1
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
2
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
3
|
Sun Z, Guo Y, Xu X, Zhou C, Luo X, Shen Z, Shen B, Wang J, Lu J, Zhang Q, Shen F, Yu L, Ye Y, Zhang L, Luo Y, Qu Y, Cai X, Dong H, Lu L. Hydronidone induces apoptosis in activated hepatic stellate cells through endoplasmic reticulum stress-associated mitochondrial apoptotic pathway. J Gastroenterol Hepatol 2024; 39:1695-1703. [PMID: 38804845 DOI: 10.1111/jgh.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND AIM Hydronidone (HDD) is a novel pirfenidone derivative developed initially to reduce hepatotoxicity. Our previous studies in animals and humans have demonstrated that HDD treatment effectively attenuates liver fibrosis, yet the underlying mechanism remains unclear. This study aimed to investigate whether HDD exerts its anti-fibrotic effect by inducing apoptosis in activated hepatic stellate cells (aHSCs) through the endoplasmic reticulum stress (ERS)-associated mitochondrial apoptotic pathway. METHODS The carbon tetrachloride (CCl4)- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis models were used for in vivo studies. In vitro studies were conducted using the human hepatic stellate cell line LX-2. The apoptotic effect of HDD on aHSCs was examined using TUNEL and flow cytometry assays. The small interfering RNA (siRNA) technique was employed to downregulate the expression of interest genes. RESULTS HDD treatment significantly promoted apoptosis in aHSCs in both the CCl4- and DDC-induced liver fibrosis in mice and LX-2 cells. Mechanistic studies revealed that HDD triggered ERS and subsequently activated the IRE1α-ASK1-JNK pathway. Furthermore, the influx of cytochrome c from the mitochondria into the cytoplasm was increased, leading to mitochondrial dysfunction and ultimately triggering apoptosis in aHSCs. Notably, inhibition of IRE1α or ASK1 by siRNA partially abrogated the pro-apoptotic effect of HDD in aHSCs. CONCLUSIONS The findings of both in vivo and in vitro studies suggest that HDD induces apoptosis in aHSCs via the ERS-associated mitochondrial apoptotic pathway, potentially contributing to the amelioration of liver fibrosis.
Collapse
Affiliation(s)
- Zhongshang Sun
- Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Shen
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lou Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Ye
- Continent Pharmaceuticals Co., Ltd, Beijing, China
| | - Ling Zhang
- Continent Pharmaceuticals Co., Ltd, Beijing, China
| | - Ying Luo
- Continent Pharmaceuticals Co., Ltd, Beijing, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Guo M, Zhuang Y, Wu Y, Zhang C, Cheng X, Xu D, Zhang Z. The cell fate regulator DACH1 modulates ferroptosis through affecting P53/SLC25A37 signaling in fibrotic disease. Hepatol Commun 2024; 8:e0396. [PMID: 38437058 PMCID: PMC10914241 DOI: 10.1097/hc9.0000000000000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Dachshund homolog 1 (DACH1) is widely acknowledged for its involvement in regulating diverse cell fates, but its precise regulatory mechanism in ferroptosis remains elusive. In this study, we investigated whether DACH1 modulates ferroptosis through affecting P53/solute carrier family 25 member 37 (SLC25A37) signaling in hepatic fibrogenesis. METHODS CRISPR-Cas9 system was used to knockout DACH1 in HSC to determine the effect of DACH1 on ferroptosis. Immunoprecipitation, pulldown, and mouse model of hepatic fibrogenesis were used to analyze the potential molecular mechanism of ferroptosis regulation by DACH1. RESULTS We found that ferroptosis inducers increased the protein expression of DACH1 by suppressing the ubiquitin-proteasome signaling. DACH1 knockout can resist ferroptosis, whereas DACH1 knockin can enhance it. Interestingly, the upregulation of DACH1 resulted in the mitochondrial translocation of p53 by inducing phosphorylation at serine 392. The mutation of serine 392 can prevent the combination of DACH1 and p53, the mitochondrial translocation of p53, and DACH1-mediated ferroptosis. Moreover, SLC25A37 was identified as a candidate target for mitochondrial p53. The binding of p53 to SLC25A37 can enhance the iron uptake capacity of SLC25A37, which may cause an overload of iron in the mitochondria and hyperactive mitochondrial electron transport chain. Knockdown of SLC25A37 can impair p53-mediated mitochondrial iron overload and ferroptosis. Furthermore, treatment with erastin can induce HSC ferroptosis and relieve fibrotic lesion damage in the mouse model of hepatic fibrogenesis. HSC-specific knockdown of DACH1, p53, and SLC25A37 can abolish the induction of HSC ferroptosis and reversal of hepatic fibrogenesis by erastin treatment. CONCLUSIONS Our findings suggest that the DACH1/P53/SLC25A37 signaling pathway is a promising target for fibrotic disorders and reveals new regulatory mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanshuang Zhuang
