1
|
Liu Z, Qiu D, Yang T, Su J, Liu C, Su X, Li A, Sun P, Li J, Yan L, Ding C, Zhang S. Research Progress of Dihydroquercetin in the Treatment of Skin Diseases. Molecules 2023; 28:6989. [PMID: 37836832 PMCID: PMC10574795 DOI: 10.3390/molecules28196989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Skin is a barrier to maintaining the stability of the human environment and preventing the invasion of pathogens. When skin tissue is exposed to the external environment, it will inevitably develop defects due to trauma, injury, burns, ulcers, surgery, and chronic diseases. Rapid skin repair is the key to reducing infection, relieving pain, and improving quality of life. Dihydroquercetin is a kind of flavonoid that has a wide range of pharmacological activities and can improve skin repair, skin inflammation, skin cancer, and so on. In this paper, the application of dihydroquercetin in medical dressings and the research progress in the treatment of skin-related diseases are reviewed, so as to provide reference for further developing dihydroquercetin as a drug for the treatment of skin diseases.
Collapse
Affiliation(s)
- Ziyang Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Dengjun Qiu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Tong Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Jingxu Su
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Chengyuan Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Xinyue Su
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian Korean Autonomous Prefecture, Dunhua 133700, China; (A.L.); (P.S.); (J.L.); (L.Y.)
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian Korean Autonomous Prefecture, Dunhua 133700, China; (A.L.); (P.S.); (J.L.); (L.Y.)
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian Korean Autonomous Prefecture, Dunhua 133700, China; (A.L.); (P.S.); (J.L.); (L.Y.)
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian Korean Autonomous Prefecture, Dunhua 133700, China; (A.L.); (P.S.); (J.L.); (L.Y.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132109, China; (Z.L.); (D.Q.); (T.Y.); (J.S.); (C.L.); (X.S.)
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian Korean Autonomous Prefecture, Dunhua 133700, China; (A.L.); (P.S.); (J.L.); (L.Y.)
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Taldaev A, Savina AD, Olicheva VV, Ivanov SV, Terekhov RP, Ilyasov IR, Zhevlakova AK, Selivanova IA. Protective Properties of Spheroidal Taxifolin Form in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 24:11962. [PMID: 37569337 PMCID: PMC10418707 DOI: 10.3390/ijms241511962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
One of the key factors in the pathogenesis of diabetes and its complications is oxidative stress. To inhibit this process, antioxidants may be helpful. Herein, we focused on the protective properties of taxifolin spheroidal form (TS) in the streptozotocin rat model of diabetes mellitus. After 4 weeks of treatment with TS, the fasting blood glucose level of the diabetic animals decreased by 12% compared with the level right after the injection of streptozotocin. While the feed intake in the untreated diabetic rats increased by 5.3% compared with the healthy group, the TS-treated group showed a pronounced 15.3% decrease. Therapeutic administration of TS has a protective effect on the pancreas and the liver against the cytotoxic action of streptozotocin. The plasma antioxidant capacity of all diabetic groups appeared to be approximately 15% lower than in healthy rats with no significant difference between the TS-treated and untreated diabetic animals. Apparently, this can be attributed to taxifolin and plasma proteins binding. These data demonstrate the potential of TS in antidiabetic therapy.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia
| | - Anastasiya D. Savina
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Vera V. Olicheva
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Sergey V. Ivanov
- Laboratory of Psychopharmacology, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia
| | - Roman P. Terekhov
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Igor R. Ilyasov
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Anastasiya K. Zhevlakova
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Irina A. Selivanova
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| |
Collapse
|
3
|
Slighoua M, Mahdi I, Moussaid FZ, Kamaly OA, Amrati FEZ, Conte R, Drioiche A, Saleh A, Housseini AI, Bari A, Bousta D. LC-MS/MS and GC/MS Profiling of Petroselinum sativum Hoffm. and Its Topical Application on Burn Wound Healing and Related Analgesic Potential in Rats. Metabolites 2023; 13:metabo13020260. [PMID: 36837879 PMCID: PMC9963972 DOI: 10.3390/metabo13020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Parsley (Petroselinum sativum Hoffm.) is renowned for its ethnomedicinal uses including managing pain, wound, and dermal diseases. We previously highlighted the estrogenic and anti-inflammatory properties of parsley and profiled the phytochemistry of its polyphenolic fraction using HPLC-DAD. To extend our investigation, we here characterized the phytochemical composition of the hydro-ethanolic extract using LC-MS/MS and GC-MS upon silylation, and evaluated the antioxidant, analgesic, antimicrobial, and wound healing activities of its hydro-ethanolic and polyphenolic fraction. The antioxidant property was assessed using FRAP, DPPH, and TAC assays. The antimicrobial activity was tested against four wound infectious microbes (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans). The analgesic effect was studied using acetic acid (counting the number of writhes) and formalin (recording the licking and biting times) injections while the wound healing activity was evaluated using burn model in vivo. The LC-MS/MS showed that the hydro-ethanolic contains four polyphenols (oleuropein, arbutin, myricetin, and naringin) while GC-MS revealed that it contains 20 compounds including malic acid, D-glucose, and galactofuranoside. The hydro-ethanolic (1000 mg/kg) decreased abdominal writhes (38.96%) and licking time (37.34%). It also elicited a strong antioxidant activity using DPPH method (IC50 = 19.38 ± 0.15 µg/mL). Polyphenols exhibited a good antimicrobial effect (MIC = 3.125-12.5 mg/mL). Moreover, both extracts showed high wound contraction by 97.17% and 94.98%, respectively. This study provides evidence that P. sativum could serve as a source of bio-compounds exhibiting analgesic effect and their promising application in mitigating ROS-related disorders, impeding wound infections, and enhancing burn healing.
