1
|
Zhang Z, Yang J, Zhou Q, Zhong S, Liu J, Zhang X, Chang X, Wang H. The cGAS-STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity. J Environ Sci (China) 2025; 152:71-86. [PMID: 39617588 DOI: 10.1016/j.jes.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024]
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS-STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS-STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Wang D, Wang J, Yu Z, Yao R, Zhang J, Zhao X. Quercetin Alleviates Perimenopausal Depression Induced by Ovariectomy Combined with Chronic Unpredictable Mild Stress Through Regulating Serum Elements and Inhibiting Ferroptosis in Prefrontal Cortex of Rats. Biol Trace Elem Res 2024; 202:5596-5611. [PMID: 38388751 DOI: 10.1007/s12011-024-04106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the effects of quercetin on the alterations of serum elements in perimenopausal depression rat model induced by ovariectomy combined with chronic unpredictable mild stress (OVX-CUMS) and possible mechanisms. According to the results of the sucrose preference test, the rats were randomly assigned to four groups: sham, OVX-CUMS, OVX-CUMS + 17β-estradiol (17β-estradiol: 0.27 mg/kg.bw), and OVX-CUMS + Quercetin (Quercetin: 50 mg/kg.bw). At the end of experiment, serum and prefrontal cortex of rats were collected. The inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that levels of calcium (Ca), magnesium (Mg), selenium (Se), cobalt (Co) and zinc (Zn) decreased, and levels of iron (Fe) and copper (Cu) increased in serum and prefrontal cortex of OVX-CUMS rats compared with sham group (p < 0.01). Meanwhile, the levels of the above elements in prefrontal cortex had correlation with behavioral characteristics in OVX-CUMS rats (p < 0.05 or p < 0.01). The abnormal elements in serum may cross blood-brain-barrier into the brain and induce oxidative stress, leading to ferroptosis. Furtherly, the expressions of ferroptosis-related protein including GPX4 and SLC7A11 were decreased in prefrontal cortex of OVX-CUMS rats (p < 0.01), which confirmed the above results. Quercetin treatment restored the above abnormal indicators (p < 0.05 or p < 0.01) induced by OVX-CUMS in rats. Our study suggested that quercetin regulated variation of elements in serum and prefrontal cortex, further inhibiting ferroptosis in prefrontal cortex through alleviating oxidative stress in OVX-CUMS rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ziran Yu
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ranqi Yao
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Jingnan Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Key Laboratory of Precision Nutrition and Health, Ministry of Education, School of Public Health, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Aydemir D, Öztürk K, Arslan FB, Çalis S, Ulusu NN. Gemcitabine-loaded chitosan nanoparticles enhanced apoptotic and ferroptotic response of gemcitabine treatment alone in the pancreatic cancer cells in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9051-9066. [PMID: 38884675 PMCID: PMC11522156 DOI: 10.1007/s00210-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Gemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research. We synthesized GEM-loaded NPs prepared with a method that combines ultrasonication and ionotropic gelation to overcome GEM-related limitations in PDAC. CFPAC-1 cells were treated with increased concentrations of GEM, empty chitosan, and GEM-loaded NPs (0.66, 1.32, 2.64, 5.32 µg/ml) for up to 48 h. Empty chitosan NPs did not show toxicity on L929 cells. Antioxidant enzyme activities, including glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx), significantly reduced in GEM-loaded NPs compared to the GEM associated with increased oxidative stress, PPP, and glycolysis. Bcl-xL, NOXA/mcl-1, and Ca2+ levels significantly increased in GEM-loaded NP-administered cells compared to the GEM and control groups. In contrast, JNK, p38, STAT3, Akt, and CREB levels significantly decreased in the GEM-loaded NP group, addressing enhanced apoptotic response compared to the GEM alone. Increased ferroptosis activity in GEM-loaded NP-administered groups has been validated via decreased antioxidant enzyme activities, increased cytosolic Fe, Zn, Mg, and Mn levels, and reduced GPx activity compared to the GEM and control groups. For the first time in the literature, we showed biocompatible GEM-loaded NPs enhanced apoptotic and ferroptotic response in CFPAC-1 cells via downregulation of antioxidant, glycolysis, and PPP metabolism compared to the GEM alone.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| |
Collapse
|
5
|
