1
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
2
|
Integrated Quantitative Neuro-Transcriptome Analysis of Several Brain Areas in Human Trisomy 21. Genes (Basel) 2022; 13:genes13040628. [PMID: 35456434 PMCID: PMC9033037 DOI: 10.3390/genes13040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Although Down syndrome (DS) is the most frequent human chromosomal disorder and it causes mainly intellectual disability, its clinical presentation is complex and variable. Objective: We aimed to analyze and compare the transcriptome disruption in several brain areas from individuals with DS and euploid controls as a new approach to consider a global systemic differential disruption of gene expression beyond chromosome 21. Methods: We used data from a DNA microarray experiment with ID GSE59630 previously deposited in the GEO DataSet of NCBI database. The array contained log2 values of 17,537 human genes expressed in several aeras of the human brain. We calculated the differential gene expression (Z-ratio) of all genes. Results: We found several differences in gene expression along the DS brain transcriptome, not only in the genes located at chromosome 21 but in other chromosomes. Moreover, we registered the lowest Z-ratio correlation between the age ranks of 16–22 weeks of gestation and 39–42 years (R2 = 0.06) and the highest Z-ratio correlation between the age ranks of 30–39 years and 40–42 years (R2 = 0.89). The analysis per brain areas showed that the hippocampus and the cerebellar cortex had the most different gene expression pattern when compared to the brain as a whole. Conclusions: Our results support the hypothesis of a systemic imbalance of brain protein homeostasis, or proteostasis network of cognitive and neuroplasticity process, as new model to explain the important effect on the neurophenotype of trisomy that occur not only in the loci of chromosome 21 but also in genes located in other chromosomes.
Collapse
|
3
|
Zedníková I, Chylíková B, Šeda O, Korabečná M, Pazourková E, Břešťák M, Krkavcová M, Calda P, Hořínek A. Genome-wide miRNA profiling in plasma of pregnant women with down syndrome fetuses. Mol Biol Rep 2020; 47:4531-4540. [PMID: 32472298 PMCID: PMC7295716 DOI: 10.1007/s11033-020-05545-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
Down syndrome (DS) is one of the most common causes of intellectual disability and new approaches allowing its rapid and effective prenatal detection are being explored. In this study, we investigated the diagnostic potential of plasma microRNAs (miRNAs). This study builds upon our previous study in DS placentas, where seven miRNAs were found to be significantly up-regulated. A total of 70 first-trimester plasma samples from pregnant women were included in the present study (35 samples with DS fetuses; 35 with euploid fetuses). Genome-wide miRNA profiling was performed in the pilot study using Affymetrix GeneChip™ miRNA 4.1 Array Strips (18 samples). Selected miRNAs were then analysed in the validation study using quantitative reverse transcription PCR (RT-qPCR; 52 samples). Based on the current pilot study results (12 miRNAs), our previous research on chorionic villi samples (7 miRNAs) and the literature (4 miRNAs), a group of 23 miRNAs was selected for the validation study. Although the results of the pilot study were promising, the validation study using the more sensitive RT-qPCR technique and a larger group of samples revealed no significant differences in miRNA profiles between the compared groups. Our results suggest that testing of the first-trimester plasma miRNAs is probably not suitable for non-invasive prenatal testing (NIPT). Different results could be theoretically achieved at later gestational ages; however, such a result probably would have limited use in clinical practice.
