1
|
Coughlan K, Sadowska ET, Bauchinger U. Repeat Sampling of Female Passerines During Reproduction Reveals Surprising Higher Plasma Oxidative Damage During Resting Compared to Active State. Integr Comp Biol 2023; 63:1197-1208. [PMID: 37698890 PMCID: PMC10755187 DOI: 10.1093/icb/icad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Traditional models of oxidative stress predict accumulation of damage caused by reactive oxygen species (ROS) production as highly correlated with aerobic metabolism, a prediction under increasing scrutiny. Here, we repeat sampled female great tits (Parus major) at two opposite levels of energy use during the period of maximum food provisioning to nestlings, once at rest and once during activity. Our results were in contrast to the above prediction, namely significantly higher levels of oxidative damage during rest opposed to active phase. This discrepancy could not be explained neither using levels of "first line" antioxidant enzymes activity measured from erythrocytes, nor from total nonenzymatic antioxidant capacity measured from plasma, as no differences were found between states. Significantly higher levels of uric acid, a potent antioxidant, were seen in the plasma during the active phase than in rest phase, which may explain the lower levels of oxidative damage despite high levels of physical activity. Our results challenge the hypothesis that oxidative stress is elevated during times with high energy use and call for more profound understanding of potential drivers of the modulation of oxidative stress such as metabolic state of the animal, and thus also the time of sampling in general.
Collapse
Affiliation(s)
- Kyle Coughlan
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Lin Y, Patterson A, Jimenez AG, Elliott K. Altered Oxidative Status as a Cost of Reproduction in a Seabird with High Reproductive Costs. Physiol Biochem Zool 2021; 95:35-53. [PMID: 34846992 DOI: 10.1086/717916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLife history theory posits that reproduction is constrained by a cost of reproduction such that any increase in breeding effort should reduce subsequent survival. Oxidative stress refers to an imbalance between the prooxidant reactive oxygen species (ROS) and antioxidant defense. If not thwarted, ROS can cause damage to DNA, lipids, and proteins, potentially increasing the rate of senescence and decreasing cellular function. Reproduction is often associated with higher metabolic rates, which could increase production of ROS and lead to oxidative damage if the animal does not increase antioxidant protection. Thus, oxidative stress could be one mechanism creating a cost of reproduction. In this study we explored how reproduction may affect oxidative status differently between male and female thick-billed murres during early and late breeding seasons over three consecutive years. We manipulated breeding efforts by removing an egg from the nest of some individuals, which forced females to relay, and by handicapping other individuals by clipping wings. We measured total antioxidant capacity (TAC), uric acid (UA) concentration, and malondialdehyde (MDA; an index of lipid oxidative damage) concentration in blood plasma as well as activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in red blood cells. Oxidative status was highly variable across years, and year was consistently the most important factor determining oxidative status; inconsistent results in previous field studies may be because reproductive oxidative stress occurs only in some years. Females had lower SOD and GPx and higher MDA and TAC than males immediately after egg laying, suggesting that the cost of egg laying required investment in cheaper nonenzymatic antioxidant defenses that had lower capacity for defending against lipid peroxidation. Delayed birds had lower UA and lower SOD, GPx, and CAT activity compared with control birds. In conclusion, when reproductive costs increase via higher energy costs or longer breeding seasons, the oxidative status of both male and female murres deteriorated as a result of reduced antioxidant defenses.