Oliveira TJM, Nascimento VR, Figueiredo ELP, Monteiro LRM, Barros LTC, Nogueira GAS, Freitas JMN, Barbosa AVC, Nascimento ME, Oliveira Neto CF. Phytoremediation potential of Brazilian mahogany (Swietenia macrophylla King) on exposure to nickel: anatomical, biochemical and antioxidant responses. BRAZ J BIOL 2024; 84:e281527. [PMID: 39417436 DOI: 10.1590/1519-6984.281527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/18/2024] [Indexed: 10/19/2024] Open
Abstract
The advancement and intensification of industrial and mining activities has generated a series of impacts on natural ecosystems, combined with the inappropriate use of agrochemicals and the erroneous disposal of electronic products, contributing to soil contamination with a diversity of chemical elements, including heavy metals. Due to this, this work aimed to evaluate the effect of increasing dosages of nickel on the anatomy, biochemistry and oxidative system of Brazilian mahogany (Swietenia macrophylla), a forest species from the Amazon, seeking to indicate the potential use of this species in phytoremediation programs. of soils contaminated with heavy metals. The seeds were grown under a constant temperature of 28°C, relative humidity (RH) of 90% with a 12-hour photoperiod for 43 days. The experimental design used was randomized blocks (DBC), with five treatments (0, 2, 4, 6 and 8 mg.L-1 of Nickel), with six replications. Data were subjected to analysis of variance (ANOVA) and means were tested for significant differences using the Tukey test at 5% significance. Changes in the anatomy of the different organs were observed, with differences in the cells in the central region of the leaf, the stem and the root. The concentration of total carbohydrates had no statistical differences with the application of nickel, however changes were observed in photosynthetic pigments, reducing sugars and sucrose as an adaptive form to nickel. The increase in nickel dosages was accompanied by the synthesis of ammonium, amino acids and proline in the root, while the synthesis of glycine was reduced. In the leaf, there was an increase in amino acids with an increase in metal, accompanied by a decrease in glycine. The plant antioxidant defense system was efficient in attenuating the toxic effects of ROS, with significant actions of CAT and SOD enzymes in the root, while the leaf had the main action of APX and CAT. The cultivation of mahogany plants can be advocated to mitigate Ni pollution in these areas, as this forest species has a particular characteristic of resistance to stressful conditions in contact with the heavy metal.
Collapse
Affiliation(s)
- T J M Oliveira
- Universidade de São Paulo - USP, Escola Superior de Agricultura Luiz de Queiroz - ESALQ, Departamento de Produção Vegetal, Laboratório de Genética e Pós-Colheita, Piracicaba, SP, Brasil
| | - V R Nascimento
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - E L P Figueiredo
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - L R M Monteiro
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - L T C Barros
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - G A S Nogueira
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - J M N Freitas
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - A V C Barbosa
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - M E Nascimento
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| | - C F Oliveira Neto
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Laboratório de Fisiologia Vegetal, Grupo de Estudos da Biodiversidade em Plantas Superiores, Belém, PA, Brasil
| |
Collapse
|
6
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
7
|
Guo Y, Xu J, Jia Y, Tian Y, Zhang Y, Zhang J, Wang Y, Chen L. Asiaticoside modulates human NK cell functional fate by mediating metabolic flexibility in the tumor microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155921. [PMID: 39121533 DOI: 10.1016/j.phymed.2024.155921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-β), an immunosuppressive cytokine, is often elevated in various tumors and inhibits the immune system's ability to combat tumor cells. Despite promising results from TGF-β inhibitor therapies, their clinical efficacy remains limited. PURPOSE This study aimed to enhance the antitumor capabilities of natural killer (NK) cells in the presence of TGF-β by exploring the potential of asiaticoside, a natural compound with established clinical safety. STUDY DESIGN The effects of asiaticoside on NK cells were investigated to determine its potential to counteract TGF-β-induced immunosuppression and elucidate the underlying mechanisms. METHODS Natural compounds were screened using a Luminex assay to identify those promoting Interferon-γ (IFN-γ) secretion from NK cells. Asiaticoside-pretreated NK cells' cytotoxicity was assessed against K562, OVCAR8, and A2780 cells using organoids from ascites-derived ovarian cancer (OC) cells. In vivo efficacy was evaluated with B16 melanoma lung metastasis and subcutaneous tumor models in C57BL/6 mice, using asiaticoside as a 50 mg/kg injection. The