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yang Wu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Dong Xu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zili Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Hou XX, Li YW, Song JL, Zhang W, Liu R, Yuan H, Feng TT, Jiang ZY, Li WT, Zhu CL. Cryptotanshinone induces apoptosis of activated hepatic stellate cells via modulating endoplasmic reticulum stress. World J Gastroenterol 2023; 29:2616-2627. [PMID: 37213406 PMCID: PMC10198054 DOI: 10.3748/wjg.v29.i17.2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/28/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Cryptotanshinone (CPT) has wide biological functions, including anti-oxidative, antifibrosis, and anti-inflammatory properties. However, the effect of CPT on hepatic fibrosis is unknown.
AIM To investigate the effects of CPT treatment on hepatic fibrosis and its underlying mechanism of action.
METHODS Hepatic stellate cells (HSCs) and normal hepatocytes were treated with different concentrations of CPT and salubrinal. The CCK-8 assay was used to determine cell viability. Flow cytometry was used to measure apoptosis and cell cycle arrest. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot analyses were used to measure mRNA levels and protein expression of endoplasmic reticulum stress (ERS) signaling pathway related molecules, respectively. Carbon tetrachloride (CCL4) was used to induce in vivo hepatic fibrosis in mice. Mice were treated with CPT and salubrinal, and blood and liver samples were collected for histopathological examination.
RESULTS We found that CPT treatment significantly reduced fibrogenesis by modulating the synthesis and degradation of the extracellular matrix in vitro. CPT inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in cultured HSCs. Furthermore, we found that CPT promoted apoptosis of activated HSCs by upregulating expression of ERS markers (CHOP and GRP78) and activating ERS pathway molecules (PERK, IRE1α, and ATF4), which were inhibited by salubrinal. Inhibition of ERS by salubrinal partially eliminated the therapeutic effect of CPT in our CCL4-induced hepatic fibrosis mouse model.
CONCLUSION CPT can promote apoptosis of HSCs and alleviate hepatic fibrosis through modulating the ERS pathway, which represents a promising strategy for treating hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao-Xue Hou
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Wen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Jia-Li Song
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, Hainan Province, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Tian-Tong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Zheng-Yi Jiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Wen-Ting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, Hainan Province, China
| | - Chuan-Long Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
7
|
Sun Y, Weng J, Chen X, Ma S, Zhang Y, Zhang F, Zhang Z, Wang F, Shao J, Zheng S. Oroxylin A activates ferritinophagy to induce hepatic stellate cell senescence against hepatic fibrosis by regulating cGAS-STING pathway. Biomed Pharmacother 2023; 162:114653. [PMID: 37086511 DOI: 10.1016/j.biopha.2023.114653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