Collapse
Affiliation(s)
- Iveta Zedníková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Pazourková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Břešťák
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Screening Center ProfiG2, Prague, Czech Republic
| | | | - Pavel Calda
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Hořínek
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Granno S, Nixon-Abell J, Berwick DC, Tosh J, Heaton G, Almudimeegh S, Nagda Z, Rain JC, Zanda M, Plagnol V, Tybulewicz VLJ, Cleverley K, Wiseman FK, Fisher EMC, Harvey K. Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus. Sci Rep 2019; 9:7322. [PMID: 31086297 PMCID: PMC6513850 DOI: 10.1038/s41598-019-43820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer's disease and the 'Tc1' DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism. Under basal conditions, DYRK1A is a negative regulator of Wnt/β-catenin. Following pathway activation, however, DYRK1A exerts the opposite effect, increasing signalling activity. In summary, we identified downregulation of hippocampal Wnt/β-catenin signalling in DS, possibly mediated by a dose dependent effect of the chromosome 21-encoded kinase DYRK1A. Overall, we propose that dosage imbalance of the Hsa21 gene DYRK1A affects downstream Wnt target genes. Therefore, modulation of Wnt signalling may open unexplored avenues for DS and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Simone Granno
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathon Nixon-Abell
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK6 7AA, UK
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - George Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sultan Almudimeegh
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zenisha Nagda
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jean-Christophe Rain
- Hybrigenics Services - Fondation Jérôme Lejeune, 3-5 Impasse Reille, 75014, Paris, France
| | - Manuela Zanda
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Vincent Plagnol
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Victor L J Tybulewicz
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
- Department of Medicine, Imperial College, London, W12 0NN, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
5
|
Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells. Chromosoma 2017; 127:247-259. [PMID: 29238858 DOI: 10.1007/s00412-017-0653-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.
Collapse
|
6
|
A Pair of Maternal Chromosomes Derived from Meiotic Nondisjunction in Trisomy 21 Affects Nuclear Architecture and Transcriptional Regulation. Sci Rep 2017; 7:764. [PMID: 28396582 PMCID: PMC5429678 DOI: 10.1038/s41598-017-00714-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes are organised into complex higher-order structures within the nucleus, and the three-dimensional arrangement of chromosomes is functionally important for global gene regulation. The existence of supernumerary chromosome 21 in Down syndrome may perturb the nuclear architecture at different levels, which is normally optimised to maintain the physiological balance of gene expression. However, it has not been clearly elucidated whether and how aberrant configuration of chromosomes affects gene activities. To investigate the effects of trisomy 21 on nuclear organisation and gene expression, we performed three-dimensional fluorescent imaging analysis of chromosome-edited human induced pluripotent stem cells (iPSCs), which enabled identification of the parental origin of the three copies of chromosome 21. We found that two copies of maternal chromosomes resulting from meiotic nondisjunction had a higher tendency to form an adjacent pair and were located relatively distant from the nuclear membrane, suggesting the conserved interaction between these homologous chromosomes. Transcriptional profiling of parental-origin-specific corrected disomy 21 iPSC lines indicated upregulated expression of the maternal alleles for a group of genes, which was accompanied by a fluctuating expression pattern. These results suggest the unique effects of a pair of maternal chromosomes in trisomy 21, which may contribute to the pathological phenotype.
Collapse
|
7
|
Ma K, Li F, Yu Y, Li H. Screening of potential biomarkers for prenatal diagnosis of trisomy 21. J OBSTET GYNAECOL 2016; 37:435-440. [PMID: 28019128 DOI: 10.1080/01443615.2016.1250730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We aimed to identify key genes located on chromosome 21 as potential biomarkers for prenatal diagnosis of trisomy 21 (Ts21). The microarray data of GSE48051, including 10 cultivated amniocyte samples with Ts21 and 9 controls with normal euploid constitution, was obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) in cultivated amniocyte samples with Ts21 compared to normal controls were screened using limma package. Then, we performed GO enrichment analysis using DAVID and chromosomal location of DEGs based on the information of the University of California Santa Cruz (UCSC) Genome Browser Database. Finally, protein-protein interaction (PPI) network analysis was performed using STRING. Total 155 DEGs in cultivated amniocyte samples with Ts21 were identified, including 89 up- and 66 down-regulated DEGs. The over-represented GO terms of DEGs were mainly related with apoptosis, programmed cell death and cell death. In total, 13 DEGs were located on chromosome 21, thereinto, only 6 DEGs were included into the PPI network, including superoxide dismutase 1 (SOD1), phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase (GART), downstream neighbour of SON (DONSON), ATP synthase, H + transporting, mitochondrial F1 complex, O subunit (ATP5O), chromatin assembly factor 1, subunit B (p60) (CHAF1B) and proteasome (prosome, macropain) assembly chaperone 1 (PSMG1). Our results suggest that SOD1, GART, DONSON, ATP5O, CHAF1B and PSMG1 may play important roles in the pathogenesis of Down syndrome and may serve as potential biomarkers for prenatal diagnosis of Ts21.