compound's ability to enhance NK cell-driven anti-neoplastic responses was further assessed in an OC murine model. Effects on TGF-β/SMAD pathways and mitochondrial functions were examined through various microscopy and metabolomic techniques. The involvement of the mTOR/DRP1 axis in asiaticoside-mediated restoration of mitochondrial oxidation in NK cells after TGF-β suppression was determined using the mTOR inhibitor rapamycin and the DRP1 inhibitor Mdivi-1. RESULTS Asiaticoside-treated NK cells retained their ability to suppress tumor growth and metastasis despite TGF-β presence. Asiaticoside downregulated TGF-β receptors 1 (TGFBR1) expression, impaired the protein stability of TGFBR1 and TGF-β receptors 2 (TGFBR2), and reduced SMAD2 phosphorylation, preventing SMAD2 translocation from the mitochondria. This preserved mitochondrial respiration and maintained NK cell antitumor activity. CONCLUSION The study concludes that asiaticoside has significant potential as a strategy for "priming" NK cells in cellular immunotherapy. By demonstrating that asiaticoside degrades the TGF-β receptor, leading to reduced phosphorylation of SMAD2 and preventing its mitochondrial translocation, thereby maintaining mitochondrial integrity. Meantime, asiaticoside counteracts TGF-β-induced suppression of mitochondrial oxidative and aerobic respiration through the mTOR/DRP1 pathways. The research uncovers a previously unreported pathway for preserving mitochondrial respiration and NK cell functionality. A detailed mechanistic insight into how asiaticoside functions at the molecular level was explored. Its ability to counteract the immunosuppressive effects of TGF-β makes it a valuable candidate for enhancing the effectiveness of immunotherapies in treating a variety of tumors with elevated TGF-β levels.
Collapse
Affiliation(s)
- Yantong Guo
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China
| | - Jianting Xu
- Cancer Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Yiyang Jia
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, PR China
| | - Yuan Tian
- School of clinical medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yongfei Zhang
- Cancer Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Jinjin Zhang
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun 130012, PR China
| | - Yufeng Wang
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China; International Center of Future Science, Jilin University, Changchun 130012, PR China.
| | - Lichao Chen
- Cancer Institute, First Hospital of Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Wang D, Yu Z, Yao R, Zhang J, Cui W, Dai J, Li J, Qian H, Zhao X. Quercetin alleviates depressive-like behavior by modulating acetyl-H3K9 mediated ferroptosis pathway in hypothalamus of perimenopausal depression rat model. Biomed Pharmacother 2024; 179:117369. [PMID: 39216452 DOI: 10.1016/j.biopha.2024.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Perimenopausal depression is a subtype of depression and is prevalent among perimenopausal women, which has brought a heavy burden to family and society. The pathogenesis of perimenopausal depression is still unclear, which affects the prevention and treatment of perimenopausal depression to a certain extent. Quercetin is a flavonoid compound, and has estrogenic activity and pharmacological effects such as antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated whether quercetin improved perimenopausal depression-like behaviors and potential mechanism. The results demonstrated that quercetin could alleviate the depression-like behaviors in perimenopausal depression rat model, inhibit astrocyte activation, improve ferroptosis-associated mitochondrial damage (such as mitochondrial pyknosis and mitochondrial cristae reduction) in hypothalamus, increase the expressions of histone 3 lysine 9 acetylation (acetyl-H3K9), ferroptosis-associated protein including glutathione peroxidase 4 (GPX4) and Xc- antiporter (SLC7A11), and reduce the expressions of endoplasmic reticulum stress-related proteins including inositol-requiring enzyme 1 (IRE1α), phosphorylated IRE1α (p-IRE1α), X-box binding protein 1 (XBP1) and glucose-regulated protein 78 (GRP78) in hypothalamus of perimenopausal depression rat model. Furtherly, in vitro study indicated that quercetin could restore histone acetylase (HAT)/histone deacetylase (HDAC) homeostasis through binding to estrogen receptors and increase the expression of acetyl-H3K9, inhibiting ferroptosis through IRE1α/XBP1 pathway in astrocytes of hypothalamus. Our findings demonstrated that acetyl-H3K9 is a crucial target in development of perimenopausal depression, and quercetin exhibited antidepressant effects through modulating acetyl-H3K9 mediated ferroptosis in perimenopausal depression. Quercetin might be the prevention and adjuvant treatment strategy of perimenopausal depression.
