1
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
2
|
Roubertoux PL, Ghata A, Carlier M. Measuring Preweaning Sensorial and Motor Development in the Mouse. ACTA ACUST UNITED AC 2018; 8:54-78. [PMID: 30040243 DOI: 10.1002/cpmo.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immaturity at birth and the slowness of ontogenic processes in mice provide the opportunity to measure rates of development. We describe here 18 measures covering the sensorial and motor onset from birth to weaning. The measures are non-invasive, making a follow-up strategy possible. The first basic protocol indicates how to produce mice with known conceptional or chronological age, as the control of the age is a prerequisite to compare rates of development in groups of mice. The second basic protocol describes a set of methods for identifying the pups during a follow-up study. A third basic protocol describes testing newborn mice for the appearance of sensorial and motor abilities in a follow-up design. Taken together, the three protocols make possible the validation of potential murine models of interest for understanding human developmental disorders. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Adeline Ghata
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | | |
Collapse
|
3
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
4
|
Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S, Mague SD, Hulbert SW, Dutta N, Hayrapetyan V, Yu C, Gaidis E, Zhao S, Ding JD, Xu Q, Chung L, Rodriguiz RM, Wang F, Weinberg RJ, Wetsel WC, Dzirasa K, Yin H, Jiang YH. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 2016; 7:11459. [PMID: 27161151 PMCID: PMC4866051 DOI: 10.1038/ncomms11459] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. SHANK3 mutations have been linked to autism spectrum disorders, although the underlying mechanisms remain unclear. Here, the authors generate a complete knockout Shank3 mouse model, identifying ASD-like behaviours associated with impaired mGluR5-Homer scaffolding and abnormal brain connectivity.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Brittany M Katz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Alexandra Badea
- Department of Radiology, Duke University, Durham, North Carolina 27710, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Lisa K David
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Sunil Kumar
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Stephen D Mague
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Samuel W Hulbert
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Nisha Dutta
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | - Volodya Hayrapetyan
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Chunxiu Yu
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Qiong Xu
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Child Health Care, The Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Kafui Dzirasa
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA.,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, USA.,University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
5
|
Tsai PT, Greene-Colozzi E, Goto J, Anderl S, Kwiatkowski DJ, Sahin M. Prenatal rapamycin results in early and late behavioral abnormalities in wildtype C57BL/6 mice. Behav Genet 2012; 43:51-9. [PMID: 23229624 DOI: 10.1007/s10519-012-9571-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling has been shown to be deregulated in a number of genetic, neurodevelopmental disorders including Tuberous Sclerosis Complex, Neurofibromatosis, Fragile X, and Rett syndromes. As a result, mTOR inhibitors, such as rapamycin and its analogs, offer potential therapeutic avenues for these disorders. Some of these disorders-such as Tuberous Sclerosis Complex-can be diagnosed prenatally. Thus, prenatal administration of these inhibitors could potentially prevent the development of the devastating symptoms associated with these disorders. To assess the possible detrimental effects of prenatal rapamycin treatment, we evaluated both early and late behavioral effects of a single rapamycin treatment at embryonic day 16.5 in wildtype C57Bl/6 mice. This treatment adversely impacted early developmental milestones as well as motor function in adult animals. Rapamycin also resulted in anxiety-like behaviors during both early development and adulthood but did not affect adult social behaviors. Together, these results indicate that a single, prenatal rapamycin treatment not only adversely affects early postnatal development but also results in long lasting negative effects, persisting into adulthood. These findings are of importance in considering prenatal administration of rapamycin and related drugs in the treatment of patients with neurogenetic, neurodevelopmental disorders.
Collapse
Affiliation(s)
- Peter T Tsai
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue CLS13074, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
6
|
Roubertoux PL, Carlier M. Mouse models of cognitive disabilities in trisomy 21 (Down syndrome). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:400-16. [DOI: 10.1002/ajmg.c.30280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Lignon JM, Bichler Z, Hivert B, Gannier FE, Cosnay P, del Rio JA, Migliore-Samour D, Malécot CO. Altered heart rate control in transgenic mice carrying the KCNJ6 gene of the human chromosome 21. Physiol Genomics 2008; 33:230-9. [PMID: 18303085 DOI: 10.1152/physiolgenomics.00143.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital heart defects (CHD) are common in Down syndrome (DS, trisomy 21). Recently, cardiac sympathetic-parasympathetic imbalance has also been documented in DS adults free of any CHD. The KCNJ6 gene located on human chromosome 21 encodes for the Kir3.2/GIRK2 protein subunits of G protein-regulated K(+) (K(G)) channels and could contribute to this altered cardiac regulation. To elucidate the role of its overexpression, we used homozygous transgenic (Tg(+/+)) mice carrying copies of human KCNJ6. These mice showed human Kir3.2 mRNA expression in the heart and a 2.5-fold increased translation in the atria. Phenotypic alterations were assessed by recording electrocardiogram of urethane anesthetized mice. Chronotropic responses to direct (carbachol) and indirect (methoxamine) muscarinic stimulation were enhanced in Tg(+/+) mice with respect to wild-type (WT) mice. Alternating periods of slow and fast rhythm induced by CCPA (2-chloro-N-cyclopentyl-adenosine) were amplified in Tg(+/+) mice, resulting in a reduced negative chronotropic effect. These drugs reduced the atrial P wave amplitude and area. P wave variations induced by methoxamine and CCPA were respectively increased and reduced in the Tg(+/+) mice, while PR interval and ventricular wave showed no difference between Tg(+/+) and WT. These results indicate that Tg(+/+) mice incorporating the human KCNJ6 exhibit altered Kir3.2 expression and responses to drugs that would activate K(G) channels. Moreover, these altered expression and responses are limited to sino-atrial node and atria that normally express large amounts of K(G) channels. These data suggest that KCNJ6 could play an important role in altered cardiac regulation in DS patients.
