S2 and ubiquitin-S27a), regulation of the redox balance (carbonyl reductase [NADPH] 1 and NAD(P)H [quinone] 1 dehydrogenase) and cell survival (14-3-3 theta protein). Additionally, CBD reduced the total amount of MDA, 4-HNE and 4-ONE-protein adducts. Therefore, we conclude that CBD partially prevents the changes induced by hydrogen peroxide by reducing oxidative stress and maintaining proteostasis networks. Moreover, our results indicate that combination therapy with CBD may bring a promising approach in the clinical use of hydrogen peroxide by preventing its pro-oxidative and pro-inflammatory effect through potential participation of CBD in membrane mediated molecular signaling. CBD prevents H2O2-induced changes in keratinocytes membrane proteomic profile. Protective effect of CBD could be mediated by alterations in proteostasis network. CBD promotes antioxidative and pro-survival cellular response. CBD reduces formation of lipid peroxidation products-protein adducts.
Collapse
Affiliation(s)
- Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Pedro Domingues
- Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
8
|
YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 2021; 136:468-479. [PMID: 32187357 DOI: 10.1182/blood.2019004147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.
Collapse
|
9
|
Endo H, Inoue I, Masunaka K, Tanaka M, Yano M. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem 2020; 84:2440-2447. [PMID: 32841581 DOI: 10.1080/09168451.2020.1808443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anticancer effects of curcumin are based on the induction of apoptosis, but the specific mechanisms have not yet been fully elucidated. To address this issue, we investigated the effects of curcumin on the intrinsic apoptosis pathway using mitochondria from A549 cells. Curcumin decreased the levels of 14-3-3 proteins, key molecules that inhibit the activation of proapoptotic factors known as BH3-only proteins (e.g. Bad). Curcumin-induced suppression of 14-3-3 protein levels was associated with reduced cytosolic Bad and elevation of mitochondrial Bad, leading to a drop in the mitochondrial membrane potential. 14-3-3 proteins generally interact with Bad phosphorylated by AKT, thus preventing its translocation to the mitochondria where it can promote cell death. Curcumin not only decreased the expression of 14-3-3 proteins but also promoted Bad dephosphorylation in an AKT-dependent fashion. Our results provide novel evidence for the induction of apoptosis by curcumin at multiple stages of the mitochondrial cascade.
Collapse
Affiliation(s)
- Hiroshi Endo
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Izumi Inoue
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Kimiko Masunaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Masaya Tanaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Mihiro Yano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| |
Collapse
|
10
|
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:334-355. [PMID: 35582450 PMCID: PMC8992488 DOI: 10.20517/cdr.2020.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment-resistance is common in glioblastoma (GBM) and the glioblastoma stem-like cells (GSC) from which they arise. Current treatment options are generally regarded as very poor and this arises from a poor conceptualization of the biological underpinnings of GBM/GSC and of the plasticity that these cells are capable of utilizing in response to different treatments. A number of studies indicate melatonin to have utility in the management of GBM/GSC, both per se and when adjunctive to chemotherapy. Recent work shows melatonin to be produced in mitochondria, with the mitochondrial melatonergic pathway proposed to be a crucial factor in driving the wide array of changes in intra- and inter-cellular processes, as well as receptors that can be evident in the cells of the GBM/GSC microenvironment. Variations in the enzymatic conversion of N-acetylserotonin (NAS) to melatonin may be especially important in GSC, as NAS can activate the tyrosine receptor kinase B to increase GSC survival and proliferation. Consequently, variations in the NAS/melatonin ratio may have contrasting effects on GBM/GSC survival. It is proposed that mitochondrial communication across cell types in the tumour microenvironment is strongly driven by the need to carefully control the mitochondrial melatonergic pathways across cell types, with a number of intra- and inter-cellular processes occurring as a consequence of the need to carefully regulate the NAS/melatonin ratio. This better integrates previously disparate data on GBM/GSC as well as providing clear future research and treatment options.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
11
|
Comparative Proteomic Analysis Reveals Immune Competence in Hemolymph of Bombyx mori Pupa Parasitized by Silkworm Maggot Exorista sorbillans. INSECTS 2019; 10:insects10110413. [PMID: 31752209 PMCID: PMC6920964 DOI: 10.3390/insects10110413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023]
Abstract
The silkworm maggot, Exoristasorbillans, is a well-known larval endoparasitoid of the silkworm Bombyxmori that causes considerable damage to the silkworm cocoon crop. To gain insights into the response mechanism of the silkworm at the protein level, we applied a comparative proteomic approach to investigate proteomic differences in the hemolymph of the female silkworm pupae parasitized by E. sorbillans. In total, 50 differentially expressed proteins (DEPs) were successfully identified, of which 36 proteins were upregulated and 14 proteins were downregulated in response to parasitoid infection. These proteins are mainly involved in disease, energy metabolism, signaling pathways, and amino acid metabolism. Eight innate immune proteins were distinctly upregulated to resist maggot parasitism. Apoptosis-related proteins of cathepsin B and 14-3-3 zeta were significantly downregulated in E. sorbillans-parasitized silkworm pupae; their downregulation induces apoptosis. Quantitative PCR was used to further verify gene transcription of five DEPs, and the results are consistent at the transcriptional and proteomic levels. This was the first report on identification of possible proteins from the E. bombycis-parasitized silkworms at the late stage of parasitism, which contributes to furthering our understanding of the response mechanism of silkworms to parasitism and dipteran parasitoid biology.
Collapse
|
12
|
Anderson G, Reiter RJ. Glioblastoma: Role of Mitochondria N-acetylserotonin/Melatonin Ratio in Mediating Effects of miR-451 and Aryl Hydrocarbon Receptor and in Coordinating Wider Biochemical Changes. Int J Tryptophan Res 2019; 12:1178646919855942. [PMID: 31244524 PMCID: PMC6580708 DOI: 10.1177/1178646919855942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
A wide array of different factors and processes have been linked to the biochemical underpinnings of glioblastoma multiforme (GBM) and glioblastoma stem cells (GSC), with no clear framework in which these may be integrated. Consequently, treatment of GBM/GSC is generally regarded as very poor. This article provides a framework that is based on alterations in the regulation of the melatonergic pathways within mitochondria of GBM/GSC. It is proposed that the presence of high levels of mitochondria-synthesized melatonin is toxic to GBM/GSC, with a number of processes in GBM/GSC acting to limit melatonin’s synthesis in mitochondria. One such factor is the aryl hydrocarbon receptor, which increases cytochrome P450 (CYP)1b1 in mitochondria, leading to the ‘backward’ conversion of melatonin to N-acetylserotonin (NAS). N-acetylserotonin has some similar, but some important differential effects compared with melatonin, including its activation of the tyrosine receptor kinase B (TrkB) receptor. TrkB activation is important to GBM/GSC survival and proliferation. A plethora of significant, but previously disparate, data on GBM/GSC can then be integrated within this framework, including miR-451, AMP-activated protein kinase (AMPK)/mTOR, 14-3-3 proteins, sirtuins, tryptophan 2,3-dioxygenase, and the kynurenine pathways. Such a conceptualization provides a framework for the development of more effective treatment for this poorly managed condition.
Collapse
Affiliation(s)
- George Anderson
- Department of Clinical Research, CRC Scotland & London, London, UK
| | - Russell J Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|