Collapse
Affiliation(s)
- Dan Wang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ziran Yu
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Ranqi Yao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jingnan Zhang
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Wenqi Cui
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jiaohua Dai
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Jian Li
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Heng Qian
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China
| | - Xiujuan Zhao
- The Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
9
|
Sun J, Sarfraz M, Xu Y, Azam A. Forging green Horizons: Revealing Catalysts of pro-environmental behavior in emerging market. Heliyon 2024; 10:e36332. [PMID: 39253115 PMCID: PMC11382072 DOI: 10.1016/j.heliyon.2024.e36332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
In recent years, environmental pollution has started to threaten global economies. The understanding of consumer behavior within the context of sustainable development has become increasingly important to deal with this growing ecological complexity. Urbanization has accelerated in Pakistan, resulting in urban consumers raising more environmental concerns and promoting eco-friendly products. These concerns have demonstrated their commitment to sustainability and pro-environmental behaviors, such as reducing waste materials (e.g., plastics) and pollutants (i.e., smoke, dust, etc.), thus supporting eco-friendly behaviors. Today, Pakistan's urban consumers are well-aware of environmental complexities. As such, environmental knowledge is the driver of consumers' pro-environmental behavior, affective commitment and social capital also compel individuals to acquire ecological knowledge to enhance consumer behavior. This research considers customers' environmental knowledge and affective commitment, both of which actively contribute to pro-environmental activity. It explores the relationship between environmental knowledge, affection commitment, social capital, and environmental behavior in Pakistan. Data was gathered from Pakistan's urban customers and analyzed using Covariance-based Structural Equation Modeling (CB-SEM). The results indicate that affective commitment and social capital have a positive and significant effect on environmental knowledge and behavior. Notably, the relationship between social capital, affective commitment, and environmental behavior is mediated by knowledge of environmental issues. Through its findings, this study fosters an understanding of environmental behavior and explains the sense of responsibility and greater commitment in individuals, which thus leads them toward sustainability.
Collapse
Affiliation(s)
- Jianmin Sun
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, China
| | | | - Youli Xu
- School of Management, Zhejiang Shuren University, Hangzhou, China
| | - Afshan Azam
- College of Business, AlYamamah University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Shi K, Shen C, Xie Y, Fu L, Zhang S, Wang K, Naeem S, Yuan Z. Prognostic predictive modeling of non-small cell lung cancer associated with cadmium-related pathogenic genes. Comput Biol Chem 2024; 111:108096. [PMID: 38788566 DOI: 10.1016/j.compbiolchem.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Persistent exposure to low-dose of cadmium is strongly linked to both the development and prognosis of non-small cell lung cancer (NSCLC), yet the precise molecular mechanism behind this relationship remains uncertain. In this study, cadmium-related pathogenic genes (CRPGs) in NSCLC were identified via differential expression analysis. NSCLC patient clusters related to CRPGs were constructed through univariate Cox and K-means clustering algorithms. Multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were employed to determine the prognosis. Sixteen CRPGs showed a significant association with NSCLC. We found biological and prognostic differences between patients in clusters A and B. A predictive prognostic risk model for NSCLC revealed that FAM83H, MSMO1, and SNAI1 are central. Hence, the 3 hub genes were named. To further elucidate the role of CRPGs in NSCLC, A549 cells were exposed to CdCl2. The mRNA and protein expression levels of the 3 hub genes and cell invasion were detected. Moreover, 10 μM CdCl2 may increase the protein expression of 3 hub genes and enhance the invasive ability of A549 cells. This risk model may have established a theoretical foundation for investigating the mechanisms, treatment, and prognosis of NSCLC.
