1
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024:1-17. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
3
|
Di W, Zhao A, Li X, Chen J, Dai Y, Li J, Lei W, Yang Y, Lu H. Pterostilbene protects against H 2 O 2 -induced oxidative stress by regulating GAS6/Axl signaling in HL-1 cells. Cell Biochem Funct 2024; 42:e3956. [PMID: 38403920 DOI: 10.1002/cbf.3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Pterostilbene (PTE, trans-3,5-dimethoxy-4'-hydroxystilbene), a natural plant polyphenol, possesses numerous pharmacological effects, including antioxidant, antidiabetic, antiatherosclerotic, and neuroprotective aspects. This study aims to investigate whether PTE plays a protective role against oxidative stress injury by GAS6/Axl signaling pathway in cardiomyocytes. Hydrogen peroxide (H2 O2 )-induced oxidative stress HL-1 cells were used as models. The mechanism by which PTE protected oxidative stress is investigated by combining cell viability, cell ROS levels, apoptosis assay, molecular docking, quantitative real-time PCR, and western blot analysis. GAS6 shRNA was performed to investigate the involvement of GAS6/Axl pathways in PTE's protective role. The results showed that PTE treatment improved the cell morphology and viability, and inhibited the apoptosis rate and ROS levels in H2 O2 -injured HL-1 cells. Particularly, PTE treatment upregulated the levels of GAS6, Axl, and markers related to oxidative stress, apoptosis, and mitochondrial function related. Molecular docking showed that PTE and GAS6 have good binding ability. Taken together, PTE plays a protective role against oxidative stress injury through inhibiting oxidative stress and apoptosis and improving mitochondrial function. Particularly, GAS6/Axl axis is the surprisingly prominent in the PTE-mediated pleiotropic effects.
Collapse
Affiliation(s)
- Wencheng Di
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Aizhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Yongbin Dai
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jiawen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hongzhou Lu
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| |
Collapse
|
4
|
Cristóbal H, Enjuanes C, Batlle M, Tajes M, Campos B, Francesch J, Moliner P, Farrero M, Andrea R, Ortiz-Pérez JT, Morales A, Sabaté M, Comin-Colet J, García de Frutos P. Prognostic Value of Soluble AXL in Serum from Heart Failure Patients with Preserved and Reduced Left Ventricular Ejection Fraction. J Pers Med 2023; 13:446. [PMID: 36983628 PMCID: PMC10056687 DOI: 10.3390/jpm13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Heart failure (HF) is classified according to the degree of reduction in left ventricular ejection fraction (EF) in HF with reduced, mildly reduced, and preserved EF. Biomarkers could behave differently depending on EF type. Here, we analyze the soluble form of the AXL receptor tyrosine kinase (sAXL) in HF patients with reduced and preserved EF. Two groups of HF patients with reduced (HFrEF; n = 134) and preserved ejection fraction (HFpEF; n = 134) were included in this prospective observational study, with measurements of candidate biomarkers and functional, clinical, and echocardiographic variables. A Cox regression model was used to determine predictors for clinical events: cardiovascular mortality and all-cause mortality. sAXL circulating values predicted outcome in HF: for a 1.0 ng/mL increase in serum sAXL, the mortality hazard ratio (HR) was 1.019 for HFrEF (95% CI 1.000 to 1.038) and 1.032 for HFpEF (95% CI 1.013 to 1.052). In a multivariable Cox regression analysis, sAXL and NT-proBNP were independent markers for all-cause and cardiovascular mortality in HFpEF. In contrast, only NT-proBNP remained significant in the HFrEF group. When analyzing the event-free survival at a mean follow-up of 3.6 years, HFrEF and HFpEF patients in the higher quartile of sAXL had a reduced survival time. Interestingly, sAXL is a reliable predictor for all-cause and cardiovascular mortality only in the HFpEF cohort. The results suggest an important role for AXL in HFpEF, supporting sAXL evaluation in larger clinical studies and pointing to AXL as a potential target for HF therapy.
Collapse
Affiliation(s)
- Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Cristina Enjuanes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Montserrat Batlle
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Marta Tajes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Begoña Campos
- Department of Basic Clinical Practice, Universitat de Barcelona, E08036 Barcelona, Spain
| | - Josep Francesch
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
| | - Pedro Moliner
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Marta Farrero
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Rut Andrea
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - José Tomás Ortiz-Pérez
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Manel Sabaté
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Josep Comin-Colet
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, E08036 Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM) and IIBB-CSIC Associated RDI Unit, E08036 Barcelona, Spain
| |
Collapse
|