1
|
Lin Y, Kong L, Zhao Y, Zhai F, Zhan Z, Li Y, Jingfei Z, Chunhong Y, Jin X. The oncogenic role of EIF4A3/CDC20 axis in the endometrial cancer. J Mol Med (Berl) 2024; 102:1395-1410. [PMID: 39316093 DOI: 10.1007/s00109-024-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Eukaryotic initiation factor 4A-3 (EIF4A3) is a key component of the exon junction complex (EJC) and is extensively involved in RNA splicing, inducing mRNA decay, and regulating the cell cycle and apoptosis. However, the potential role of EIF4A3 in EC has not been comprehensively investigated and remains unknown. Here, we report that the expression level of EIF4A3 is dramatically elevated in endometrial cancer (EC) samples compared with normal EC samples via bioinformatics analysis and immunohistochemistry analysis, and that high expression of EIF4A3 promotes the proliferation, migration, and invasion of EC cells. Mechanistically, we found that high EIF4A3 expression stabilized cell division cyclin 20 (CDC20) mRNA, and high EIF4A3 expression induced pro-carcinogenic effects in EC cells that were efficiently antagonized upon knockdown of CDC20, as well as Apcin, an inhibitor of CDC20. These findings reveal a novel mechanism by which high expression of EIF4A3 induces CDC20 upregulation, thus leading to EC tumorigenesis and metastasis, indicating a potential treatment strategy for EC patients with high EIF4A3 expression using Apcin. KEY MESSAGES: The expression level of EIF4A3 was dramatically elevated in endometrial cancer (EC) samples compared with normal endometrial cancer samples. High EIF4A3 expression stabilized CDC20 mRNA, and high EIF4A3 expression induced pro-carcinogenic effect in EC cells which was efficiently antagonized upon knockdown of CDC20. Apcin, an inhibitor of CDC20, could effectively counteract high expression of EIF4A3 inducing EC tumourigenesis and metastasis, indicating the potential treatment strategy for EC patients with EIF4A3 high expression by using Apcin.
Collapse
Affiliation(s)
- Yan Lin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiting Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuxuan Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zheng Jingfei
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Yan Chunhong
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Gao Y, Wen P, Shao C, Ye C, Chen Y, You J, Su Z. CDC20 Holds Novel Regulation Mechanism in RPA1 during Different Stages of DNA Damage to Induce Radio-Chemoresistance. Int J Mol Sci 2024; 25:8383. [PMID: 39125953 PMCID: PMC11312485 DOI: 10.3390/ijms25158383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.
Collapse
Affiliation(s)
- Yang Gao
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou 221002, China;
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Cheng Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Yuji Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Junyu You
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| |
Collapse
|
3
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|