Collapse
Affiliation(s)
- Yimei Lin
- Department of Biology, Colgate University, Hamilton, New York
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
3
|
Alonso-Alvarez C, Canelo T, Romero-Haro AÁ. The Oxidative Cost of Reproduction: Theoretical Questions and Alternative Mechanisms. Bioscience 2017. [DOI: 10.1093/biosci/biw176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
4
|
Heemann FM, da Silva ACA, Salomon TB, Putti JS, Engers VK, Hackenhaar FS, Benfato MS. Redox changes in the brains of reproductive female rats during aging. Exp Gerontol 2016; 87:8-15. [PMID: 27871821 DOI: 10.1016/j.exger.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
Abstract
Reproduction is a critical and demanding phase of an animal's life. In mammals, females usually invest much more in parental care than males, and lactation is the most energetically demanding period of a female's life. Here, we tested whether oxidative stress is a consequence of reproduction in the brains of female Wistar rats. We evaluated the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase; H2O2 consumption; protein carbonylation; NO2 & NO3 levels; and total glutathione, as well as sex hormone levels in brain tissue of animals at 3, 6, 12, and 24months of age. Animals were grouped according to reproductive experience: breeders or non-breeders. Most of the studied parameters showed a difference between non-breeders and breeders at 12 and 24months. At 24months of age, breeders showed higher superoxide dismutase activity, H2O2 consumption, glutathione peroxidase activity, and carbonyl levels than non-breeders. In 12-month-old non-breeders, we observed a higher level of H2O2 consumption and higher superoxide dismutase and glutathione peroxidase activities than breeders. By evaluating the correlation network, we found that there were a larger number of influential nodes and positive links in breeder animals than in non-breeders, indicating a greater number of redox changes in breeder animals. Here, we also demonstrated that the aging process caused higher oxidative damage and higher antioxidant defenses in the brains of breeder female rats at 24months, suggesting that the reproduction process is costly, at least for the female brain. This study shows that there is a strong potential for a link between the cost of reproduction and oxidative stress.
Collapse
Affiliation(s)
- Fernanda Maciel Heemann
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina Almeida da Silva
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Boeira Salomon
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jordana Salete Putti
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Krüger Engers
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Schäfer Hackenhaar
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mara Silveira Benfato
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TBL, Monaghan P, Ozanne SE, Beaulieu M, Briga M, Carr SK, Christensen LL, Cochemé HM, Cram DL, Dantzer B, Harper JM, Jurk D, King A, Noguera JC, Salin K, Sild E, Simons MJP, Smith S, Stier A, Tobler M, Vitikainen E, Peaker M, Selman C. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 2015; 5:5745-57. [PMID: 26811750 PMCID: PMC4717350 DOI: 10.1002/ece3.1790] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK; State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Jonathan D Blount
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | - Anne M Bronikowski
- Department of Ecology, Evolution and Organismal Biology Iowa State University 251 Bessey Hall Ames Iowa 50011
| | - Rochelle Buffenstein
- Physiology, Barshop Institute for Aging and Longevity Research UTHSCSA 15355 Lambda Drive San Antonio Texas 78245
| | - Caroline Isaksson
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Tom B L Kirkwood
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Michaël Beaulieu
- Zoological Institute and Museum University of Greifswald Johann-Sebastian Bach Str. 11/12 Greifswald 17489 Germany
| | - Michael Briga
- Behavioral Biology University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Sarah K Carr
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Louise L Christensen
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK
| | - Helena M Cochemé
- MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus Du Cane Road London W12 0NN UK
| | - Dominic L Cram
- Department of Zoology University of Cambridge Cambridge CB2 3EJ UK
| | - Ben Dantzer
- Department of Psychology University of Michigan Ann Arbor Michigan 48109
| | - Jim M Harper
- Department of Biological Sciences Sam Houston State University 1900 Avenue I LDB 100B Huntsville Texas 77341
| | - Diana Jurk
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Annette King
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Jose C Noguera
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Elin Sild
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Mirre J P Simons
- Department of Animal and Plant Sciences University of Sheffield Alfred Denny Building, Western Bank Sheffield S10 2TN UK
| | - Shona Smith
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Antoine Stier
- Department Ecology, Physiology et Ethology University of Strasbourg - IPHC (UMR7178) 23, rue Becquerel Strasbourg 67087 France
| | - Michael Tobler
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Emma Vitikainen
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
6
|
Blount JD, Vitikainen EIK, Stott I, Cant MA. Oxidative shielding and the cost of reproduction. Biol Rev Camb Philos Soc 2015; 91:483-97. [PMID: 25765468 DOI: 10.1111/brv.12179] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
Life-history theory assumes that reproduction and lifespan are constrained by trade-offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta-analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non-breeders reveal that transition to the reproductive state is associated with a step-change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally-derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life-history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life-history trade-offs.
Collapse
Affiliation(s)
- Jonathan D Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Emma I K Vitikainen
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Iain Stott
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Michael A Cant
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| |
Collapse
|
7
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|