Collapse
Affiliation(s)
- Ke Ma
- a Department of Pediatric Emergency , First Hospital of Jilin University , Changchun , Jilin , China
| | - Feng Li
- a Department of Pediatric Emergency , First Hospital of Jilin University , Changchun , Jilin , China
| | - Yang Yu
- b Department of Clinical Laboratory , Hospital of Stomatology, Jilin University , Changchun , Jilin , China
| | - Haibo Li
- a Department of Pediatric Emergency , First Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
8
|
Svobodová I, Korabečná M, Calda P, Břešťák M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M, Hořínek A. Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 2016; 36:775-84. [PMID: 27323694 DOI: 10.1002/pd.4861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/30/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Molecular pathogenesis of Down syndrome (DS) is still incompletely understood. Epigenetic mechanisms, including miRNAs gene expression regulation, belong to potential influencing factors. The aims of this study were to compare miRNAs expressions in placentas with normal and trisomic karyotype and to associate differentially expressed miRNAs with concrete biological pathways. METHODS A total of 80 CVS samples - 41 with trisomy 21 and 39 with normal karyotype - were included in our study. Results obtained in the pilot study using real-time PCR technology and TaqMan Human miRNA Array Cards were subsequently validated on different samples using individual TaqMan miRNA Assays. RESULTS Seven miRNAs were verified as upregulated in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654); three of these miRNAs are located on chromosome 21 (miR-99a, miR-125b and let-7c). Many essential biological processes, transcriptional regulation or apoptosis, were identified as being potentially influenced by altered miRNA levels. Moreover, miRNAs overexpressed in DS placenta apparently regulate genes involved in placenta development (GJA1, CDH11, EGF, ERVW-1, ERVFRD-1, LEP or INHA). CONCLUSION These findings suggest the possible participation of miRNAs in Down syndrome impaired placentation and connected pregnancy pathologies. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Iveta Svobodová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Calda
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Břešťák
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Screening Center ProfiG2, Prague, Czech Republic
| | - Eva Pazourková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Šárka Pospíšilová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Michaela Novotná
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Hořínek
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,3rd Medical Department of Internal Medicine of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
10
|
Gene dosage imbalance of human chromosome 21 in mouse embryonic stem cells differentiating to neurons. Gene 2011; 481:93-101. [DOI: 10.1016/j.gene.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/15/2011] [Indexed: 01/18/2023]
|
11
|
Roubertoux PL, Carlier M. Mouse models of cognitive disabilities in trisomy 21 (Down syndrome). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:400-16. [DOI: 10.1002/ajmg.c.30280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Elton TS, Sansom SE, Martin MM. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol 2010; 7:540-7. [PMID: 21081842 PMCID: PMC3073250 DOI: 10.4161/rna.7.5.12685] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) or Trisomy 21 (Ts21) is caused by the presence of an extra copy of all or part of human chromosome 21 (Hsa21) and is the most frequent survivable congenital chromosomal abnormality. Bioinformatic annotation has established that Hsa21 harbors more than 400 genes, including five microRNA (miRNA) genes (miR-99a, let-7c, miR-125b-2, miR-155, and miR-802). MiRNAs are endogenous, single-stranded, small non-coding RNA molecules that regulate gene expression by interacting with specific recognition elements harbored within the 3'-untranslated region (3'-UTR) of mRNAs and subsequently target these mRNAs for translational repression or destabilization. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments have demonstrated that Hsa21-derived miRNAs were over-expressed in fetal brain and heart specimens isolated from individuals with DS. We now propose that Ts21 gene dosage over-expression of Hsa21-derived miRNAs in DS individuals result in the decreased expression of specific target proteins (i.e. haploinsufficiency) that contribute, in part, to the DS phenotype.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmacology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
13
|