In recent study, the pathological mechanism of liver fibrosis has been associated with hepatic stellate cell (HSC) senescence. Targeted induction of HSC senescence is considered as a new strategy to remove activated HSC. Nevertheless, little is known about the role of ferritinophagy in cell senescence. In this study, we reported that Oroxylin A from Scutellaria baicalensis Georgi can regulate HSC senescence induced by ferritinophagy through the cGAS-STING pathway to reduce liver fibrosis. We first found that Oroxylin A treatment alleviated the pathological changes of liver fibrosis, reduced collagen deposition, and significantly inhibited liver fibrosis. Interestingly, Oroxylin A treatment can activate HSC ferritinophagy and further induce HSC senescence. It is noteworthy that ferritinophagy is mediated by nuclear receptor coactivator 4 (NCOA4), an important selective mediator for ferritin degradation. NCOA4 siRNA causes Oroxylin A to reduce the degree of telomerase activity in HSCs and induce the expression of senescence markers, such as SA-β-Gal and related marker proteins. Importantly, the cGAS-STING pathway is crucial to the activation of HSC ferritinophagy by Oroxylin A. Specifically, Oroxylin A can promote the secretion of cytokines like IFN-β by the cGAS-STING pathway to regulate ferritinophagy. cGAS siRNA resulted in a dose-dependent decrease in the expression of NCOA4, a significant reduction in the expression level of autophagy-related phenotype, and a decrease in the content of ROS and iron ions in HSCs. In conclusion, we identified the new role of ferritinophagy and the GAS-STING pathway in Oroxylin A -mediated anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Ying Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingdan Weng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolei Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyao Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
8
|
Yang J, Li J, Wang J, Wu J, Yin L, Dou H, Hou Y. Oroxylin A relieves intrauterine adhesion in mice through inhibiting macrophage pyroptosis via SIRT3-SOD2-ROS pathway. Int Immunopharmacol 2023; 118:110023. [PMID: 36934562 DOI: 10.1016/j.intimp.2023.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Intrauterine adhesion (IUA) is manifested by endometrial fibrosis and inflammation, which seriously affects female reproductive health. Macrophages are mainly inflammatory cells and have been reported to participate in the fibrosis of IUA. Oroxylin A (OA), a kind of flavonoid compounds, was showed to possess the inhibitory effects on inflammation and fibrosis. However, the role of OA in IUA remains unclear. In the present study, we found that OA effectively alleviated the level of inflammation and uterine fibrosis in IUA mice. OA also decreased the macrophage pyroptosis which increased in uteri of IUA mice. Pyroptosis is a programmed cell death accompanied by an inflammatory response. Moreover, OA repressed the mediators of pyroptosis including the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3), caspase-1 and Gasdermin D (GSDMD) and the release of IL-1β, IL-18 and cleaved-caspase-1 in J774A.1 cells induced by LPS/ATP in vitro. Mechanistically, the alleviation of OA on uterine fibrosis is achieved by inhibiting macrophage pyroptosis via SIRT3-SOD2-ROS pathway. Our data indicate that OA may serve as an effective agent for the treatment of the endometrial fibrosis with IUA.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinjin Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
9
|
Tuli HS, Garg VK, Kumar A, Aggarwal D, Anand U, Parashar NC, Saini AK, Mohapatra RK, Dhama K, Kumar M, Singh T, Kaur J, Sak K. Anticancer potential of oroxylin A: from mechanistic insight to synergistic perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:191-212. [PMID: 36214865 DOI: 10.1007/s00210-022-02298-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 01/29/2023]
Abstract
Oroxylin A (OA), a well-known constituent of the root of Scutellariae plants, has been used in ethnomedicine already for centuries in treating various neoplastic disorders. However, only recent molecular studies have revealed the different mechanisms behind its action, demonstrating antiproliferative, anti-inflammatory, and proapoptotic effects, restricting also the spread of cancer cells to distant organs. A variety of cellular targets and modulated signal transduction pathways regulated by OA have been determined in diverse cells derived from different malignant tissues. In this review article, these anticancer activities are thoroughly described, representing OA as a potential lead structure for the design of novel more potent anticancer medicines. In addition, co-effects of this natural compound with conventional anticancer agents are analyzed and the advantages provided by nanotechnological methods for more efficient application of OA are discussed. In this way, OA might represent an excellent example of using ethnopharmacological knowledge for designing modern medicines.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar , 143005, Punjab, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, Haryana, India
