1
|
Yang HJ, Kim JH, Shim JH, Heo CY. Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes in vitro and in vivo. Adipocyte 2022; 11:643-652. [PMID: 36397715 PMCID: PMC9718552 DOI: 10.1080/21623945.2022.2149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. In vivo experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.
Collapse
Affiliation(s)
- Hea Jung Yang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Ho Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung Hee Shim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea,CONTACT Jung Hee Shim Department of Research Administration Team, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam463-707, Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea,Chan Yeong Heo Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam463-707, Korea
| |
Collapse
|
2
|
Peptide Regulation of Gene Expression: A Systematic Review. Molecules 2021; 26:molecules26227053. [PMID: 34834147 PMCID: PMC8619776 DOI: 10.3390/molecules26227053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Peptides are characterized by their wide range of biological activity: they regulate functions of the endocrine, nervous, and immune systems. The mechanism of such action of peptides involves their ability to regulate gene expression and protein synthesis in plants, microorganisms, insects, birds, rodents, primates, and humans. Short peptides, consisting of 2-7 amino acid residues, can penetrate into the nuclei and nucleoli of cells and interact with the nucleosome, the histone proteins, and both single- and double-stranded DNA. DNA-peptide interactions, including sequence recognition in gene promoters, are important for template-directed synthetic reactions, replication, transcription, and reparation. Peptides can regulate the status of DNA methylation, which is an epigenetic mechanism for the activation or repression of genes in both the normal condition, as well as in cases of pathology and senescence. In this context, one can assume that short peptides were evolutionarily among the first signaling molecules that regulated the reactions of template-directed syntheses. This situation enhances the prospects of developing effective and safe immunoregulatory, neuroprotective, antimicrobial, antiviral, and other drugs based on short peptides.
Collapse
|
3
|
Khavinson V, Linkova N, Kozhevnikova E, Trofimova S. EDR Peptide: Possible Mechanism of Gene Expression and Protein Synthesis Regulation Involved in the Pathogenesis of Alzheimer's Disease. Molecules 2020; 26:E159. [PMID: 33396470 PMCID: PMC7795577 DOI: 10.3390/molecules26010159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The EDR peptide (Glu-Asp-Arg) has been previously established to possess neuroprotective properties. It activates gene expression and synthesis of proteins, involved in maintaining the neuronal functional activity, and reduces the intensity of their apoptosis in in vitro and in vivo studies. The EDR peptide interferes with the elimination of dendritic spines in neuronal cultures obtained from mice with Alzheimer's (AD) and Huntington's diseases. The tripeptide promotes the activation of the antioxidant enzyme synthesis in the culture of cerebellum neurons in rats. The EDR peptide normalizes behavioral responses in animal studies and improves memory issues in elderly patients. The purpose of this review is to analyze the molecular and genetics aspects of the EDR peptide effect on gene expression and synthesis of proteins involved in the pathogenesis of AD. The EDR peptide is assumed to enter cells and bind to histone proteins and/or ribonucleic acids. Thus, the EDR peptide can change the activity of the MAPK/ERK signaling pathway, the synthesis of proapoptotic proteins (caspase-3, p53), proteins of the antioxidant system (SOD2, GPX1), transcription factors PPARA, PPARG, serotonin, calmodulin. The abovementioned signaling pathway and proteins are the components of pathogenesis in AD. The EDR peptide can be AD.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (E.K.); (S.T.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of the Russian Academy of Sciences, 199004 Saint Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (E.K.); (S.T.)
| | - Ekaterina Kozhevnikova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (E.K.); (S.T.)
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (E.K.); (S.T.)
| |
Collapse
|
4
|
Abstract
Short peptides are molecules with small molecular weight, capable of penetrating the cell membrane and nuclear membrane for epigenetic regulation of gene expression, including the genes responsible for cell differentiation. The direction of cell differentiation induction depends on the peptide structure and concentration. AEDG and AEDP peptides induce differentiation of pluripotent cells in the epidermis, mesenchyme and nervous tissue. Peptides KE, AED, KED, AEDG and AAAAEKAAAAEKAAAAEK activate neural differentiation. Peptides AEDL and KEDW induce lung and pancreatic cell differentiation. Differentiation of immune cells is stimulated by KE, DS, (Nα-(γ-E)-E), K(Н-E-OH)-OH, AED, KED, EDA, and KEDG peptides. IRW, GRGDS and YCWSQYLCY peptides activate osteogenic differentiation of stem cells. KE, AEDL, and AEDG peptides also induce plant cells differentiation. Short peptides can take part in activation of the signaling pathways regulating expression of differentiation genes. They can interact with histones changing the availability of genes for transcription, regulate gene methylation and activate or inhibit their expression, as well as directly interact with the DNA. Research in the area of directed stem cell differentiation by peptide regulation is of special importance for developing innovative approaches to molecular medicine and cell therapy.
