1
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Sultan Khan M, Jagota A. Changing dynamics in daily rhythms of oxidative stress indicators in SCN and extra-SCN brain regions with aging in male Wistar rats. Biogerontology 2024; 26:9. [PMID: 39546089 DOI: 10.1007/s10522-024-10150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
The suprachiasmatic nucleus (SCN) in the hypothalamus regulates circadian timing system (CTS) by co-ordinating peripheral tissue clocks and extra-SCN oscillators in the brain. Aging disrupts the CTS, impairing physiological functions and reducing antioxidant defences, which contribute to neurodegeneration. The brain is vulnerable to oxidative damage due to its high metabolic activity, oxygen consumption, and levels of iron and lipids. Antioxidant enzymes, such as catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), and lipid peroxidation (LPO), help against oxidative damage. In this study, we examined the temporal patterns of these antioxidant stress indicators in the SCN and extra-SCN brain regions (frontal cortex, cerebellum, and hippocampus) at various time points in male Wistar rats 3, 12, and 24 months. The rhythmicity of GST and LPO levels persisted across brain regions with aging, while CAT rhythmicity was lost in the SCN and hippocampus of older rats. SOD rhythmicity persisted in cortex, cerebellum, and hippocampus but was lost in the SCN. The daily rhythm parameters of CAT were affected most significantly, followed by SOD, GST, and LPO. Our findings demonstrate that aging leads to desynchronization of oxidative stress indicators potentially contributing to neurodegeneration and circadian dysfunction with varying effects across different brain tissues.
Collapse
Affiliation(s)
- M Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Barrios BE, Jaime CE, Sena AA, de Paula-Silva M, Gil CD, Oliani SM, Correa SG. Brief Disruption of Circadian Rhythms Alters Intestinal Barrier Integrity and Modulates DSS-Induced Colitis Severity in Mice. Inflammation 2024:10.1007/s10753-024-02162-8. [PMID: 39407037 DOI: 10.1007/s10753-024-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 01/06/2025]
Abstract
Physiological processes in organisms exhibit circadian rhythms that optimize fitness and anticipate environmental changes. Luminal signals such as food or metabolites synchronize bowel activity, and disruptions in these rhythms are linked to metabolic disorders and gastrointestinal inflammation. To characterize the intrinsic intestinal rhythms and assess disruptions due to continuous darkness or light exposure, C57BL/6 mice were exposed to standard light-dark conditions or continuous light/darkness for 48 h, with evaluations at four timepoints. We assessed intestinal morphology, mucus production, nitric oxide levels and permeability. Under standard light: dark cycles, mice showed changes in intestinal morphology consistent with normal tract physiology. Continuous light exposure caused marked alterations in the small intestine´s epithelium and lamina propria, reduced nitric oxide production in the colon, and predominant neutral mucins. Enhanced permeability was indicated by higher FITC-dextran uptake and increased frequency of IgG-coated bacteria. Additionally, the 48 h-disruption influenced DSS-induced colitis with attenuation in L:L group, or exacerbation in D:D group, of clinical signs. These findings highlight the critical role of circadian rhythms in gut histoarchitecture and function, demonstrating that short-term disruptions in light-dark cycles can compromise intestinal barrier integrity and impact inflammatory outcomes.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cristian E Jaime
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Angela A Sena
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Marina de Paula-Silva
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, São Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Sonia M Oliani
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Silvia G Correa
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| |
Collapse
|
4
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
5
|
Zhang H, Dai J, Tian D, Xiao L, Xue H, Guo Q, Zhang X, Teng X, Jin S, Wu Y. Hydrogen Sulfide Restored the Diurnal Variation in Cardiac Function of Aging Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8841575. [PMID: 33747351 PMCID: PMC7943277 DOI: 10.1155/2021/8841575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
The present study was performed to investigate whether H2S could restore the diurnal variation in cardiac function of aging mice and explore the potential mechanisms. We found that ejection fraction (EF) and fractional shortening (FS) in 3-month-old mice exhibited diurnal variations over a 24-hour period. However, the diurnal variations were disrupted in 18-month-old mice, and there was a decline in EF and FS. In addition, the plasma malondialdehyde (MDA) levels were increased, and H2S concentrations and superoxide dismutase (SOD) activities were decreased in 18-month-old mice. Then, CSE KO mice were used to determine if there was a relationship between endogenous H2S and diurnal variations in EF and FS. There was no difference in 12-hour averaged EF and FS between dark and light periods in CSE KO mice accompanying increased MDA levels and decreased SOD activities in plasma, indicating that deficiency of endogenous H2S blunted diurnal variations of cardiac function. To determine whether oxidative stress disrupted the diurnal variations in cardiac function, D-galactose-induced subacute aging mice were employed. After 3-month D-gal treatment, both 12-hour averaged EF and FS in dark or light periods were decreased; meanwhile, there was no difference in 12-hour averaged EF and FS between dark and light periods. After 3-month NaHS treatment in the D-gal group, the plasma MDA levels were decreased and SOD activities were increased. The EF and FS were lower during the 12-hour light period than those during the 12-hour dark period which was fit to sine curves in the D-gal+NaHS group. Identical findings were also observed in 18-month-old mice. In conclusion, our studies revealed that the disrupted diurnal variation in cardiac function was associated with increased oxidative stress and decreased H2S levels in aging mice. H2S could restore the diurnal variation in cardiac function of aging mice by reducing oxidative stress.
