1
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
2
|
Gu Y, Gao L, He J, Luo M, Hu M, Lin Y, Li J, Hou T, Si J, Yu Y. β-Nicotinamide mononucleotide supplementation prolongs the lifespan of prematurely aged mice and protects colon function in ageing mice. Food Funct 2024; 15:3199-3213. [PMID: 38445897 DOI: 10.1039/d3fo05221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Ageing is defined as the degeneration of physiological functions in numerous tissues and organs of an organism, which occurs with age. As we age, the gut undergoes a series of changes and weaknesses that may contribute to overall ageing. Emerging evidence suggests that β-nicotinamide mononucleotide (NMN) plays a role in regulating intestinal function, but there is still a lack of literature on its role in maintaining the colon health of ageing mice. In our research, Zmpste24-/- mice proved that NMN prolonged their life span and delayed senescence. This study was designed to investigate the effects of long-term intervention on regulating colon function in ageing mice. Our results indicated that NMN improved the pathology of intestinal epithelial cells and intestinal permeability by upregulating the expression of intestinal tight junction proteins and the number of goblet cells, increasing the release of anti-inflammatory factors, and increasing beneficial intestinal bacteria. NMN increased the expression of the proteins SIRT1, NMNAT2, and NMNAT3 and decreased the expression of the protein P53. It also regulated the activity of ISCs by increasing Wnt/β-catenin and Lgr5. Our findings also revealed that NMN caused a significant increase in the relative abundance of Akkermansia muciniphila and Bifidobacterium pseudolongum and notable differences in metabolic pathways related to choline metabolism in cancer. In summary, NMN supplementation can delay frailty in old age, aid healthy ageing, and delay gut ageing.
Collapse
Affiliation(s)
- Yanrou Gu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Lidan Gao
- Department of Scientific Research Center, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou325035, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Man Luo
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou310058, China
| | - Mei Hu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Yuxian Lin
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Jianxin Li
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Yingcong Yu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| |
Collapse
|
3
|
Keizer HG, Brands R, Oosting RS, Seinen W. The Carnitine Palmitoyl-Transferase 2 Cascade Hypothesis for Alzheimer's Disease. J Alzheimers Dis 2024; 97:553-558. [PMID: 38143363 DOI: 10.3233/jad-230991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Despite decades of intense research, the precise etiology of Alzheimer's disease (AD) remains unclear. In this hypothesis, we present a new perspective on this matter by identifying carnitine palmitoyl transferase-2 (CPT2) as a central target in AD. CPT2 is an enzyme situated within the inner mitochondrial membrane, playing a crucial role in beta-oxidation of fatty acids. It exhibits high sensitivity to hydrogen peroxide. This sensitivity holds relevance for the etiology of AD, as all major risk factors for the disease share a commonality in producing an excess of hydrogen peroxide right at this very mitochondrial membrane. We will explain the high sensitivity of CPT2 to hydrogen peroxide and elucidate how the resulting inhibition of CPT2 can lead to the characteristic phenotype of AD, thus clarifying its central role in the disease's etiology. This insight holds promise for the development of therapies for AD which can be implemented immediately.
Collapse
Affiliation(s)
- Hiskias G Keizer
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
| | - Ruud Brands
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Ronald S Oosting
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
| | - Willem Seinen
- Alloksys Biotechnology, Wageningen, The Netherlands
- AMRIF Biotechnology, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| |
Collapse
|