Collapse
Affiliation(s)
- Jacques M Lignon
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6542, Physiologie des Cellules Cardiaques et Vasculaires, Université François-Rabelais, Parc Grandmont, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Moore CS, Roper RJ. The power of comparative and developmental studies for mouse models of Down syndrome. Mamm Genome 2007; 18:431-43. [PMID: 17653795 PMCID: PMC1998891 DOI: 10.1007/s00335-007-9030-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/12/2007] [Indexed: 11/15/2022]
Abstract
Since the genetic basis for Down syndrome (DS) was described, understanding the causative relationship between genes at dosage imbalance and phenotypes associated with DS has been a principal goal of researchers studying trisomy 21 (Ts21). Though inferences to the gene-phenotype relationship in humans have been made, evidence linking a specific gene or region to a particular congenital phenotype has been limited. To further understand the genetic basis for DS phenotypes, mouse models with three copies of human chromosome 21 (Hsa21) orthologs have been developed. Mouse models offer access to every tissue at each stage of development, opportunity to manipulate genetic content, and ability to precisely quantify phenotypes. Numerous approaches to recreate trisomic composition and analyze phenotypes similar to DS have resulted in diverse trisomic mouse models. A murine intraspecies comparative analysis of different genetic models of Ts21 and specific DS phenotypes reveals the complexity of trisomy and important considerations to understand the etiology of and strategies for amelioration or prevention of trisomic phenotypes. By analyzing individual phenotypes in different mouse models throughout development, such as neurologic, craniofacial, and cardiovascular abnormalities, greater insight into the gene-phenotype relationship has been demonstrated. In this review we discuss how phenotype-based comparisons between DS mouse models have been useful in analyzing the relationship of trisomy and DS phenotypes.
Collapse
Affiliation(s)
- Clara S. Moore
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604 USA
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL 306, Indianapolis, Indiana 46202 USA
| |
Collapse
|
9
|
Butchbach MER, Edwards JD, Burghes AHM. Abnormal motor phenotype in the SMNDelta7 mouse model of spinal muscular atrophy. Neurobiol Dis 2007; 27:207-19. [PMID: 17561409 PMCID: PMC2700002 DOI: 10.1016/j.nbd.2007.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/03/2007] [Accepted: 04/27/2007] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive motor neuron disease that affects motor neurons in the anterior horn of the spinal cord. SMA results from the reduction of SMN (survival motor neuron) protein. Even though SMN is ubiquitously expressed, motor neurons are more sensitive to the reduction in SMN than other cell types. We have previously generated mouse models of SMA with varying degrees of clinical severity. So as to more clearly understand the pathogenesis of motor neuron degeneration in SMA, we have characterized the phenotype of the SMNDelta7 SMA mouse which normally lives for 13.6+/-0.7 days. These mice are smaller than their non-SMA littermates and begin to lose body mass at 10.4+/-0.4 days. SMNDelta7 SMA mice exhibit impaired responses to surface righting, negative geotaxis and cliff aversion but not to tactile stimulation. Spontaneous motor activity and grip strength are also significantly impaired in SMNDelta7 SMA mice. In summary, we have demonstrated an impairment of neonatal motor responses in SMNDelta7 SMA mice. This phenotype characterization could be used to assess the effectiveness of potential therapies for SMA.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Department of Molecular and Cellular Biochemistry, College of Biological Sciences, The Ohio State University, Columbus, OH USA
| | - Jonathan D. Edwards
- Department of Molecular and Cellular Biochemistry, College of Biological Sciences, The Ohio State University, Columbus, OH USA
| | - Arthur H. M. Burghes
- Department of Molecular and Cellular Biochemistry, College of Biological Sciences, The Ohio State University, Columbus, OH USA
- Department of Neurology, College of Medicine, College of Biological Sciences, The Ohio State University, Columbus, OH USA
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH USA
| |
Collapse
|