Collapse
Affiliation(s)
- Huaxing Zhang
- School of Basic Medical Sciences, Hebei Medical University, Hebei 050017, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| |
Collapse
|
6
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
7
|
Kukkemane K, Jagota A. Therapeutic effects of hydro-alcoholic leaf extract of Withania somnifera on age-induced changes in daily rhythms of Sirt1, Nrf2 and Rev-erbα in the SCN of male Wistar rats. Biogerontology 2020; 21:593-607. [PMID: 32249404 DOI: 10.1007/s10522-020-09875-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
The temporal expression pattern of the circadian clock genes are known to be altered/attenuated with advance in age. Withania somnifera (WS) essentially consists of numerous active constituents including withanolides is known to have antioxidant, anti-inflammatory and adaptogenic properties. We have earlier demonstrated therapeutic effects of hydro-alcoholic leaf extract of WS on the age-induced alterations in the levels and daily rhythms of various clock genes such as rBmal1, rPer1, rPer2 and rCry1. We have now studied effects of hydro-alcoholic leaf extract of WS on the age-induced alterations in the levels and daily rhythms of expression of SIRT1 (an NAD+ dependent histone deacetylase and a modulator of clock) and NRF2 (a clock controlled gene and a master transcription factor regulating various endogenous antioxidant enzymes) in addition to rRev-erbα in SCN of adult [3 months (m)], middle-aged (12 m) and old-aged (24 m) male Wistar rats. The daily rhythms of rNrf2 expression showed 6 h phase delay in middle age and 12 h phase advance in old age. WS restored rSirt1 daily rhythms and phase in old age whereas it restored the phase of rNrf2 in the SCN of both middle and old aged animals. At protein level, SIRT1 expression showed phase advances in 12 m and 24 m whereas NRF2 daily rhythms were abolished in both the age groups. WS restored the phase and daily rhythms of SIRT1 as well as NRF2 in 12 m old rats. However, rRev-erbα expression was found insensitive to WS treatment in all the age groups studied. Pairwise correlation analysis demonstrated significant stoichiometric interactions among rSirt1, rNrf2 and rRev-erbα in 3 m which altered with aging significantly. WS treatment resulted in differential restorations of such interactions.
Collapse
Affiliation(s)
- Kowshik Kukkemane
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
8
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
9
|
De Lavallaz L, Musso CG. Chronobiology in nephrology: the influence of circadian rhythms on renal handling of drugs and renal disease treatment. Int Urol Nephrol 2018; 50:2221-2228. [PMID: 30324579 DOI: 10.1007/s11255-018-2001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chronobiology studies the phenomenon of rhythmicity in living organisms. The circadian rhythms are genetically determined and regulated by external synchronizers (the daylight cycle). Several biological processes involved in the pharmacokinetics and pharmacodynamics of drugs are subjected to circadian variations. Chronopharmacology studies how biological rhythms influence pharmacokinetics, pharmacodynamics, and toxicity, and determines whether time-of-day administration modifies the pharmacological characteristics of the drug. Chronotherapy applies chronopharmacological studies to clinical treatments, determining the best biological time for dosing: when the beneficial effects are maximal and the incidence and/or intensity of related side effects and toxicity are minimal. Most water-soluble drugs or drug metabolites are eliminated by urine through the kidney. The rate of drug clearance in the urine depends on several intrinsic variables related to renal function including renal blood flow, glomerular filtration rate, the ability of the kidney to reabsorb or to secrete drugs, urine flow, and urine pH, which influences the degree of urine acidification. Curiously, all these variables present a circadian behavior in different mammalian models. CONCLUSION The circadian rhythms have influence in the renal physiology, pathophysiology, and pharmacology, and these data should be taken into account in clinical nephrology practice.
Collapse
Affiliation(s)
- Lucas De Lavallaz
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos G Musso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Jagota A, Mattam U. Daily chronomics of proteomic profile in aging and rotenone-induced Parkinson’s disease model in male Wistar rat and its modulation by melatonin. Biogerontology 2017; 18:615-630. [DOI: 10.1007/s10522-017-9711-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
|
11
|
Vinod C, Jagota A. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin. Biogerontology 2017; 18:333-345. [DOI: 10.1007/s10522-017-9687-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
|