Kuhn DE, Nuovo GJ, Terry AV, Martin MM, Malana GE, Sansom SE, Pleister AP, Beck WD, Head E, Feldman DS, Elton TS. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J Biol Chem 2009; 285:1529-43. [PMID: 19897480 DOI: 10.1074/jbc.m109.033407] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. Bioinformatic annotation has established that human chromosome 21 (Hsa21) harbors five microRNA (miRNAs) genes: miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. Our laboratory recently demonstrated that Hsa21-derived miRNAs are overexpressed in DS brain and heart specimens. The aim of this study was to identify important Hsa21-derived miRNA/mRNA target pairs that may play a role, in part, in mediating the DS phenotype. We demonstrate by luciferase/target mRNA 3'-untranslated region reporter assays, and gain- and loss-of-function experiments that miR-155 and -802 can regulate the expression of the predicted mRNA target, the methyl-CpG-binding protein (MeCP2). We also demonstrate that MeCP2 is underexpressed in DS brain specimens isolated from either humans or mice. We further demonstrate that, as a consequence of attenuated MeCP2 expression, transcriptionally activated and silenced MeCP2 target genes, CREB1/Creb1 and MEF2C/Mef2c, are also aberrantly expressed in these DS brain specimens. Finally, in vivo silencing of endogenous miR-155 or -802, by antagomir intra-ventricular injection, resulted in the normalization of MeCP2 and MeCP2 target gene expression. Taken together, these results suggest that improper repression of MeCP2, secondary to trisomic overexpression of Hsa21-derived miRNAs, may contribute, in part, to the abnormalities in the neurochemistry observed in the brains of DS individuals. Finally these results suggest that selective inactivation of Hsa21-derived miRNAs may provide a novel therapeutic tool in the treatment of DS.
Collapse
Affiliation(s)
- Donald E Kuhn
- College of Pharmacy, Division of Pharmacology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 2009; 89:887-920. [PMID: 19584316 DOI: 10.1152/physrev.00032.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quantitative differences in gene expression emerge as a significant source of variation in natural populations, representing an important substrate for evolution and accounting for a considerable fraction of phenotypic diversity. However, perturbation of gene expression is also the main factor in determining the molecular pathogenesis of numerous aneuploid disorders. In this review, we focus on Down syndrome (DS) as the prototype of "genomic disorder" induced by copy number change. The understanding of the pathogenicity of the extra genomic material in trisomy 21 has accelerated in the last years due to the recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms. We present recent data on the role of genome-altering processes in the generation of diversity in DS neural phenotypes focusing on the impact of trisomy on brain structure and mental retardation and on biological pathways and cell types in target brain regions (including prefrontal cortex, hippocampus, cerebellum, and basal ganglia). We also review the potential that genetically engineered mouse models of DS bring into the understanding of the molecular biology of human learning disorders.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr Aiguader 88, PRBB building E, Barcelona 08003, Catalonia, Spain.
| | | | | |
Collapse
|
15
|
Demirtas H. AgNOR status in Down's syndrome infants and a plausible phenotype formation hypothesis. Micron 2009; 40:511-8. [PMID: 19339189 DOI: 10.1016/j.micron.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Down's syndrome (DS) or trisomy 21 is the most frequent genetic birth defect associated with mental retardation. Although DS has been known for more than a 100 years and its chromosomal basis recognized for half a century (1959), the underlying patho-mechanisms for the phenotype formation remain elusive and cannot be fully explained by simple gene dosage effect. The general consensus is that the extra chromosome 21 genes perturb the global metabolism of the body cells. Our experiments show that the most prominent metabolic perturbation occurs during ribosome biogenesis in the cells of DS babies/infants. In humans, ribosomal RNA (rRNA) gene families or nucleolar organizer regions (NORs) are localized at the secondary constriction (on the satellite stalks) of five pairs of acrocentric chromosomes (13, 14, 15, 21 and 22) and their activities are evaluated specifically either in metaphase or interphase through a procedure known as AgNOR or silver staining. Our successive AgNOR studies, supported by RNA and nuclear protein measurement, show that cells from DS infants produce more ribosomes than expected, accounting for the extra set of active rRNA gene family (1/6-1/11) situated on the extra chromosome 21. Thus, the presence of an extra chromosome 21 stimulates a global increase in ribosome biogenesis in cooperation with other NOR-bearing chromosomes, causing unnecessary rRNA and ribosomal proteins synthesis compared to controls. Following the description of NORs, AgNOR, AgNOR-proteins, AgNOR measurement and our experimental results, we propose that the extra RNA and protein synthesis can cause a fundamental handicap to DS infants, contributing to the formation of DS phenotypes, due to the wasted energy in producing unnecessary macromolecules, including energy (GTP)-dependent transport of the excessive ribosomes from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Halil Demirtas
- Erciyes University, Medical Faculty, Medical Biology Department 38039 Kayseri, Turkey.