| | - Tejveer Singh
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | | |
Collapse
|
10
|
Zhao D, Gao Y, Su Y, Zhou Y, Yang T, Li Y, Wang Y, Sun Y, Chen L, Zhang F, Zhang Z, Wang F, Shao J, Zheng S. Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence. Pharmacol Res 2023; 187:106590. [PMID: 36464146 DOI: 10.1016/j.phrs.2022.106590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Relevant studies have recognized the important role of hepatic stellate cell (HSC) senescence in anti-liver fibrosis. Cellular senescence is believed to be regulated by the cGAS-STING signaling pathway. However, underlying exact mechanisms of cGAS-STING pathway in hepatic stellate cell senescence are still unclear. Here, we found that Oroxylin A could promote senescence in HSC by activating the cGAS-STING pathway. Moreover, activation of the cGAS-STING pathway was dependent on DNMT3A downregulation, which suppressed cGAS gene DNA methylation. Interestingly, the attenuation of DNMT activity relied on the reduction of methyl donor SAM level. Noteworthy, the downregulation of SAM levels implied the imbalance of methionine cycle metabolism, and MAT2A was considered to be an important regulatory enzyme in metabolic processes. In vivo experiments also indicated that Oroxylin A induced senescence of HSCs in mice with liver fibrosis, and DNMT3A overexpression partly offset this effect. In conclusion, we discovered that Oroxylin A prevented the methylation of the cGAS gene by preventing the production of methionine metabolites, which promoted the senescence of HSCs. This finding offers a fresh hypothesis for further research into the anti-liver fibrosis mechanism of natural medicines.
Collapse
Affiliation(s)
- Danli Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Su
- Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Sajeev A, Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sil SK, Sethi G, Chen JT, Kunnumakkara AB. Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases. Biomolecules 2022; 12:1185. [PMID: 36139025 PMCID: PMC9496116 DOI: 10.3390/biom12091185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samir Kumar Sil
- Cell Physiology and Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar 799022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Sun S, Huan S, Li Z, Yao Y, Su Y, Xia S, Wang S, Xu X, Shao J, Zhang Z, Zhang F, Fu J, Zheng S. Curcumol alleviates liver fibrosis by inducing endoplasmic reticulum stress-mediated necroptosis of hepatic stellate cells through Sirt1/NICD pathway. PeerJ 2022; 10:e13376. [PMID: 35582617 PMCID: PMC9107784 DOI: 10.7717/peerj.13376] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Liver fibrosis is a repair response process after chronic liver injury. During this process, activated hepatic stellate cells (HSCs) will migrate to the injury site and secrete extracellular matrix (ECM) to produce fibrous scars. Clearing activated HSCs may be a major strategy for the treatment of liver fibrosis. Curcumol isolated from plants of the genus Curcuma can effectively induce apoptosis of many cancer cells, but whether it can clear activated HSCs remains to be clarified. In the present study, we found that the effect of curcumol in treating liver fibrosis was to clear activated HSCs by inducing necroptosis of HSCs. Receptor-interacting protein kinase 3 (RIP3) silencing could impair necroptosis induced by curcumol. Interestingly, endoplasmic reticulum (ER) stress-induced cellular dysfunction was associated with curcumol-induced cell death. The ER stress inhibitor 4-PBA prevented curcumol-induced ER stress and necroptosis. We proved that ER stress regulated curcumol-induced necroptosis in HSCs via Sirtuin-1(Sirt1)/Notch signaling pathway. Sirt1-mediated deacetylation of the intracellular domain of Notch (NICD) led to degradation of NICD, thereby inhibiting Notch signalling pathway to alleviate liver fibrosis. Specific knockdown of Sirt1 by HSCs in male ICR mice further exacerbated CCl4-induced liver fibrosis. Overall, our study elucidates the anti-fibrotic effect of curcumol and reveals the underlying mechanism between ER stress and necroptosis.