Collapse
Affiliation(s)
- Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
- Correspondence: (M.S.); (O.A.K.)
| | - Ismail Mahdi
- AgroBioSciences Research Program, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 11, Ben-Guerir 43150, Morocco
| | - Fatima Zahrae Moussaid
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (M.S.); (O.A.K.)
| | - Fatima Ez-zahra Amrati
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay 19 Ismail University, Meknes 50000, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agro-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez 30050, Morocco
| |
Collapse
|
4
|
Solubility Enhancement of Dihydroquercetin via "Green" Phase Modification. Int J Mol Sci 2022; 23:ijms232415965. [PMID: 36555607 PMCID: PMC9785474 DOI: 10.3390/ijms232415965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dihydroquercetin (DHQ) is a promising antioxidant for medical applications. The poor water solubility of this flavanonol at ambient conditions inhibits its implementation in clinical practice as an injectable dosage form. Thus, increasing water solubility is a critical step toward solving this problem. Herein we attempted to deal with this problem via DHQ phase modification while at the same time adhering to the principles of green chemistry as much as possible. Lyophilization is an appropriate method to achieve phase modification in an environment-friendly way. This method was employed to generate new phase modifications of DHQ that were then characterized. Mixtures of water with ethanol or acetonitrile were used as solvents for the preparation of the lyophilizates, DHQE, and DHQA, respectively. The results of dissolution testing of the obtained DHQE and DHQA demonstrated that the lyophilization increased water solubility at least 30-fold times. These new DHQ modifications were studied by scanning electron microscopy, mass-spectrometry, nuclear magnetic resonance spectroscopy, infrared spectroscopy, X-ray powder diffraction, and thermal analysis. Their solid-state phases were confirmed to differ from the initial DHQ substance without any changes in the molecular structure. Both DHQE and DHQA showed as high antioxidant activity as the initial DHQ. These data demonstrate the potential of DHQE and DHQA as active pharmaceutical ingredients for injectable dosage forms.
Collapse
|
5
|
Hagde P, Pingle P, Mourya A, Katta CB, Srivastava S, Sharma R, Singh KK, Sodhi RK, Madan J. Therapeutic potential of quercetin in diabetic foot ulcer: Mechanistic insight, challenges, nanotechnology driven strategies and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Taldaev A, Terekhov R, Nikitin I, Zhevlakova A, Selivanova I. Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. Int J Mol Sci 2022; 23:6023. [PMID: 35682702 PMCID: PMC9181432 DOI: 10.3390/ijms23116023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Computer modeling is a method that is widely used in scientific investigations to predict the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the structure of the molecule. This work is a systematic review of articles performed in accordance with the recommendations of PRISMA and contains information on computer modeling of the interaction of classical flavonoids with different biological targets. The review of used computational approaches is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of bias risks in molecular docking research based on principles of evidentiary medicine was suggested and discussed. Based on this data, the most active groups of flavonoids and lead compounds for different targets were determined. It was concluded that flavonoids are a promising object for drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models is required.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratoty of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Roman Terekhov
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Ilya Nikitin
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Anastasiya Zhevlakova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Irina Selivanova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| |
Collapse
|