| |
Collapse
|
16
|
Sitz JH, Baumgärtel K, Hämmerle B, Papadopoulos C, Hekerman P, Tejedor FJ, Becker W, Lutz B. The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neuroscience 2008; 157:596-605. [PMID: 18938227 DOI: 10.1016/j.neuroscience.2008.09.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/20/2008] [Accepted: 09/16/2008] [Indexed: 11/21/2022]
Abstract
The dual-specific kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) is the mammalian orthologue of the Drosophila minibrain (MNB) protein kinase and executes diverse roles in neuronal development and adult brain physiology. DYRK1A is overexpressed in Down syndrome (DS) and has recently been implicated in several neurodegenerative diseases. In an attempt to elucidate the molecular basis of its involvement in cognitive and neurodegeneration processes, we searched for novel proteins interacting with the kinase domain of DYRK1A in the adult mouse brain and identified septin 4 (SEPT4, also known as Pnutl2/CDCrel-2). SEPT4 is a member of the group III septin family of guanosine triphosphate hydrolases (GTPases), which has previously been found in neurofibrillary tangles of Alzheimer disease brains and in alpha-synuclein-positive cytoplasmic inclusions in Parkinson disease brains. In transfected mammalian cells, DYRK1A specifically interacts with and phosphorylates SEPT4. Phosphorylation of SEPT4 by DYRK1A was inhibited by harmine, which has recently been identified as the most specific inhibitor of DYRK1A. In support of a physiological relation in the brain, we found that Dyrk1A and Sept4 are co-expressed and co-localized in neocortical neurons. These findings suggest that SEPT4 is a substrate of DYRK1A kinase and thus provide a possible link for the involvement of DYRK1A in neurodegenerative processes and in DS neuropathologies.
Collapse
Affiliation(s)
- J H Sitz
- Molecular Genetics of Behaviour, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yilmaz SI, Demirtas H. AgNOR increase in buccal epithelial cells of trisomy 21 infants. Micron 2008; 39:1262-5. [DOI: 10.1016/j.micron.2008.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022]
|
18
|
De Preter K, Barriot R, Speleman F, Vandesompele J, Moreau Y. Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res 2008; 36:e43. [PMID: 18346969 PMCID: PMC2367735 DOI: 10.1093/nar/gkn114] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The search for feature enrichment is a widely used method to characterize a set of genes. While several tools have been designed for nominal features such as Gene Ontology annotations or KEGG Pathways, very little has been proposed to tackle numerical features such as the chromosomal positions of genes. For instance, microarray studies typically generate gene lists that are differentially expressed in the sample subgroups under investigation, and when studying diseases caused by genome alterations, it is of great interest to delineate the chromosomal regions that are significantly enriched in these lists. In this article, we present a positional gene enrichment analysis method (PGE) for the identification of chromosomal regions that are significantly enriched in a given set of genes. The strength of our method relies on an original query optimization approach that allows to virtually consider all the possible chromosomal regions for enrichment, and on the multiple testing correction which discriminates truly enriched regions versus those that can occur by chance. We have developed a Web tool implementing this method applied to the human genome (http://www.esat.kuleuven.be/~bioiuser/pge). We validated PGE on published lists of differentially expressed genes. These analyses showed significant overrepresentation of known aberrant chromosomal regions.