Collapse
Affiliation(s)
- Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Yao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbo Fu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Huang MY, Wan DW, Deng J, Guo WJ, Huang Y, Chen H, Xu DL, Jiang ZG, Xue Y, He YH. Downregulation of RIP3 Improves the Protective Effect of ATF6 in an Acute Liver Injury Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8717565. [PMID: 34778458 PMCID: PMC8589516 DOI: 10.1155/2021/8717565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) and receptor-interacting protein 3 (RIP3) are important signaling proteins in endoplasmic reticulum (ER) stress and necroptosis, respectively. However, their regulatory relationship and clinical significance are unknown. We investigate the impact of ATF6 on RIP3 expression, and its role in hepatocyte necroptosis in an acute liver injury model. METHODS In vivo and in vitro experiments were carried out. LO2 cells were treated with thapsigargin (TG). In vivo, male BALB/c mice were treated with carbon tetrachloride (CCl4, 1 mL/kg) or tunicamycin (TM, 2 mg/kg). Then, the impact of ATF6 or RIP3 silencing on liver injury, hepatocyte necroptosis, and ER stress-related protein expression was examined. RESULTS TG induced ER stress and necroptosis and ATF6 and RIP3 expression in LO2 cells. The knockdown of ATF6 significantly decreased RIP3 expression (p < 0.05) and increased ER stress and necroptosis. The downregulation of RIP3 significantly reduced necroptosis and ER stress (p < 0.05). Similar results were observed in CCl4 or the TM-induced mouse model. The knockdown of ATF6 significantly decreased CCl4-induced RIP3 expression and increased liver injury, necroptosis, and ER stress in mice livers (p < 0.05). In contrast, the downregulation of RIP3 significantly reduced liver injury, hepatocyte necroptosis, and ER stress. CONCLUSIONS Hepatocyte ATF6 has multiple roles in acute liver injury. It reduces hepatocyte necroptosis via negative feedback regulation of ER stress. In addition, ATF6 can upregulate the expression of RIP3, which is not helpful to the recovery process. However, downregulating RIP3 reduces hepatocyte necroptosis by promoting the alleviation of ER stress. The findings suggest that RIP3 could be a plausible target for the treatment of liver injury.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Dian-Wei Wan
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Jie Deng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Wen-Jie Guo
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yue Huang
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Huan Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - De-Lin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, 563099 Guizhou, China
| | - Yuan Xue
- Department of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, 213000 Jiangsu Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| |
Collapse
|
14
|
Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N 6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 2021; 47:102151. [PMID: 34607160 PMCID: PMC8495178 DOI: 10.1016/j.redox.2021.102151] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a recently identified non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. However, the underlying exact mechanisms remain poorly understood. Here, we report that the total levels of N6-methyladenosine (m6A) modification are evidently increased upon exposure to ferroptosis-inducing compounds due to the upregulation of methylase METTL4 and the downregulation of demethylase FTO. Interestingly, RNA-seq shows that m6A modification appears to trigger autophagy activation by stabilizing BECN1 mRNA, which may be the potential mechanism for m6A modification-enhanced HSC ferroptosis. Importantly, YTHDF1 is identified as a key m6A reader protein for BECN1 mRNA stability, and knockdown of YTHDF1 could prevent BECN1 plasmid-induced HSC ferroptosis. Noteworthy, YTHDF1 promotes BECN1 mRNA stability and autophagy activation via recognizing the m6A binding site within BECN1 coding regions. In mice, erastin treatment alleviates liver fibrosis by inducing HSC ferroptosis. HSC-specific inhibition of m6A modification could impair erastin-induced HSC ferroptosis in murine liver fibrosis. Moreover, we retrospectively analyzed the effect of sorafenib on HSC ferroptosis and m6A modification in advanced fibrotic patients with hepatocellular carcinoma (HCC) receiving sorafenib