Collapse
Affiliation(s)
- Kejian Shi
- School of Public Health, Wuhan University, 115 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province 430072, China
| | - Yaxuan Xie
- Wuhan Children's Hospital, Tongji Medical College Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan, Hubei Province 430010, China
| | - Liangying Fu
- School of Public Health, Wuhan University, 115 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Shihan Zhang
- Xuchang Vocational Technical College, 4336 Xinxing Road, Xuchang, Henan Province 461000, China
| | - Kai Wang
- The First Hospital of Wuhan City, 215 Zhongshan Avenue, Wuhan, Hubei Province 430022, China
| | - Shafaq Naeem
- School of Public Health, Wuhan University, 115 Donghu Road, Wuhan, Hubei Province 430071, China
| | - Zhanpeng Yuan
- School of Public Health, Wuhan University, 115 Donghu Road, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
11
|
Zhong G, Wang M, Sun B, Ma F, Yu W, Hu L, Liao J, Tang Z. Mitochondrial miR-12294-5p-Regulated Copper Exposure-Caused Mitochondrial-Dependent Ferroptosis by Targeted Inhibition of CISD1 in Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15948-15958. [PMID: 38965774 DOI: 10.1021/acs.jafc.4c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Copper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity. Here, we observed that Cu exposure resulted in Cu accumulation and pathological injury in chicken livers. Moreover, we found that Cu exposure caused mitochondrial-dependent ferroptosis in chicken hepatocytes, which were prominent on the increased mitochondrial Fe2+ and mitochondrial lipid peroxidation, inhibited levels of CISD1, GPX4, DHODH, and IDH2, and also enhanced level of PTGS2. Notably, we identified that inhibition of mitomiR-2954 level effectively mitigated Cu-exposure-resulted mitochondrial Fe2+ accumulation and mitochondrial lipid peroxidation and prevented the development of mitochondrial-dependent ferroptosis. However, increasing the mitomiR-12294-5p expression considerably aggravated the influence of Cu on these indicators. Meanwhile, the overexpression of CISD1 effectively alleviated Cu-caused mitochondrial-dependent ferroptosis, while silent CISD1 eliminated the therapeutic role of mitomiR-12294-5p inhibitor. Overall, our findings indicated that mitomiR-12294-5p/CISD1 axis played a critical function in Cu-caused hepatotoxicity in chickens by regulating mitochondrial-dependent ferroptosis.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - MengRan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bingxia Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Feiyang Ma
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Jia D, Zhang M, Li M, Gong W, Huang W, Wang R, Chen Y, Yin Q, Wu J, Jin Z, Wang J, Liu Y, Liang C, Ji Y. NCOA4-mediated ferritinophagy participates in cadmium-triggered ferroptosis in spermatogonia. Toxicology 2024; 505:153831. [PMID: 38768701 DOI: 10.1016/j.tox.2024.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 μM, 10 μM, or 20 μM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.
Collapse
Affiliation(s)
- Didi Jia
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Mingming Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Huang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yihang Chen
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxiu Jin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chunmei Liang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Zhang L, Shi WY, Xu JY, Liu Y, Wang SJ, Zheng JY, Li YH, Yuan LX, Qin LQ. Protective effects and mechanism of chemical- and plant-based selenocystine against cadmium-induced liver damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133812. [PMID: 38368684 DOI: 10.1016/j.jhazmat.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Although selenium (Se) and cadmium (Cd) often coexist naturally in the soil of China, the health risks to local residents consuming Se-Cd co-enriched foods are unknown. In the present study, we investigated the effects of chemical-based selenocystine (SeCys2) on cadmium chloride-induced human hepatocarcinoma (HepG2) cell injury and plant (Cardamine hupingshanensis)-derived SeCys2 against Cd-induced liver injury in mice. We found that chemical- and plant-based SeCys2 showed protective effects against Cd-induced HepG2 cell injury and liver damage in mice, respectively. Compared with Cd intervention group, co-treatment with chemical- or plant-based SeCys2 both alleviated liver toxicity and ferroptosis by decreasing ferrous iron, acyl-CoA synthetase long-chain (ACSL) family member 4, lysophosphatidylcholine acyltransferase 3, reactive oxygen species and lipid peroxide levels, and increasing ACSL3, peroxisome proliferator-activated receptor α, solute carrier family 7 member 11 (SLC7A11) and glutathione and glutathione peroxidase 4 (GPX4) levels. In conclusion, chemical- and plant-based SeCys2 alleviated Cd-induced hepatotoxicity and ferroptosis by regulating SLC7A11/GPX4 signaling and lipid peroxidation. Our findings indicate that potential Cd toxicity from consuming foods grown in Se- and Cd-rich soils should be re-evaluated. This study offers a new perspective for the development of SeCys2-enriched agricultural products.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shi-Jia Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Bjørklund G, Đorđević AB, Hamdan H, Wallace DR, Peana M. Metal-induced autoimmunity in neurological disorders: A review of current understanding and future directions. Autoimmun Rev 2024; 23:103509. [PMID: 38159894 DOI: 10.1016/j.autrev.2023.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Autoimmunity is a multifaceted disorder influenced by both genetic and environmental factors, and metal exposure has been implicated as a potential catalyst, especially in autoimmune diseases affecting the central nervous system. Notably, metals like mercury, lead, and aluminum exhibit well-established neurotoxic effects, yet the precise mechanisms by which they elicit autoimmune responses in susceptible individuals remain unclear. Recent studies propose that metal-induced autoimmunity may arise from direct toxic effects on immune cells and tissues, coupled with indirect impacts on the gut microbiome and the blood-brain barrier. These effects can activate self-reactive T cells, prompting the production of autoantibodies, inflammatory responses, and tissue damage. Diagnosing metal-induced autoimmunity proves challenging due to nonspecific symptoms and a lack of reliable biomarkers. Treatment typically involves chelation therapy to eliminate excess metals and immunomodulatory agents to suppress autoimmune responses. Prevention strategies include lifestyle adjustments to reduce metal exposure and avoiding occupational and environmental risks. Prognosis is generally favorable with proper treatment; however, untreated cases may lead to autoimmune disorder progression and irreversible organ damage, particularly in the brain. Future research aims to identify genetic and environmental risk factors, enhance diagnostic precision, and explore novel treatment approaches for improved prevention and management of this intricate and debilitating disease.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | | | - Halla Hamdan
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - David R Wallace
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy.