Collapse
Affiliation(s)
- Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Nuclear protein contents in peripheral blood mononuclear cells of trisomy 21 infants. CYTOMETRY PART B-CLINICAL CYTOMETRY 2008; 74:128-32. [DOI: 10.1002/cyto.b.20387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Abstract
Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA sequencing and annotation of the long arm of chromosome 21 was a critical step towards understanding the genetics of the phenotype. However, annotation of the chromosome continues and the functions of many genes on chromosome 21 remain uncertain. Recent findings about the structure of the human genome and of chromosome 21, in particular, and studies on mechanisms of gene regulation indicate that various genetic mechanisms may be contributors to the phenotype of DS and to the variability of the phenotype. These include variability of gene expression, the activity of transcription factors both encoded on chromosome 21 and encoded elsewhere in the genome, copy number polymorphisms, the function of conserved nongenic regions, microRNA activities, RNA editing, and perhaps DNA methylation. In this manuscript, we describe current knowledge about these genetic complexities and their likely importance in the context of DS. We identify gaps in current knowledge and suggest priorities to fill these gaps.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80206, USA.
| |
Collapse
|
21
|
Roubertoux PL, Kerdelhué B. Trisomy 21: From Chromosomes to Mental Retardation. Behav Genet 2006; 36:346-54. [PMID: 16596471 DOI: 10.1007/s10519-006-9052-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
Abstract
The first descriptions of the trisomy 21 phenotype were by Jean-Etienne-Dominique Esquirol (1838), Edouard Séguin (1846) and later by John L. H. Down in 1862. It took more than a century to discover the extra-chromosomal origin of the syndrome commonly called "Down's syndrome" and which, we suggest, should be referred to as "Trisomy 21". In this review we are presenting the landmarks, from the pioneering description of the syndrome in 1838 to Jérôme Lejeune's discovery of the first genetic substrate for mental retardation. The sequencing of HSA21 was a new starting point that generated transcriptome studies, and we have noted that studies of gene over-expression have provided the impetus for discovering the HSA21 genes associated with trisomy 21 cognitive impairment.
Collapse
Affiliation(s)
- Pierre L Roubertoux
- Génomique Fonctionnelle, Pathologies, Comportements, P3M, UMR 6196, CNRS-Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
22
|
Roubertoux PL, Bichler Z, Pinoteau W, Jamon M, Sérégaza Z, Smith DJ, Rubin E, Migliore-Samour D. Pre-weaning sensorial and motor development in mice transpolygenic for the critical region of trisomy 21. Behav Genet 2006; 36:377-86. [PMID: 16514474 DOI: 10.1007/s10519-006-9055-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 11/02/2005] [Indexed: 11/29/2022]
Abstract
Trisomy 21 occurs every 1/800 births and is the most frequent genetic cause of mental retardation. Children with trisomy 21 show delayed sensorial and motor development as well as cognitive disorders. We selected a mouse model of trisomy 21 (TRS21): transgenic mice carrying extra copies of a HSA21 region corresponding to the D21S17-ETS2 region (previously referred to as "Down syndrome critical region 1"). Sensorial and motor development was measured in these partially transgenic mice, from birth to weaning. The four HSA21 regions contributed unequally to sensorial and motor development delay. The more centromeric region (230E8) modified 4 of the development indicators plus the size of the effect, indicated by partial eta(2)(eta(p)(2), reached a median value of 14.5%. The neighboring 141G6 region contributed to 5 developmental differences (eta(p)(2) median value 14%). The most telomeric region (285E6) only modified one development indicator. An extra copy of an HSA21 fragment (referred to here as the 152F7 region) induced modifications to 14 of the 18 indicators measured with a eta(2) median value reaching 20%. The results indicate a noticeable contribution of the 152F7 region to sensorial and motor development. The contribution of this region to cognitive functioning and its neurobiological basis has been already reported. This set of result suggests the location in the D21S17-ETS2 region of several genes playing crucial role in cognitive and developmental impairment observed in TRS21.
Collapse
|