monotherapy. Attractively, the m6A modification upregulation, autophagy activation, and ferroptosis induction occur in human HSCs. Overall, these findings reveal novel signaling pathways and molecular mechanisms of ferroptosis, and also identify m6A modification-dependent ferroptosis as a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis. MO, 63104, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Liang B, Gao L, Wang F, Li Z, Li Y, Tan S, Chen A, Shao J, Zhang Z, Sun L, Zhang F, Zheng S. The mechanism research on the anti-liver fibrosis of emodin based on network pharmacology. IUBMB Life 2021; 73:1166-1179. [PMID: 34173707 DOI: 10.1002/iub.2523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study was designated to illustrate the underlying mechanisms of emodin anti-liver fibrosis via network pharmacology and experiment. METHODS The TSMCP and Genecards database were applied to screen the relevant targets of emodin or liver fibrosis. The essential target was selected by using Cytoscape to analyze the topological network of potential targets. Furthermore, we constructed a preliminary molecule docking study to explore the binding site by Surflex-Dock suite SYBYL X 2.0. The DAVID database was selected for gene functional annotations and KEGG enrichment analysis. Moreover, we demonstrated the ameliorating effect of emodin on carbon tetrachloride (CCl4 )-induced liver injury in mice. We also verified the network predictions in vitro via various techniques. RESULTS The collected results showed that 35 targets were related to emodin, and 6,198 targets were associated with liver fibrosis. The Venn analysis revealed that 17 intersection targets were correlated with emodin anti-liver fibrosis. The topological network analysis suggested that the p53 was the remarkable crucial target. Besides, the molecule docking results showed that emodin could directly interact with p53 by binding the active site residues ASN345, GLN331, and TYR347. Finally, KEGG pathway enrichment results indicated that essential genes were mainly enriched in mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, our study confirmed that emodin alleviated CCl4 -induced liver injury in mice, inducing hepatic stellate cells (HSCs) apoptosis via regulating the p53/ERK/p38 axis. CONCLUSIONS This study partially verified the network pharmacological prediction of emodin inducing HSCs cell apoptosis through the p53/ERK/p38 axis.
Collapse
Affiliation(s)
- Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to the Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Sun
- Department of National Education and Development Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Li Y, Jin C, Shen M, Wang Z, Tan S, Chen A, Wang S, Shao J, Zhang F, Zhang Z, Zheng S. Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med 2020; 160:845-859. [PMID: 32947011 DOI: 10.1016/j.freeradbiomed.2020.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Currently, the existing treatments have not cured the liver fibrosis thoroughly. Ferroptosis is a newly discovered way of cell death, which is closely related to many diseases. Previous studies have shown that ferroptosis plays an important role in the occurrence and development of liver fibrosis, but the further mechanism remains to be discovered. METHODS LX-2 cells were used as the research object, fibrosis activation index was detected by Western blot, PCR and Immunofluorescence, ferroptosis was detected by kits, the binding and interaction between IRP2 (iron regulatory protein 2) and STUB1 (STIP1 homology and U-box containing protein 1) were detected by Immunoprecipitation and ubiquitin test, and IRP2 knockdown mice were constructed by interfering plasmid to verify the results of in vitro experiment. RESULT Our research showed that ART (artemether) had a good anti-fibrosis effect in vivo and in vitro, and ferroptosis played an important role in this process. Further studies have found that ART could lead to the accumulation of IRP 2 a in hepatic stellate cell by inhibiting the ubiquitination of it, thus inducing the increase of iron in HSC (hepatic stellate cell), which could product a large number of ROS (reactive oxide species), resulting the occurrence of ferroptosis in cells. Our findings provided an experimental basis for ART to become a drug for the treatment of liver fibrosis. CONCLUSION Our results show that IRP2-Iron-ROS axis is necessary for ART to induce ferroptosis in HSC and play an anti-fibrotic effect.