| |
Collapse
|
16
|
Meng F, Cao R, Zhu X, Zhang Y, Liu M, Wang J, Chen J, Geng N. A nationwide investigation on the characteristics and health risk of trace elements in surface water across China. WATER RESEARCH 2024; 250:121076. [PMID: 38171178 DOI: 10.1016/j.watres.2023.121076] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Rapid urbanization accelerates the release of anthropogenic heavy metals from local to wider water systems, posing a serious threat to aquatic ecosystems and public health. The characteristics of trace elements were investigated to evaluate the environmental status of surface water in 40 cities of China. The concentrations of 22 elements in surface water ranged from 7.00 × 10-4 to 4.37 × 105 μg/L. The water quality can be classified as "excellent" except Songhuajiang. The levels of As, Cd, Cr, Pb, and Hg are all within the limits permitted by national drinking water quality standards. An obvious regional distribution characteristic was observed, with concentrations of Zn, Mn, Ni, Cu, Co, U, and Cr higher in surface water collected in the north than in the south, while the trends for Cd, Tl, and As are opposite. Notably, Tl shows significant geographical divergences, with the level of surface water collected from the south nine times higher than that from the north. The regional distribution of the mineral, industrial, or agricultural activity might be responsible for the south-to-north difference of these elements. The hazard index (HI) and total cancer risk (TCR) through oral or dermal contact with water-related heavy metals were further calculated. The average HI was 0.54 in the north and 0.29 in the south for adults, while HI for children was relatively higher. The value was 1.01 and 0.55 in the north and south, respectively. TCR in the north is 2.58 × 10-4 and mainly contributed by Cr (88.1 %), while TCR in the south is 4.48 × 10-5 and mainly contributed by As (98.4 %). The research results can provide essential data for effective water resources management and human health protection in China.
Collapse
Affiliation(s)
- Fanyu Meng
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuhua Zhu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Yuying Zhang
- Institute of Advanced Technology of Heilongjiang Academy of Science, China
| | - Manxue Liu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jufang Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
17
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
18
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
19
|
Liang J, Li L, Tian H, Wang Z, Liu G, Duan X, Guo M, Liu J, Zhang W, Nice EC, Huang C, He W, Zhang H, Li Q. Drug Repurposing-Based Brain-Targeting Self-Assembly Nanoplatform Using Enhanced Ferroptosis against Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303073. [PMID: 37460404 DOI: 10.1002/smll.202303073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/01/2023] [Indexed: 11/16/2023]
Abstract
Glioblastoma (GBM), the most aggressive and lethal form of malignant brain tumor, is a therapeutic challenge due to the drug filtration capabilities of the blood-brain barrier (BBB). Interestingly, glioblastoma tends to resist apoptosis during chemotherapy, but is susceptible to ferroptosis. Developing therapies that can effectively target glioblastoma by crossing the BBB and evoke ferroptosis are, therefore, crucial for improving treatment outcomes. Herein, a versatile biomimetic nanoplatform, L-D-I/NPs, is designed that self-assembled by loading the antimalarial drug dihydroartemisinin (DHA) and the photosensitizer indocyanine green (ICG) onto lactoferrin (LF). This nanoplatform can selectively target glioblastoma by binding to low-density lipoprotein receptor-related protein-1 (LRP1) and crossing the BBB, thus inducing glioblastoma cell ferroptosis by boosting intracellular reactive oxygen species (ROS) accumulation and iron overload. In addition, L-D-I/NPs have demonstrated the ability to effectively suppress the progression of orthotopic glioblastoma and significantly prolong survival in a mouse glioblastoma model. This nanoplatform has facilitated the application of non-chemotherapeutic drugs in tumor treatment with minimal adverse effects, paving the way for highly efficient ferroptosis-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Jiantang Liang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meiwen Guo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Jiaqi Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434000, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, 570100, China
| |
Collapse
|
20
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|