Collapse
|
5
|
Terekhov AY, Kormilets DY, Linkova NS, Kuznik BI, Mar'yanovich AT, Khavinson VK. Peptide KE in Human Proteome. Bull Exp Biol Med 2020; 168:631-633. [PMID: 32246368 DOI: 10.1007/s10517-020-04767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 11/30/2022]
Abstract
Peptide KE exhibits immunoprotective, geroprotective, and oncostatic activities and stimulates functional activity of fibroblasts. The KE motif is present in amino acid sequences of some cytokines and peptide hormones functionally similar to KE peptide. However, the relationship between the presence of KE motif and protein functions on the scale of known human proteome has not yet received sufficient attention. The incidence of bioregulatory peptide KE in proteins of various functional groups constituting human proteome is studied. The study is carried out with the use of the available data on the human proteome (UniProt portal) comprising 20,417 proteins. The levels of KE motifs were maximum in cytoplasmic and nuclear proteins, while the presence of KE in the membrane and all other proteins was the minimum. KE peptide molecules released from nuclear proteins during limited proteolysis can bind to DNA and regulate gene expression.
Collapse
Affiliation(s)
| | - D Yu Kormilets
- Department of Biogerontology, St. Petersburg Research Center Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - N S Linkova
- Department of Biogerontology, St. Petersburg Research Center Institute of Bioregulation and Gerontology, St. Petersburg, Russia. .,Department of Therapy, Geriatrics, and Anti-Age Medicine, Academy for Continuous Education, Federal Research and Clinical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - B I Kuznik
- Department of Normal Physiology, Chita State Medical Academy, the Ministry of Health of Russia, Chita, Russia
| | | | - V Kh Khavinson
- Department of Geriatrics, Propedeutics, and Nursing Activity Management, I. I. Mechnikov North-Western State Medical University, St. Petersburg, Russia.,Department of Biogerontology, St. Petersburg Research Center Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| |
Collapse
|
6
|
Khavinson VK, Tarnovskaya SI, Linkova NS, Gutop EO, Elashkina EV. Epigenetic aspects of peptidergic regulation of vascular endothelial cell proliferation in aging. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s2079057015040116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Khavinson VK, Tarnovskaya SI, Lin'kova NS, Chervyakova NA, Nichik TE, Elashkina EV, Chalisova NI. Role of peptide bond in the realization of biological activity of short peptides. Bull Exp Biol Med 2015; 158:551-4. [PMID: 25705040 DOI: 10.1007/s10517-015-2805-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Indexed: 11/26/2022]
Abstract
We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.
Collapse
Affiliation(s)
- V Kh Khavinson
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Chervyakova NA, Lin’kova NS, Chalisova NI, Kontsevaya EA, Trofimova SV, Khavinson VK. Age-related molecular aspects of immunomodulating activity of peptides in the spleen. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sevostianova NN, Linkova NS, Polyakova VO, Chervyakova NA, Kostylev AV, Durnova AO, Kvetnoy IM, Abdulragimov RI, Khavinson VH. Immunomodulating effects of Vilon and its analogue in the culture of human and animal thymus cells. Bull Exp Biol Med 2013; 154:562-5. [PMID: 23486604 DOI: 10.1007/s10517-013-2000-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied molecular mechanisms of immunoprotective effects of two dipeptides, AB-O and R-1, on cultured human and rat thymic cells. Both dipeptides were shown to increase the expression of lymphocyte differentiation marker CD5 in thymic cells. Dipeptide AB-O induced T-cells precursor differentiation towards CD4(+)T-helpers and its effect was weaker than that of dipeptide R-1. Dipeptide R-1 stimulates differentiation of CD5(+) cells to mature T-helpers and cytotoxic CD8(+) T cells and hence can be considered as a bioactive substance possessing immunomodulator and antiallergic activity.
Collapse
Affiliation(s)
- N N Sevostianova
- St. Petersburg Institute of Bioregulation and Gerontology, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|