Collapse
Affiliation(s)
- Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Jin
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, USA
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
17
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
18
|
Bian M, Fan R, Jiang G, Wang Y, Lu Y, Liu W. Halo and Pseudohalo Gold(I)-NHC Complexes Derived from 4,5-Diarylimidazoles with Excellent In Vitro and In Vivo Anticancer Activities Against HCC. J Med Chem 2020; 63:9197-9211. [PMID: 32787098 DOI: 10.1021/acs.jmedchem.0c00257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of halo and pseudohalo gold(I)-NHC complexes (NHC-Au-X) (X = Cl, Br, I, NCO, and OAc) derived from 4,5-diarylimidazoles were synthesized, structurally characterized, and analyzed for their biological activities. The most active complex was iodo(1,3-diethyl-4,5-bis(4-methoxyphenyl)imidazol-2-ylidene)gold(I) (6), which was at least 2-fold more cytotoxic than cisplatin and auranofin against hepatocellular carcinoma (HCC) cells. In vivo studies indicated that complex 6 exhibited a considerably higher anticancer efficacy (IRT = 75.7%) than cisplatin (IRT = 44.4%) in a HepG2 xenograft mouse model and ameliorated liver injury caused by CCl4 in chronic HCC. Further studies revealed that complex 6 can inhibit the expression of the thioredoxin reductase (TrxR) both in vitro and in vivo, block the HepG2 cells in the G2/M phase, induce reactive oxygen species (ROS) production, damage mitochondrial membrane potential (MMP), and promote HepG2 cell apoptosis.
Collapse
Affiliation(s)
- Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Rong Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Guizhi Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yingxiang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Shen M, Guo M, Wang Z, Li Y, Kong D, Shao J, Tan S, Chen A, Zhang F, Zhang Z, Zheng S. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis. Int Immunopharmacol 2020; 85:106637. [PMID: 32512269 DOI: 10.1016/j.intimp.2020.106637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
More and more evidence showed that autophagy is an inflammation-related defense mechanism against a variety of diseases including liver fibrosis. However, the essential mechanisms remain poorly understood. In this study, we sought to elucidate the impact of Oroxylin A on autophagy and further to identify the potential mechanism of its anti-inflammatory activity. We found that Oroxylin A played a critical role in controlling inflammation in murine liver fibrosis. Moreover, Oroxylin A could inhibit the secretion of pro-inflammatory cytokines in activated hepatic stellate cell (HSCs). We previously reported that Oroxylin A can induce autophagy to alleviate the pathological changes of liver fibrosis and the activation of HSC. Here we further revealed that the inhibition of the PI3K/Akt/mTOR signaling was required for Oroxylin A to induce autophagy activation, which may be the underlying mechanism of the anti-inflammatory activity of Oroxylin A. Interestingly, mTOR overexpression completely impaired the Oroxylin A-mediated autophagy activation, and in turn, damaged the anti-inflammatory activity. Importantly, Oroxylin A inhibited PI3K/Akt/mTOR signaling by scavenging reactive oxygen species (ROS). ROS accumulation by buthionine sulfoximine (BSO) could abrogate the Oroxylin A-mediated ROS elimination, the inhibition of PI3K/Akt/mTOR signaling, and anti-inflammatory activities. Overall, our results provided reliable evidence for the molecular mechanism of Oroxylin A-mediated anti-fibrosis activity, and also identified a new target for drug therapy of liver fibrosis.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Desong Kong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanzhong Tan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis. MO 63104, USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Bian M, Wang X, Sun Y, Liu W. Synthesis and biological evaluation of gold(III) Schiff base complexes for the treatment of hepatocellular carcinoma through attenuating TrxR activity. Eur J Med Chem 2020; 193:112234. [PMID: 32213395 DOI: 10.1016/j.ejmech.2020.112234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of death worldwide. Increased thioredoxin reductase (TrxR) levels were recently identified as possible prognostic markers for HCC. Here, four gold(III) complexes 1b-4b bearing Schiff base ligands were synthesized, characterized, and screened for antitumor activity against HCC. All complexes triggered significant antiproliferative effects against HCC cells, especially the most active complex 1b induced HepG2 cells apoptosis by activating the endoplasmic reticulum stress (ERS). 1b could clearly inhibit the TrxR activity to elevate reactive oxygen species (ROS), mediate ERS and lead to mitochondrial dysfunction. Notably, treatment of 1b improved the CCl4-induced liver damage in vivo by down-regulation of TrxR expression and inflammation level.
Collapse
Affiliation(s)
- Mianli Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ying Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Wukun Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|